
1 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

Software Engineering Essentials

• "No Silver Bullet"?
• Essential vs. accidental

difficulty
• SEMAT Essence basic concepts
• Economical view:

Strive for high value at low cost
• (not for high 'quality')

Course "Softwareprozesse"

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

2 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

Learning objectives

• I. Understand that most complexity in SW eng. is unavoidable
• Essential (vs. accidental) difficulty

• II. Understand where Essence is classical or modern
• and how its neutral parts may lean towards classical

• III. Understand why the economical view of SE can be a
modern-view addendum to classical views and processes

[we will skip slides 32-42]

3 / 44

Part I: "No Silver Bullet":
Essential vs. accidental difficulty

• Frederick Brooks: "No Silver
Bullet: Essence and
Accidents of
Software engineering", IEEE
Computer 1987

• There are two types of
difficulty:

1. Essential difficulty comes
from the problem itself
• it can not be reduced or

removed, i.e., there is no
"silver bullet" to shoot this
difficulty "werewolf"

• where seemingly benign
SW projects suddenly turn
evil (in a manager's view)

• "The hardest part of the
software task is arriving at
a complete and consistent
specification and much of
the essence of building a
program is in fact the
debugging of the
specification."

Lutz Prechelt, prechelt@inf.fu-berlin.de

C M

http://doi.ieeecomputersociety.org/10.1109/MC.1987.1663532

4 / 44

"No Silver Bullet":
Essential vs. accidental difficulty (2)

2. Accidental difficulty arises
from the way we handle
the problem
• it can be reduced in many

ways (and some parts
removed completely) by:

• abstraction
• ever-higher-level

languages
• OO, declarative, multi-

paradigm, DSLs
• great designers

• automation
• analysis tools,

construction tools
• test automation
• AI,

automated programming

• reuse
• libraries, frameworks,

components
• architectures,

design patterns
• good process

• nearly agile – in 1987!
• requirements-focused
• incremental

• refactoring
• with strong communication
• robust against mistakes
• "a promising attack on the

conceptual essence"

Lutz Prechelt, prechelt@inf.fu-berlin.de

C M

5 / 44

No silver bullet:
Experts' views 20 years later

• "No Silver Bullet: Software
Engineering Reloaded",
IEEE Software 2008

• (an entertaining read!)
• panel discussion at the

OOPSLA conference:

• Dave Parnas:
• a "silver bullet" would not

require skill: impossible
• education and skill are key
• most progress is due to HW

• several:
• OO technology is helpful

• Martin Fowler:
• OO is rarely applied right

• Dave Thomas, M. Fowler:
• Our technology is

needlessly complicated
• People don't understand

ideas and fundamentals
• Fred Brooks:

• "I know of no other field
where people do less study
of other people's work."

Lutz Prechelt, prechelt@inf.fu-berlin.de

C M

https://www.computer.org/csdl/mags/so/2008/01/mso2008010091.html
https://www.youtube.com/watch?v=Z-1X3duvryA

6 / 44

Part II:
A minimum set of concepts?

Process frameworks (e.g. CMMI) talk about very many things.
Can we reduce those to a comprehensive minimum?

The SEMAT initiative has tried this:

"Essence – Kernel and Language for SW Eng. Methods",
V 1.2, OMG standard, 2018 (308 pages)

• suggests 7 "alphas" ("things to work with")
• in three "areas of concern": customer, solution, endeavor

• 15 "activity spaces" ("things to do")
• 6 "competencies" ("the abilities needed")

• Goals:
• holistic view of software development, compare methods

• independent of domain, technology, development methods
• "Free the practices from the method prisons!" (get rid of ideology)

• supports automation (based on an underlying formal language)

Lutz Prechelt, prechelt@inf.fu-berlin.de

http://semat.org/
http://www.omg.org/spec/Essence/
http://www.omg.org/

7 / 44

The 7 Essence alphas
and their basic relationships

Lutz Prechelt, prechelt@inf.fu-berlin.de

A good
structure?

