
[7] 1 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Course "Softwaretechnik"

Lutz Prechelt, Bernd Bruegge & Allen H. Dutoit

Freie Universität Berlin, Institut für Informatik

Analysis Model: Objects

• On object modelling
• Static analysis model

• Object identification with
Abbott's technique

• Nouns may indicate classes
• Verbs may indicate operations
• Adjectives may indicate

attributes

• Proper nouns may indicate
object instances

• "is a" may indicate inheritance
• etc.

• Checklists
• Analysis vs. design model

• roles, views, model differences

[7] 2 / 40

Lernziele

• Lernen, aus sprachlichen Anforderungsbeschreibungen
Elemente von UML-Klassendiagrammen zu extrahieren.

• Lernen,
das Analysemodell (das über Anforderungen spricht:
Problembereich)
immer verlässlich vom
Entwurfsmodell (das über die innere Struktur der Software
spricht: Lösungsraum)
zu unterscheiden.

• Die Unterscheidung von Entitätsklassen, Steuerungsklassen
und Randklassen (Grenzklassen) angewöhnen.

Lutz Prechelt, prechelt@inf.fu-berlin.de

[7] 3 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Where are we?: Taxonomie
"Die Welt der Softwaretechnik"

Welt der Problemstellungen:

• Produkt (Komplexitätsprob.)
• Anforderungen (Problemraum)
• Entwurf (Lösungsraum)

• Prozess (psycho-soziale P.)
• Kognitive Beschränkungen
• Mängel der Urteilskraft
• Kommunikation, Koordination
• Gruppendynamik
• Verborgene Ziele
• Fehler

Welt der Lösungsansätze:

• Technische Ansätze ("hart")
• Abstraktion
• Wiederverwendung
• Automatisierung

• Methodische Ansätze
("weich")
• Anforderungsermittlung
• Entwurf
• Qualitätssicherung
• Projektmanagement

[7] 4 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Where are we?:
Anforderungsermittlung

• Einsicht: Man darf sich nicht auf intuitiven Eindruck darüber
verlassen, was gebaut werden sollte
• sondern sollte die Anforderungen systematisch ermitteln

• Prinzipien:
• Erhebung der Anforderungen bei allen Gruppen von Beteiligten
• Beschreibung in einer Form, die die Beteiligten verstehen
• Validierung anhand der verschriftlichten Form
• Spezifikation: Übertragung in zur Weiterverarbeitung günstige

Form (Analysemodell)
• Trennung von Belangen: Anford. möglichst wenig koppeln
• Analyse auf Vollständigkeit: Lücken aufdecken und schließen
• Analyse auf Konsistenz: Widersprüche aufdecken und lösen
• Mediation: Widersprüche, die auf Interessengegensätzen

beruhen, einer Lösung zuführen (Kompromiss oder Win-Win)
• Verwaltung: Übermäßige Anforderungsänderungen eindämmen,

Anforderungsdokument immer aktuell halten

[7] 5 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

From Use Cases to Objects:
Classes may not be obvious

Overview

Level 1 Use Cases

Level 2
Use Cases

Operations

Participating
Objects

Level 2

Level 1

Level 2

Level 3

A B

Often more than one
Use Case is relevant for
a single class or
operation

Level 3Level 3

Level 4Level 4

[7] 6 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Activities during Object Modeling

Goal: Find the abstractions important in the application domain
• Steps during object modeling

• 1. Class identification
• 2. Find attributes
• 3. Find methods
• 4. Find associations between classes

• The order of steps is flexible (the above is only a heuristic)
• Iteration helps

• What if we find the wrong abstractions?
•  Must detect inconsistencies, then correct the model

• Resulting model reflects application domain and requirements
• It is not meant to be a solution design!

