
[5] 1 / 42partially based on two sets of slides by Steve Easterbrook, University of Toronto

Course "Softwaretechnik"

Lutz Prechelt, Steve Easterbrook

Freie Universität Berlin, Institut für Informatik

Requirements Elicitation
(Anforderungserhebung)

• Requirements and
Requirements Engineering
• Types and kinds of

requirements
• Conventional vs. agile
• Specifications and validation

• Requirements Elicitation
• Tasks, difficulties

• Elicitation techniques
• Methods
• Representatios

[5] 2 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Where are we?: Taxonomie
"Die Welt der Softwaretechnik"

Welt der Problemstellungen:

• Produkt
(Komplexitätsprob.)
• Anforderungen

(Problemraum)
• Entwurf (Lösungsraum)

• Prozess (psycho-soziale P.)
• Kognitive Beschränkungen
• Mängel der Urteilskraft
• Kommunikation, Koordination
• Gruppendynamik
• Verborgene Ziele
• Fehler

Welt der Lösungsansätze:

• Technische Ansätze ("hart")
• Abstraktion
• Wiederverwendung
• Automatisierung

• Methodische Ansätze
("weich")
• Anforderungsermittlung
• Entwurf
• Qualitätssicherung
• Projektmanagement

[5] 3 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Where are we?:
Anforderungsermittlung

• Einsicht: Man darf sich nicht auf intuitiven Eindruck darüber
verlassen, was gebaut werden sollte
• sondern sollte die Anforderungen systematisch ermitteln

• Prinzipien:
• Erhebung der Anforderungen bei allen Gruppen von Beteiligten
• Beschreibung in einer Form, die die Beteiligten verstehen
• Validierung anhand der verschriftlichten Form
• Spezifikation: Übertragung in zur Weiterverarbeitung günstige

Form
• Trennung von Belangen: Anford. möglichst wenig koppeln
• Analyse auf Vollständigkeit: Lücken aufdecken und schließen
• Analyse auf Konsistenz: Widersprüche aufdecken und lösen
• Mediation: Widersprüche, die auf Interessengegensätzen

beruhen, einer Lösung zuführen (Kompromiss oder Win-Win)
• Verwaltung: Übermäßige Anforderungsänderungen eindämmen,

Anforderungsdokument immer aktuell halten

[5] 4 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Definitions: Requirement

• What is a Requirement?
• Something that someone needs in order to solve a problem or

achieve an objective:
• "A condition or capability that must be met or possessed by a system

or system component to satisfy a contract, standard, specification, or
other formally imposed document.
The set of all requirements forms the basis for subsequent
development of the system or system component". [IEEE Std]

• Note 1: Often, the "formally imposed document" does not exist,
but there is still somebody wishing to be satisfied.

• Informal requirements (actually more common)

• Note 2: Often, what is written down in the "formally imposed
document" will not really satisfy the system user

• Invalid/incorrect requirements
• Note 3: Requirements are definitions, not facts.
• Note 4: "System" can be a computer system (system req's) or a

socio-technical system (user requirements)

[5] 5 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Definitions:
Types of Requirements

• Functional requirements:
• What the system does: the interactions between the system and

its environment; independent from implementation
• Nonfunctional requirements:

• Observable aspects of the system that are not directly related to
functional behavior

• e.g. performance or reliability aspects, etc.
• Safety/security requirements ("shall not" properties)

• A kind of nonfunctional requirement:
Behavior the system must never exhibit

• e.g. "must be impossible to apply reverse thrust in mid-flight"
• Constraints ("Pseudo requirements"):

• Imposed by the client or environment in which the system
operates

• Often concern the technology to be used (language, operating
system, middleware etc.)

no
nf

un
ct

io
na

l r
eq

ui
re

m
en

ts

[5] 6 / 426 Beurteilen

Types/kinds of requirements,
a second view

• Ingenious requirements
• incredibly valuable

• "A cell can contain a value
or a formula referring to
other cells"

• <a
href=http://www.example.c
om/path/doc.html>

• "SMS, sent to the public"
• Fundamental requirements

• Not as easy as they seem
• "The ticket machine can sell

any type of ticket"
• Normal requirements

• Can be useful, or less so
• "The first step is selecting

the route(s)"

• Usability requirements
• tough to make concrete

• "85% of passengers must
finish their first purchase
within 50 seconds"