8 / 44

Example alpha: Opportunity

"The set of circumstances that makes it appropriate to develop
or change a software system.

The opportunity articulates the reason for the creation of the
new, or changed, software system.
It represents the team’s shared understanding of the
stakeholders’ needs, and helps shape the requirements for the
new software system by providing justification for its
development."

• Essence v1.2, Section 8.1.4, p.17

Lutz Prechelt, prechelt@inf.fu-berlin.de

C M

9 / 44

Alphas have states

• Different states for each alpha to describe their lifecycles
in a healthy project:
"[alphas] have states representing progress and health, so
as the endeavor moves forward
the states associated with these elements progress"
• Essence v1.2, Section 1, p.1

• E.g. states of Opportunity (8.2.2.2, p.27-31):
• Identified:

A commercial, social, or business opportunity has been
identified that could be addressed by a SW-based solution.

• Solution Needed:
The need for a SW-based solution has been confirmed.

• Value Established:
The value of a successful solution has been established.

• Viable: It is agreed that a solution can be produced quickly
and cheaply enough to successfully address the opportunity.

• (and: Addressed ; Benefit Accrued.)
Lutz Prechelt, prechelt@inf.fu-berlin.de

C M

10 / 44

States have statecharts

• Each alpha's states have an associated set
of transitioning rules, forming a finite automaton
• by means of a list of transition conditions:

• E.g. Value Established
• "The value of addressing the opportunity has been

quantified either in absolute terms or in
returns or savings per time period (e.g., per annum).

• The impact of the solution on the stakeholders is
understood.

• The value that the system offers to the stakeholders
that fund and use the software system is understood.

• The success criteria by which the deployment of the
software system is to be judged are clear.

• The desired outcomes required of the solution are
clear and quantified."

• Essence v1.2, Table 8.3, p.31

Lutz Prechelt, prechelt@inf.fu-berlin.de

C M

11 / 44

The 15 Essence activity spaces

• Example:
Shape the system:

"Shape the system
so that it is easy to
develop, change and
maintain, and can
cope with current
and expected future
demands.
This includes the
overall design and
architecting of the
system to be produced."

• Essence v1.2, Section 8.1.5, p.19

Lutz Prechelt, prechelt@inf.fu-berlin.de

C M

12 / 44

The 6 Essence competencies

• Example: Analysis
"This competency encapsulates the
ability to understand opportunities
and their related stakeholder needs,
and transform them into an agreed
and consistent set of requirements."

• Essence v1.2, Section 8.1.6, p.20

Lutz Prechelt, prechelt@inf.fu-berlin.de

C M

13 / 44

Further Essence properties

• extensible: new alphas can be added (e.g. "funding");
alphas can be broken down into elements
• e.g. individual requirements, team members, practices, …

• use-oriented: Define methods by practices,
practices via the kernel.

• actionable: alphas are "things to work with"
• "Is every alpha in the state where it needs to be?"
• "If not, what should we do to get there?"

• Essence can define practices and compose them into methods

• automatable: There are formal textual and graphical
languages for giving elements a processable form.

Lutz Prechelt, prechelt@inf.fu-berlin.de

C M

14 / 44

Claims for Essence

• Essence v1.2, Section 7.2, p.9:
• Separate the "what" of SE (Essence Kernel) from the "how"

(practices and methods), thus providing a common vocabulary.
• A common base useful for endeavors of all sizes

(small, medium, and large) and easily extensible.
• Actively support practitioners in their work by guidance

based on state and practice definitions.
• Focus on method use instead of method description

• "supported by the alpha construct which allows you to,
at any time, measure the health and progress of a project."

• Enable method building by the composition of practices.