[7] 7 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Pieces of an Analysis Object Model

• Classes
• With or without subclasses

• Associations (class or object relationships)
• Generic/canonical associations

• Part-of Hierarchy (Aggregation, on object level)
• Kind-of Hierarchy ("is-a", Generalization, on class level)

• Domain-specific associations

• Attributes
• Domain-specific

• Operations
•  Dynamic model (next lecture)

[7] 8 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Object vs. Class

• Object (instance, dt.: Exemplar): Exactly one thing
• The term "instance"/"Exemplar" is preferable,

because "object" is sometimes also used to mean a class
• E.g. this lecture on Software Engineering today

• A class abstractly describes a category of objects
that share similar properties
• e.g. Game, Tournament, mechanic, car, database

• There are two UML notations for modeling
objects, classes and their relationships ("associations"):
• Class diagram: Describes all possible states of data
• Object diagram (instance diagram): A particular set of

objects and relations for an example, scenario, or test case

• During modeling, we use class diagrams for specification and
instance diagrams for illustration

[7] 9 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

How do you find classes?

Methods (one should apply several):

• Observe, talk to your client

• Apply general world knowledge and intuition

• Do a syntactic analysis of problem statements or scenarios:
Abbott Textual Analysis (1983), also called noun-verb analysis
• Nouns are good candidates for classes
• Verbs are good candidates for operations
• Adjectives are often candidates for attributes

[7] 10 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Finding
participating objects in Use Cases

• Pick a use case and look at its flow of events
• Look for recurring nouns
• Identify real world entities or procedures

that the system needs to keep track of
• Identify data sources and data sinks

All these are candidates for becoming objects in your model

• Be prepared that some objects are still missing
• Model the flow of events with a sequence diagram (next lecture)

• Always use the user’s terms (problem domain terms)
• and be consistent

[7] 11 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Object kinds

• Entity Objects
• Represent the persistent information tracked by the system

("business objects", "Geschäftsobjekte")
• Control Objects:

• Represent the control tasks performed by the system ("logic")
• Boundary Objects

• Represent the interaction between the user and the system

• Having three kinds of objects leads to models that are more
resilient to change.
• Change frequencies are highest for Boundary Objects

and lowest for Entity Objects
• Often called Model, View, Controller (MVC)

• but that term is more appropriately applied within GUIs only
• i.e., for solution domain classes!

• Model ≈ Entity, View ≈ Boundary, Controller ≈ Control

[7] 12 / 40

And please remember:

•We are still in the
application domain!
• These are application domain classes

(problem domain classes)
• not solution domain classes

(design or code classes)

Lutz Prechelt, prechelt@inf.fu-berlin.de

[7] 13 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Example: 2BWatch Objects

Time ChangeTime

Button

LCDisplay

Entity Objects Control Objects Interface Objects

[7] 14 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Tagging of object kinds in UML:
stereotype

• A suitable UML profile could be introduced to define stereotypes
for tagging classes with the three kinds

«Entity»
Time

«Control»
ChangeTime

«Boundary»
Button

«Boundary»
LCDisplay

Entity Objects Control Objects Boundary Objects

[7] 15 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Possible naming convention
for object kinds

• To distinguish the different object kinds on a syntactical basis,
one may use name suffixes (also visible in the code):

Time ChangeDate_
Control

Button_Boundary

LCDisplay_Boundary

Entity Objects Control Objects Boundary Objects

[7] 16 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Abbott's textual analysis technique

• The customer enters the store to buy a toy.
• It has to be a toy that his daughter likes and

it must cost less than 50 Euro.
• He tries a videogame, which uses a data

glove and a head-mounted display.
He likes it.

• An assistant helps him. The suitability of the
game depends on the age of the child.

• His daughter is only 3 years old.
• The assistant recommends another type of

toy, the boardgame "Monopoly".

(A scenario, not a use case. And an odd one.)

Flow of events:

[7] 17 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Grammatical
construct

(perhaps)
UML component

Concrete Person, Thing Object
noun Class

verb Operation

Classifying verb Inheritance

Possessive Verb Aggregation

modal Verb Constraint

Adjective Attribute

Intransitive verb Operation (Event)

Mapping parts of speech to object
model components [Abbott 1983]

Example

"Monopoly"
"toy"

"enters"

"is a" ,"either..or",
"kind of…"
"Has a ", "consists of"

"must be", "less than…"

"3 years old"

"depends on…."