• Detail requirements
• super important for some

kinds of software
• eGK: SGB V, § 291 a Abs. 4

Satz 1 about groups having
eRezept data access

• Usability detail
requirements

• can make a lot of difference
• web form: "After

submission, the Submit
button will be deactivated"

• ...
Lutz Prechelt, prechelt@inf.fu-berlin.de 2 Verstehen

http://www.example.com/path/doc.html

[5] 7 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Definitions:
Requirements Engineering (RE)

• Requirements Elicitation is part of Requirements Engineering

• Requirements Engineering (RE):

"[...] Requirements Engineering is the branch of systems
engineering concerned with real-world goals for, services
provided by, and constraints on software systems.
Requirements Engineering is also concerned with the relationship
of these factors to precise specifications of system behaviour and
to their evolution over time and across system families..."
[Zave94]

"[…] RE is concerned with identifying the purpose of a software
system, and the contexts in which it will be used." [RE’01 CfP]

[5] 8 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Requirements Engineering process:
4 steps

Source: Adapted from Loucopoulos & Karakostas, 1995, p20 and Blum, 1992

1. Understand the problem
• Requirements Elicitation
• understand the context and the goals in the user's terms

2. Describe the problem (often in writing)
• Requirements Specification
• describe what the SW must do to reach the goals

3. Attain agreement on the problem
• Requirements Validation
• find gaps, mistakes, and inconsistencies in the requirements
• includes conflict resolution, negotiation

4. Maintain the agreement
• Requirements Management
• negotiate and decide on changes of the specification

[5] 9 / 42

Conventional vs. Agile

Lutz Prechelt, prechelt@inf.fu-berlin.de

[5] 10 / 42

Views of Requirements Engineering:
Conventional vs. Agile processes

• Requirements are collected
and modified all the time

• Reqs are communicated in
whatever form works best
(accurate, efficient)

• Reqs are opportunities for
benefit generation

Lutz Prechelt, prechelt@inf.fu-berlin.de

• Requirements are defined
before SW development

• Reqs are spelled out in
writing precisely and in
detail

• Reqs are binding obligations
for the tech team

What's better depends a lot
on context!

6 Beurteilen

[5] 11 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

RE step 3: Attain agreement:
Conflict is natural and ubiquitous

• Even the most
cooperative
stakeholders
("Beteiligte") will
inevitably have
conflicts

• Conflict resolution is
a core activity
of RE

[5] 12 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

RE step 3: Attain agreement:
Requirements Validation
• Even without conflict, requirements validation is a critical step

in the development process
• after requirements engineering or requirements analysis
• and again at delivery (conventional view)

• Requirements validation criteria:
• Correctness:

• The requirements accurately represent the client’s view.
• Completeness:

• All possible scenarios in which the system can be used are described,
including exceptional behavior by the user or the system

• Consistency:
• No functional or nonfunctional requirements contradict one another

• Feasibility/Realism:
• Requirements can realistically be implemented and delivered

• Traceability: (at delivery only)
• It is possible to trace each system function to

a corresponding (set of) functional requirement(s)

[5] 13 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

RE step 4 (in conventional view):
Requirements Management

• Problem with requirements validation:
Requirements change during and after elicitation

• Large projects need tool support to manage requirements:
• Store requirements in a shared repository
• Provide multi-user access
• Automatically create a system specification document from the

repository
• Allow change management
• Provide traceability throughout the project lifecycle

• e.g. IBM Rational DOORS or
an appropriate issue tracker tool

[5] 14 / 42

Requirements Engineering differences
in Agile processes

Lutz Prechelt, prechelt@inf.fu-berlin.de

1. Understand the problem
• Use whatever techniques appear to work
• In particular, collect feedback from software users

2. Describe the problem
• Writing is a lot of work; results will often be misunderstood.
• Prefer oral communication where possible.

3. Attain agreement on the problem
• Find oversights and inconsistencies also by trying things out
• Some conflicts can be resolved by deferring

and making smaller steps

4. Maintain the agreement
• Changing things is the normal state of existence!

[5] 15 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Requirements and specifications

• Domain Properties are properties in the problem domain that are
true whether or not we ever build the proposed system

• Requirements are properties in the problem domain that we wish
to be made true by delivering the proposed system

• A specification is a description of the behaviors of the program in
the solution domain that the program must have in order to meet
the requirements
• The system specification (system requirements), not to be confused with a

statement of the requirements themselves, the requirements specification
(user requirements)

Source: Adapted from Jackson, 1995, p170−171

Problem Domain Solution Domain

[5] 16 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Validation vs. Verification

• Verification checks the equivalence
of different formal representations

• Validation checks if a system fulfills
the actual expectations in the real world

• Verification criteria:
• Does the Program

running on a particular Computer
satisfy the Specification?