Lutz Prechelt, prechelt@inf.fu-berlin.de

C M

15 / 44

Example practice:
Scrum "Sprint" (Section E.2.2.3.1, p.269)

Lutz Prechelt, prechelt@inf.fu-berlin.de

alpha Sprint:
"The heart of Scrum is a Sprint, a time-box of one month or less
[…] (description taken from Scrum Guide)"

with states {
state Planned {

"The work has been requested and planned."
checks {

item c1 {"Sprint Planning Meeting is held."}
item c2 {"Product Owner presents ordered Product Backlog

items to the Development Team."}
item c3 {"Development Team decides how it will build this

functionality into a “Done” product Increment during
the Sprint"}

item c4 {"Scrum Team crafts a Sprint Goal."}
item c5 {"Development Team defines a Sprint Backlog."}

} }
state Started {

"The work is proceeding."
checks { …

16 / 44

Research on Essence

• There appear to be very few research results
regarding the Essence claims

• Most scientific publications about it are about teaching
• they tend to be positive

• There are a few informal experience reports about uses
• e.g. "Ending Method Wars: The Successful Utilization of Essence

at Munich Re", Ivar Jacobson International, 2015
• Essence helps avoid talking too much about work products
• It provides helpful joint terminology for discussions
• Munich Re added two more alphas ("funding", "acquisition")
• Munich Re defined three development lifecycles:

exploratory (high-risk) projects, standard projects,
small enhancement projects.
They differ in the states needed per alpha for each milestone.

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://www.ivarjacobson.com/publications/articles/essence-munich-re

17 / 44

Which alpha tends the most
to get too little attention?

Lutz Prechelt, prechelt@inf.fu-berlin.de

Cost

Value

18 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

Part III: Economical view
of software engineering

Classical view of software engineering:
• The goal of software engineering is

producing high-quality software
at low cost
• cost-efficient quality

Economical view of software engineering:
• The goal of software engineering is

enabling the creation of high value (via valuable software)
at low cost
• high value-added

• Note: As a simplification, we will often talk about the value of the
software, rather than the value created via using the software

19 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

Classical view: Cost and quality

Cost of software:
• Development cost and risk

• for requirements analysis,
design, implementation, test,
documentation, delivery, […]

• Risk: Chance of project failure
• Maintenance cost and risk

• for analysis, design, […]
of future changes

• Risk: Chance of failing to
change or of degrading the SW

• Operation cost and risk
• Cost: e.g. Efficiency, etc.
• Risk: e.g. Dependability, etc.

• Cost of time-to-market
• Chances lost due to later

availability of the SW

Quality of software:
• Fitness for purpose

"Gebrauchstauglichkeit"
• Functionality
• Compatibility
• Dependability

• reliability, availability,
safety, security

• Usability
• Learnability, ease of use,

tolerance for human error etc.

• Efficiency
• Load on memory, disk, CPU,

network bandwidth,
user work time etc.

• Maintainability
• Portability
• Modifiability
• Robustness

20 / 44

We should look for "good",
not for "cheapest" (or "best")

Lutz Prechelt, prechelt@inf.fu-berlin.de

https://m.xkcd.com/1908/

https://m.xkcd.com/1908/

21 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

Observations about
the classical view

• The classical view is highly cost-focused:
• The cost factors anyway
• Most quality factors as well:

• Efficiency is focused on operation cost
• Maintainability is focused on maintenance cost and risk
• Much of usability is focused on operation cost
• Dependability is focused on operation risk
• Usability is (in parts) focused on operation risk

• Only 'Functionality' and 'Cost of time-to-market'
directly target the value of the software
• But only insofar as the requirements were 'right'

• also, some requirements will in fact be more valuable than others
• Correctly implementing superfluous or ill-directed requirements

does not provide positive value
• but is considered quality during most activities of conventional SW

processes

22 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

Some known facts of classical-view
SW engineering economics

• Source: Albert Endres, Dieter Rombach: "A Handbook
of Software and Systems Engineering: Empirical
Observations, Laws and Theories", Pearson 2003.