[7] 18 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Generation of
a class diagram from flow of events

• Customer enters the store to buy a toy.
• It has to be a toy that his daughter likes and

it must cost less than 50 Euro.
• He tries a videogame, which uses a data

glove and a head-mounted display. He likes
it.

• An assistant helps him.
• The suitability of the game depends on the

age of the child.
• His daughter is only 3 years old.
• The assistant recommends another type of

toy, namely a boardgame.
• The customer buys the game and leaves the

store.

[There is more information left to be analyzed in this
narrative.]

Customer

?

enter()

daughter

suitable

*

Store

enter()

Daughter
age
like()

Videogame Boardgame

toytoy

buy()

Toy
price
buy()

4 Analysieren 6 Beurteilen

[7] 19 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Order of activities in object modeling

• Formulate scenarios
• with help from the end user and/or application domain expert

• Extract the use cases from the scenarios
• (was not done in the above example)

• Analyze the flow of events
• for example with Abbott's textual analysis

• Generate the class diagrams.
• Class identification (textual analysis, domain experts).
• Identification of attributes and operations

• sometimes even before the classes are found!
• Identification of associations between classes
• Identification of multiplicities
• Identification of roles

[7] 20 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Checklist for identifying classes

• Identify a category for the
class
• Persons and their roles

(e.g. Customer)
• Organizations (e.g. Company)

• Places (e.g. Shop)
• Events (e.g. Payment)
• Contracts (e.g. Purchase)
• Other information about

actions (e.g. Receipt)
• Containers (e.g. Shelf)
• Other concrete things

(e.g. Toy)

• Find a suitable name
• A user term

• Not confusable with
some other class name

• Noun, singular

• Check abstraction level
• Avoid classes that are

too fine-grained or too simple

• Is this really an
application domain class?
• Or is it a solution domain class

e.g. a container for technically
managing a set of objects?

[7] 21 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Checklist for identifying associations

• Start with a simple line only
• Check for association type:

• A is a physical part of B
• A is a logical part of B
• A is a description of B
• A uses B
• A owns B
• other

• Check for restrictions:
• Is it {ordered} ?
• If there are several

associations:
{xor}?, {subset}?

• Check for roles of classes:
• Name role(s) or

name the association

• In particular if there are
multiple associations at a class

• Always name reflexive assocs
• Role names are nouns
• If assoc. names are nouns,

they refer to abstractions
• e.g. authorship, not author

• Check 1:1 associations
• If the association is mandatory,

should the classes be united?

• Check for multiple associations
between the same classes
• Are they really different?

• Probably yes if they have
different multiplicities

• Often no if they do not

[7] 22 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Checklist for identifying attributes

• Check abstraction level
• Use elementary types only

where appropriate
• Complex attributes should

become classes, not multiple
elementary attributes

• Don't model implementation
details! (e.g. for realizing an
association)

• Check location:
• If the class had no

associations, would this
attribute still be required?

• Yes: OK
• No: It may be an attribute of

an association. Think about
forming an association class.

• Find a suitable name:
• Noun or adjective+noun
• Do not repeat name of class
• Avoid abbreviations (unless

well-known in the domain)

• Is it a class attribute?
• Should the value always be the

same for all instances?

[7] 23 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Checklist for inheritance

• Is it natural?
• During analysis, inheritance

should describe a type
taxonomy present in the
problem domain

• Is it redundant?
• It is if two subclasses need the

same set of attributes and
operations

• Is it misaligned?
• It is if some subclasses inherit

operations that make no sense
for them

• Very dangerous!

• Note:
Inheritance in the analysis
model needs not always be
implemented as inheritance
in the design model or in the
final program.