• Validation is more comprehensive, it implicitly also checks:
• Did we understand all the important Requirements?
• Did we understand all the relevant Domain properties?

[5] 17 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de
Source: Adapted from Jackson, 1995, p172

Validation example

• Requirement R:
• "Reverse thrust shall only be enabled when

the aircraft is moving on the runway"
• Domain Properties D:

• Wheel pulses are on if and only if wheels are turning
• Wheels are turning if and only if aircraft is moving on runway

• Specification S:
• Reverse thrust is enabled if and only if wheel pulses are on

• S + D imply R
• But what if the domain model D is wrong?

(Do you recognize the example?)

In radical-design requirements,
we may easily misunderstand
domain proberties.

2 Verstehen

[5] 18 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Another validation example

• Requirement R:
• "The database shall only be accessible by authorized personnel"

• Domain Properties D:
• Authorized personnel have passwords
• Non-authorized personnel do not have passwords

• Specification S:
• Access to the database shall only be granted after the user types

an authorized password

• S + D imply R
• But what if the domain assumptions are wrong?
• A sensible SW engineer will question all domain assumptions

Source: Adapted from Jackson, 1995, p172

[5] 19 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

What vs. How

• "Requirements should specify what without specifying how"
• But this is not always easy to

distinguish:
• What does a car do vs. a bike?

• (Don't mention the motor: 'how'!)
• The 'how' at one level of abstraction

forms the 'what' for the next level

• A suitable distinction
• 'What' refers to a system’s purpose

• it is external to the system
• it is a property of the application domain

• 'How' refers to a system’s structure and
behavior

• it is internal to the system
• it is a property of the solution domain

• Interfaces are boundaries between
'What' and 'How'

Source: Adapted from Jackson, 1995, p207

…

Require-
ments

Design

System

Design

Require-
ments

Sub-
system

Require-
ments

Unit

Design

What

How

What

How

What

How

[5] 20 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

What is a System?

Definition of a System:
• Some part of reality that can be observed to interact with its

environment
• Separated from its environment by a boundary

• Boundary may be difficult to decide: "soft" system
• A system receives inputs from the environment and

sends outputs to the environment
• Many systems have a control mechanism
• Most systems have interesting emergent properties

• Examples:
• cars, cities, houseplants, rocks, spacecraft, buildings, weather,...
• operating systems, DBMS, The Sims, Instagram, the Internet

• Non-examples (there aren’t many!):
• numbers, truth values, letters

Source: Adapted from Wieringa, 1996, p10

[5] 21 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Most systems are "soft":
socio-technical

• The software we will eventually write is not
"the system" with respect to requirements engineering
• The software is the system only in the solution domain
• but not in the problem domain

• Rather, other things are also part of the system in the
problem domain:
• the people using the software,
• the ways in which they use it,
• many other environmental factors

• This larger system we need to understand during
requirements elicitation
• Rule of thumb: If people are involved in any way, never confuse

the software with the system
• Remember "Auswirkungen d. Informatik"?:

underground train with taped-down "GO" button?
• Very simple software, but a surprising system

[5] 22 / 42

Siehe "Auswirkungen der Informatik"
Anforderungen
spielen hier

nicht hier

2 Verstehen

[5] 23 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Requirements Elicitation

• Starting point: Some notion that there is a "problem" that
needs solving
• something negative to get rid of
• or an opportunity to be exploited

• The requirements engineer must:
• become enough of an expert in the problem domain

to
• identify the problem and opportunity

and
• elicit enough knowledge to analyze requirements

for
• validity, consistency, and completeness

W6H
The journalist’s

technique:
What?
Where?
Who?
Why?
When?
How?

(Which?)

[5] 24 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Identifying
the problem and opportunity

• Which problem needs to be solved?
• identify problem Boundaries

• Where is the problem?
• understand the Context/Problem Domain

• Whose problem is it?
• identify Stakeholders (Betroffene, Beteiligte)

• Why does it need solving?
• identify the stakeholders’ Goals

• How might a software system help?
• collect some Scenarios

• When and how does it need solving?
• identify Development Constraints

• What might prevent us solving it?
• identify Feasibility and Risk

W6H
The journalist’s

technique:
What?
Where?
Who?
Why?
When?
How?