• L17: Inspections improve productivity (i.e. have
high ROI), quality, and project stability
• Hence every project should invest in inspections

• L2: The cost for removing a given defect is the larger,
the later the defect is found
• E.g. for requirements defects: often 100 times (or more) larger

when found in the field as opposed to in requirements stage
• Hence inspections of requirements and design are extremely

valuable (for phased processes at least)

• L15: Software reuse improves productivity (i.e. has high ROI)
and software quality
• Hence one should not develop something oneself needlessly

https://books.google.de/books?id=QrsBoLfyD1IC

23 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

Some known facts of conventional-view
SW engineering economics (2)

• L24: 80% of the defects usually come from
only about 20% of the modules
• It pays off to identify these early and then inspect them

or even implement them again from scratch
• L26: Usability is quantifiable

• using measures such as time spent, success rate, error rate,
frequency of help requests.

• Such quantification is useful as it guides usability improvement
• L34: Cost estimates tend to be too low

• "There are always surprises and all surprises involve more work"
• Plan for contingencies and make sure

your buffer is used only for them!
• L36: Adding people to a late project makes it later

• Because more people means higher coordination effort
and fresh people particularly so

24 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

Economical view: Cost and value

Cost of software:
• Cost for providing value

• Finding and agreeing on
value-enabling requirements

• Writing code and
documentation

• Fitness-improving testing
• Delivering software and

bringing it into valuable use
• Shortening time-to-market

• Cost for low-value insurance
• All other quality assurance

• Cost for cost-reduction:
• Product-related: anything that

contributes to manageability,
testability, maintainability etc.

• Process-related: Most process
improvement

Value of software:
• For commercial SW products:

• Revenue (or revenue increase)
generated

• For custom software:
• Added value and/or saved cost

generated by using the
software

• This is also the basis for the
revenue from commercial
products if (and only if) there is
no competition

• For Open Source software:
• Its value is hard to measure

"Risk" is:
• Threats of increased

cost
or reduced value

C M

25 / 44

Economical view:
A typical cost-benefit curve

Lutz Prechelt, prechelt@inf.fu-berlin.de Boehm, SW Eng. Notes 2003

26 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

Observations about
the economical view

The economical view redirects the focus of software engineering:

1. Away from the cost of individual process steps
• to the cost for providing elements of the final value
• or the cost for preparing to provide that value

2. Away from the individual quality factors as such
• to the value they provide (fitness for purpose, efficiency)
• or the insurance they represent (testability, maintainability, etc.)

• Note: Implicitly, SW engineers have always also used
value considerations.
• But it is useful to do it more explicitly

27 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

Observations about
the economical view (2)

The economical view simplifies judging the importance of SE
process steps and their products:

• requirements prepare providing value, reduce risk
• design reduces costs and risk
• program code provides value
• user documentation adds value (if done well)
• defect tests add value (as long as they find

value-reducing defects), reduce risk
• inspections reduce costs and risk
• process improvement reduces costs and risk
• etc.

• Note: This is very simplified.
For instance process improvement wrt. requirements engineering
also improves the value-providing capabilities etc.

28 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

Quality assurance Value assurance

• Conventional view:
• The goal of quality assurance activities is to build software whose

quality is "as high as possible"
• with respect to the various aspects of quality

• It is difficult to decide on the optimal extent of these activities

• Economical view:
• The goal of quality assurance activities is to reduce the risk to

the success of the value-generating activities,
• i.e. to ensure that potential value is actually realized

("value assurance")
• The extent of these QA activities depends on the size of the risk

and the size of the value that is to be assured

By directing attention to value, the economical view
is a useful extension for classical-view activities. C M

29 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

The "good enough" principle

• In the conventional view, it is difficult to decide on the level of
quality to be achieved
• e.g. 100% reliability is usually impossible.

If we currently have 19 known defects (failure modes) left in the
system, do we need to eliminate them all?