[7] 24 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Checklist for identifying operations

• Is this the right class?
• In an inheritance hierarchy,

move operations as far up as
makes sense

• Find a suitable name:
• For procedures: describes the

effect of the operation
• Starts with imperative verb

• For functions: describes the
result returned

• A noun

• Check granularity:
• Does the operation serve some

purpose completely?
• If no, join it with others

• Does it serve more than one?
• If yes, split it in several

• Check class cohesion:
• Are there attributes that are

not used by any operation?
• If yes, an operation is missing

• Does it have too many
parameters?
• If yes, you may need to

introduce auxiliary classes to
group some of them together

[7] 25 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Practical hints

The next few slides will give some heuristics regarding:

• The readability of class diagrams
• DOs and DON'Ts

• Managing object modeling
• how to approach the process

• Roles and interpretations:
The different users of class diagrams

[7] 26 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Avoid Ravioli Models

Customer

Name

CustomerId

Account

Amount

Deposit()
Withdraw()
Balance()

AccountId

Bank

Name Has**

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Don’t put too many classes in the same diagram
Rule of thumb: 5 to 10

[7] 27 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

One rule of thumb:
put taxonomies on a separate diagram

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Account

Amount

Deposit()
Withdraw()
Balance()

AccountId

[7] 28 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Project management heuristics

Explicitly schedule meetings for object identification
1. First just find objects
2. Then differentiate them between

entity, boundary, and control objects
3. Find associations and their multiplicity

• Start from instance diagrams of concrete situations
• Unusual multiplicities often lead to new objects or categories

4. Identify inheritance: Categorize and look for a taxonomy
5. Identify aggregation
6. Identify important methods and attributes

• Allow time for brainstorming at each stage

• Iterate, iterate, iterate

[7] 29 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Who uses class diagrams?

• Customers and end users are rarely interested
• They usually focus more on the behavior of the system
• ( Use Cases)

• Application domain experts use class diagrams
to model the application domain
•  Analysis model

• Developers use class diagrams during analysis,
system design, object design, and implementation.
•  Design models
• Design models extend and modify the analysis model
• Never assume your analysis model is a design model!

[7] 30 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Class diagrams
have different types of users

• Developers play different roles
• (Often one person fills more than one role)

• Analyst
• System-level designer
• Detailed-level designer
• Implementor

• Each of these roles has a different view of the models

• To understand these views, we need to distinguish between
• application domain classes and
• solution domain classes

[7] 31 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Application domain
vs. solution domain

• Application domain (problem domain):
• The "home" domain of the problem to be solved
• Examples: financial services, meteorology, the health system

• Application domain class (analysis & design models):
• An abstraction in the application domain

• In business applications often called business objects
• Examples: Contract, AirPressure, Prescription

• Solution domain:
• Technical domains that help in constructing software
• Examples: telecommunication, databases, compiler construction,

operating systems, web technology
• Solution domain class (in design models only!):

• An abstraction that is introduced for technical reasons
• not directly due to application domain requirements

• Examples: Buffer, DatabaseConnection, Parser, Filehandle, Tag

[7] 32 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Analyst view

• The analyst is interested
• in application domain classes: The associations between classes

are relationships between abstractions in the application domain
• whether the use of inheritance in the model reflect the

taxonomies in the application domain
• A taxonomy is a hierarchy of abstractions

• The analyst is not interested
• in solution domain classes
• in the exact signature of operations

[7] 33 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Designer view

• Designers focus on the solution of the problem
• that is, the solution domain

• Designers consider application domain classes as largely given
(and not to be meddled with)
• in particular the Entity objects
• to a lesser degree the Boundary and Control objects

• and search for appropriate solution domain classes
• such that the overall system can be built

• The central design problem is the specification of
appropriate interfaces
• First of subsystems (architectural design), later of classes,
• such that all functional and non-functional requirements

can be fulfilled
• and that the design is easy to implement, test, understand,

and modify

[7] 34 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Three types of implementor views