(Which?)

[5] 25 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Difficulties of Elicitation (1)

• Limited observability
• The problem owners might

be too busy solving it in its
current form

• Presence of an observer
may change the problem

• Thin spread of domain
knowledge
• It might be distributed

across many sources
• Is rarely available in

explicit form

• Bias
• People may not be free to

tell you what you need to
know

• Political climate &
organizational factors

• People may not want to tell
you what you need to know

• The outcome will affect
them, so they may try to
influence you (hidden
agendas)

• There will be conflicts
between different sources
• People have

conflicting goals
• or different understandings

[5] 26 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Difficulties of Elicitation (2):
Tacit knowledge

• Tacit knowledge
(The "say-do" problem)
• Experts are not aware of what

they know and cannot introspect
reliably

• Can solve any instance,
but cannot state a general rule

• Representational Problems
• Experts don’t have the

language to describe their
knowledge

• Spoken language lacks
precision

• Different knowledge
representations are good for
different things

• Brittleness
• Knowledge is created, not

extracted:
incomplete, overly simplified

[5] 27 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Difficulties of Elicitation (3):
Distortions

Sender-related:
• Group think

• Response to reactions of other
experts

• Impression management
• Response to imagined reactions

of managers, clients, etc.
• Availability

• Some data are easier to recall
than others

• Underestimation of uncertainty
• Tendency to underestimate by

a factor of 2 or 3

Receiver-related:
• Misinterpretation

• due to lack of knowledge
• Misrepresentation

• e.g. question was yes/no,
answer is yes/no,
but reality is more complicated

• Anchoring
• Contradictory data is ignored

once an initial solution is
available

Sender- and receiver-related:
• Inconsistency

• Statements made earlier are
forgotten

[5] 28 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Difficulties of Elicitation (4)

• Personal and
interpersonal
factors

[5] 29 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Method: Introspection

•
• Just sit down and think what the requirements may be

• Very popular with software engineers
• But then often in the form:

Just sit down and think up some requirements

• Advantages
• Simple, quick, cheap, no misunderstandings

• Disadvantages
• Often not applicable ("I have no idea")
• Can be extremely misleading

• The mantra of usability people is: "Users are not like us!"

[5] 30 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Method: Participant observation
("teilnehmende Beobachtung")

• Approach
• Observer spends time with the subjects, joining in, long enough

to become a member of the group

• Advantages
• Highly contextualized and relatively reliable
• Reveals details that other methods cannot

• Disadvantages
• Extremely time consuming!
• Resulting 'rich picture' is hard to analyze
• Cannot say much about the results of proposed changes

• Watch for
• going native!

[5] 31 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Method: Interviews

• Types:
• Semi-structured − agenda of fairly open questions
• Open-ended − no pre-set agenda

• Advantages
• Rich collection of information

• Disadvantages
• Interviewing is a difficult skill to master
• Large amount of qualitative data can be hard to analyze

• Watch for
• All the difficulties listed above
• Removal from context

Source: Adapted from Goguen and Linde, 1993, p154.

[5] 32 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Method: Questionnaires

• Advantages
• Can cheaply collect information from many people

• Disadvantages
• Presupposed answer categories lose context and

provoke misrepresentations
• Free-text answers are often highly ambiguous

• Sometimes useful, but often a
dangerously simplistic idea!

6 Beurteilen

[5] 33 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Methods: Group Elicitation Techniques

• Types:
• Joint/Rapid Application Development

(JAD/RAD) Workshops
• Focus Groups

• Advantages
• More natural interaction between people than formal interview
• Produces more ideas

• Disadvantages
• Requires a highly trained facilitator
• Danger of Groupthink

• Watch for
• Dominance and submission
• Superficial responses where detail is needed

[5] 34 / 42

Methods: Use user feedback

• Types:
• Discussion in forums, bug trackers, user conference workshops
• Talk to your user support crew
• Monitoring data, A/B testing, etc.