• In the economical view, a (seemingly) simple rule guides
these decisions:
• Is the cost of making an improvement to the product smaller

than the added value generated by the improvement?
• If yes, make the improvement, otherwise don't.
• (Note that cost is often and value is usually hard to estimate)

• This rule leads to the "good enough" approach to SW eng.:
• Always try to understand when the SW is "good enough"
• and then make it at least that good
• but probably not much better

30 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

"Good enough" example:
efficiency optimization

• Assume you could reduce the processing time of a program
function by a factor of 10 by spending 9 days of effort

Should you do it?

• Depending on the importance of the function
• if its overall value is small, probably not. Otherwise:

• Depending on current processing time (interactive SW), e.g.
• 3 sec: yes (for much-used functions)
• 0.1 sec: only if the work is on a high-load server/in a game, etc.
• 100 sec: only if the function is used daily or by many people

• Depending on the current processing time (real-time system)
• yes if this is necessary to meet hard deadlines
• otherwise only if it frees enough resources to make implementing

other tasks much simpler (development cost reduction)

31 / 44

Value-Based Software Engineering:
Key elements

• Barry Boehm: "Value-Based Software Engineering",
ACM Software Engineering Notes 28(2), March 2003

suggests:
1. Benefits Realization Analysis
2. Stakeholder Value Proposition Elicitation and Reconciliation
3. Business Case Analysis
4. Continuous Risk and Opportunity Management
5. Concurrent System and Software Engineering
6. Value-Based Monitoring and Control
7. Change as Opportunity

• Barry Boehm, Li Guo Huang:
"Value-Based Software Engineering: A Case Study",
IEEE Computer, March 2003

provides an example for some of them [go to summary slide]
Lutz Prechelt, prechelt@inf.fu-berlin.de

https://doi.org/10.1145/638750.638775
http://doi.ieeecomputersociety.org/10.1109/MC.2003.1185215

32 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

1. Benefits Realization Analysis (BRA):
Starting point

• Fictitious company: Sierra Mountainbikes
• Renown for its outstanding quality bikes
• Notorious for delivery delays, delivery mistakes,

and disorganized handling of problems
• Enters a partnership with eServices Inc.

• for joint development of better order-processing and fulfillment
• Value-realization chain (simplified):

33 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

1. Benefits Realization Analysis (BRA):
More detailed realization chain

entry

SW

non-SW

34 / 44

1. Benefits Realization Analysis (BRA):
Consequences

• This view turns the software development project
into a business change program
• and identifies its stakeholders

• It involves crucial activities outside the technical domain
• e.g. the order entry staff being willing and capable of changing

the work processes
• The software people must understand and respect these

aspects
• e.g. being willing and capable to design, build, and refine the

GUI and user experience in close cooperation with those staff
• and respond to late changes during the actual process change

Lutz Prechelt, prechelt@inf.fu-berlin.de

35 / 44

3. Business Case Analysis:
General

• Analyze ROI (return on invest) of various approaches
over time
• e.g. approaches A, B, C as in the figure

• Weigh in uncertain benefits and risks
• e.g. if early market entry is important, but

competitors' speed is unknown, then
pair programming may be a calendar-time risk-reduction method
(C) that is preferable over compromising functionalities (B)

Lutz Prechelt, prechelt@inf.fu-berlin.de

time

R
O

I

A

B

C

36 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

3. Business Case Analysis:
Sierra Mountainbikes case study

5=perfect

37 / 44

4. Continuous Risk and Opportunity
Management

Beware of unwanted human factors!

• E.g. the programmer who is assigned to write a
4-week module finds a reuse opportunity that will
reduce time to 1 week (80% chance) or (for our example's sake)
may fail and then will take 6 weeks (20% chance).
• Expected time is 0.8 × 1 weeks + 0.2 × 6 weeks = 2 weeks,

a 50% reduction!
• A risk-averse programmer may decide not to use this

approach
• Opportunity mgmt. should detect this case and

decide whether the benefit is worth the risk
• e.g. time-buffer available, benefits from code size reduction, etc.