• Class implementor:
• Implements the class
• Chooses appropriate data types (for the attributes) and
• algorithms (for the operations), and
• realizes the interface of the class in a programming language

• Class extender:
• Designs a subclass needed for a new problem

• May need to understand parts of the superclass' implementation

• Class-user (client):
• Wants to use an existing class
• Is only interested in the interface of the class

• signatures, preconditions, postconditions
• Should not need to be interested in the class implementation

[7] 35 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Model interpretation and roles

• Depending on our role (analyst, designer, implementor),
we may be interested in limited aspects of a model only
• Separate models reduce confusion and information overflow

• Depending on our role and the model,
we have different interpretations for some UML constructs:
• Different interpretations of associations
• Different interpretations of attributes
• Different interpretation of inheritance

• Let us look at these different interpretations:

[7] 36 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Interpretations in analysis
vs. design model

• Different interpretations of associations
• Analysis model: Relationships between objects in reality
• Design model: Reachability of instances

• Different interpretations of attributes
• Analysis model: Characteristics of object instances
• Design model: State storage, basis for decisions/control flow

• Sometimes different interpretation of inheritance
• Analysis model:

Type taxonomy; objects that can take the role of a superclass
object

• Design model:
type extension

• beware: Reuse of superclass code without being a subtype
often creates huge problems.

V
ery im

p
ortan

t!

[7] 37 / 40

Conventional vs. Agile

Lutz Prechelt, prechelt@inf.fu-berlin.de

[7] 38 / 40

Static requirements analysis in
Conventional vs. Agile processes

• Static analysis would often
be considered a part of a
BUFD: "Big Upfront Design"
• BUFD is considered highly

un-agile by many
• more than appropriate

• In difficult spots, a static
analysis will be performed
informally
• but not called static

analysis and
• results not written up

Lutz Prechelt, prechelt@inf.fu-berlin.de

• Static analysis will often be
done, but the results not
necessarily recorded

• A typical part to be recorded
are the Entity classes
• "Domain objects",

"Business objects",
"Geschäftsobjekte"

• They can be quite complex
• Doing too much static

analysis is one part of
Analysis Paralysis
• (but other parts are more

problematic)

Both camps have difficulty
doing the right amount of static analysis

6 Beurteilen

[7] 39 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• The analysis object model reflects concepts from
• the application domain and
• the requirements

• It can be found by systematic analysis of use cases
• plus other techniques

• The subsequent design model is usually quite different!
• It often leaves out a number of application domain classes

• because they are not relevant for the technical system
• It usually contains many additional solution domain classes

[7] 40 / 40Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

	Analysis Model: Objects �
	Lernziele
	Where are we?: Taxonomie �"Die Welt der Softwaretechnik"
	Where are we?:�Anforderungsermittlung
	From Use Cases to Objects:�Classes may not be obvious
	Activities during Object Modeling
	Pieces of an Analysis Object Model
	Object vs. Class
	How do you find classes?
	Finding �participating objects in Use Cases
	Object kinds
	And please remember:
	Example: 2BWatch Objects
	Tagging of object kinds in UML: �stereotype	
	Possible naming convention �for object kinds
	Abbott's textual analysis technique
	Mapping parts of speech to object �model components [Abbott 1983]
	Generation of �a class diagram from flow of events
	Order of activities in object modeling
	Checklist for identifying classes
	Checklist for identifying associations
	Checklist for identifying attributes
	Checklist for inheritance
	Checklist for identifying operations
	Practical hints
	Avoid Ravioli Models
	One rule of thumb:�put taxonomies on a separate diagram
	Project management heuristics
	Who uses class diagrams?
	Class diagrams �have different types of users
	Application domain �vs. solution domain
	Analyst view
	Designer view
	Three types of implementor views
	Model interpretation and roles
	Interpretations in analysis �vs. design model
	Conventional vs. Agile
	Static requirements analysis in�Conventional vs. Agile processes
	Summary
	Thank you!