• Advantages
• "Real"
• Makes problem domain and solution domain overlap
• Needs fewer interpretations

• Disadvantages
• Some input looks sensible, but is nonsense

• Watch for
• Misunderstandings
• Feature creep

Lutz Prechelt, prechelt@inf.fu-berlin.de

Prefered approach in
Agile processes

[5] 35 / 42

Method: Iterative development

• Developing in iterations (as opposed to all-in-one-go)
can itself be considered a requirements elicitation technique

• Each iteration is an opportunity to rethink requirements
• and one has invariably learned something

from the previous iteration

Lutz Prechelt, prechelt@inf.fu-berlin.de

Inherent approach in
Agile processes

6 Beurteilen

[5] 36 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Representation-based method:
Card sorting

• For a given set of domain objects, written on cards:
• Expert sorts the cards into groups...

• which requires an agreed-upon set of objects
• ...then explains what the criterion was for sorting

and what the groups represent

• Advantages
• Good for eliciting tacit knowledge

• Disadvantages
• Only models classification knowledge,

not performance knowledge

[5] 37 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Representation: Goal hierarchies

• Approach
• Focus on why systems are constructed
• Express the 'why' as a set of stakeholder goals

• The top-level goal is often "save money" or "make money"
• Use hierarchical goal refinement and impediment cross-links

• Advantages
• Simple
• Sound basis for conflict resolution

• Disadvantages
• Either gets very complex

(can lead to analysis paralysis)
or lacks detail

Source: Adapted from Anton, 1996.

[5] 38 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Representation: Scenarios

• Example sequences of interaction between actor and system
• May be positive (required behavior)
• or negative (an undesirable interaction)

• Advantages
• Very natural: stakeholders tend to use them spontaneously
• Easy to understand (low level of abstraction)

• Disadvantages
• Lack of structure

• but grouping them into use cases helps

Source: Adapted from Dardenne, 1993.

[5] 39 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Note: Beware of natural language!

• Natural language is easy-to-
use, natural, and often
appropriate for describing
requirements

• But it is highly ambiguous!

• Example:

"Buffalo once roamed
the plains in large numbers"

• Now please misunderstand
this statement creatively!

• This is going to happen to
some of your natural-
language requirements!

5 Synthese

[5] 40 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Summary

• Requirements represent the goals to be reached
via a software system

• A specification (written down or not) describes what the
software must do in order to fulfill the requirements
• assuming certain domain properties are met

• Requirements elicitation is the basic step of
Requirements Engineering
• others are Req. Specification, Req. Validation, and

Req. Management
• which in Agile methods get closely intertwined

• Requirements Eliciation must overcome
many recurring problems

• Many different elicitation techniques should be combined

[5] 41 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Literature

• James Robertson, Suzanne Robertson: "Mastering the
Requirements Process: Getting Requirements Right", 3rd ed.,
Addison-Wesley 2012

• Donald Gause, Gerald Weinberg: "Exploring Requirements –
Quality before Design", B&T, 1989
• auf deutsch: "Software Requirements: Anforderungen erkennen,

verstehen und erfüllen", (vergriffen)
• http://www.geraldmweinberg.com

http://www.geraldmweinberg.com/

[5] 42 / 42Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!

	Requirements Elicitation �(Anforderungserhebung)�
	Where are we?: Taxonomie �"Die Welt der Softwaretechnik"
	Where are we?:�Anforderungsermittlung
	Definitions: Requirement
	Definitions:�Types of Requirements
	Types/kinds of requirements,�a second view
	Definitions: �Requirements Engineering (RE)
	Requirements Engineering process:�4 steps
	Conventional vs. Agile
	Views of Requirements Engineering:�Conventional vs. Agile processes
	RE step 3: Attain agreement:�Conflict is natural and ubiquitous
	RE step 3: Attain agreement:�Requirements Validation
	RE step 4 (in conventional view):�Requirements Management
	Requirements Engineering differences �in Agile processes
	Requirements and specifications
	Validation vs. Verification
	Validation example
	Another validation example
	What vs. How
	What is a System?
	Most systems are "soft": �socio-technical
	Siehe "Auswirkungen der Informatik"
	Requirements Elicitation
	Identifying �the problem and opportunity
	Difficulties of Elicitation (1)
	Difficulties of Elicitation (2):�Tacit knowledge
	Difficulties of Elicitation (3):�Distortions
	Difficulties of Elicitation (4)
	Method: Introspection
	Method: Participant observation�("teilnehmende Beobachtung")
	Method: Interviews
	Method: Questionnaires
	Methods: Group Elicitation Techniques
	Methods: Use user feedback
	Method: Iterative development
	Representation-based method:�Card sorting
	Representation: Goal hierarchies
	Representation: Scenarios
	Note: Beware of natural language!
	Summary
	Literature
	Thank you!