Lutz Prechelt, prechelt@inf.fu-berlin.de

38 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

6. Value-Based Monitoring and Control:
Conventional view Earned "Value"

• Conventional PM uses cost-based earned-value tracking
• Assumption 1: When e.g. 10% of the project work are finished,

also 10% of the project's value have been earned
• Assumption 2:

10% of the work
have been
finished if tasks
have been
finished that
were planned to
consume 10%
of the total cost

This project is
- behind schedule (green line)
- but below budget (red line)

39 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

6. Value-Based Monitoring and Control:
Tracking real Earned Value

• In contrast, PM based on the economics view would attempt
to perform value-based earned-value tracking
• For finished functionality as well as planned functionality

• To do this:
1. Set up a business case to quantify the expected value (benefits)
2. Involve more shareholders in order to perform all the

additional activities that are need to realize the benefits
• such as changes of people behavior, changes to related processes

3. Track actual benefit objectively (quantitatively) where possible
• Track estimated benefit subjectively elsewhere

4. Adjust all of these
as goals, markets, constraints, and environment change or
as the expected value is not realized

• Difficult!

40 / 44

6. Value-Based Monitoring and Control:
Tracking Earned Value control loop

• For example, in our Sierra Mountainbikes case study:

Lutz Prechelt, prechelt@inf.fu-berlin.de

41 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

6. Value-Based Monitoring and Control:
Sierra Mountainbikes case study (1)

…

Plan
Act.

Plan
Act.

more columns follow

42 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

6. Value-Based Monitoring and Control:
Sierra Mountainbikes case study (2)

…

*alpha testing

43 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• I. The essential difficulty of SE is understanding what to build,
• everything else is accidental difficulty.
• We should not hope for large productivity improvements

with respect to the essential difficulty
• Agile processes are our current best idea

• II. The Essence of SE describes methods based on
very few basic concepts
• alphas. This is probably helpful
• But the alpha's states lean dangerously towards

naive phase-model thinking.
• And much else of Essence feels overly classical as well.

• III. The economical view of SE is a subset of modern-view
thinking that is more accessible to industrial thinking

44 / 44Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

	Software Engineering Essentials
	Learning objectives
	Part I: "No Silver Bullet":�Essential vs. accidental difficulty
	"No Silver Bullet":�Essential vs. accidental difficulty (2)
	No silver bullet:�Experts' views 20 years later
	Part II: �A minimum set of concepts?
	The 7 Essence alphas�and their basic relationships
	Example alpha: Opportunity
	Alphas have states
	States have statecharts
	The 15 Essence activity spaces
	The 6 Essence competencies
	Further Essence properties
	Claims for Essence
	Example practice:�Scrum "Sprint" (Section E.2.2.3.1, p.269)
	Research on Essence
	Which alpha tends the most �to get too little attention?
	Part III: Economical view �of software engineering
	Classical view: Cost and quality
	We should look for "good",�not for "cheapest" (or "best")
	Observations about�the classical view
	Some known facts of classical-view�SW engineering economics
	Some known facts of conventional-view �SW engineering economics (2)
	Economical view: Cost and value
	Economical view:�A typical cost-benefit curve
	Observations about�the economical view
	Observations about�the economical view (2)
	Quality assurance Value assurance
	The "good enough" principle
	"Good enough" example: �efficiency optimization
	Value-Based Software Engineering:�Key elements
	1. Benefits Realization Analysis (BRA):�Starting point
	1. Benefits Realization Analysis (BRA):�More detailed realization chain
	1. Benefits Realization Analysis (BRA):�Consequences
	3. Business Case Analysis:�General
	3. Business Case Analysis:�Sierra Mountainbikes case study
	4. Continuous Risk and Opportunity Management
	6. Value-Based Monitoring and Control: �Conventional view Earned "Value"
	6. Value-Based Monitoring and Control: �Tracking real Earned Value
	6. Value-Based Monitoring and Control: �Tracking Earned Value control loop
	6. Value-Based Monitoring and Control: �Sierra Mountainbikes case study (1)
	6. Value-Based Monitoring and Control: �Sierra Mountainbikes case study (2)
	Summary
	Thank you!

