Freie Universitat (.S

Course "Softwaretechnik™
Book Chapter 2

Modeling with UML

Lutz Prechelt, Bernd Bruegge, Allen H. Dutoit
Freie Universitat Berlin, Institut fur Informatik

® Modeling, models and UML e Other UML diagram types

e Static view: e component d., collaboration
use d., deployment d.,
communication d., interaction
overview d.

= Sequence diagrams e UML Metamodel, Profiles

e State machine diagrams . :
9 e Some notation details

e Activity diagrams o
e Classes, associations,
Interfaces, states

e Class diagrams
® Dynamic view:

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 1 / 56

Freie Universitat E(L$

Lernziele

e Einen groben Uberblick tiber Grundideen und die wichtigsten
Diagrammarten der UML gewinnen.

* Erkennen: UML kann informell oder prazise eingesetzt
werden.

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 2 / 56

Taxonomie

"Die Welt der Softwaretechnik"

Welt der Problemstellungen:

® Produkt (Komplexitatsprob.)
e Anforderungen (Problemraum)
e Entwurf (Losungsraum)

® Prozess (psycho-soziale P.)
e Kognitive Beschrankungen
e Mangel der Urteilskraft
e Kommunikation, Koordination
e Gruppendynamik
e Verborgene Ziele
e Fehler

Welt der Losungsansatze:

® Technische Ansatze ("hart")
e Abstraktion
e Wiederverwendung
e Automatisierung

® Methodische Ansatze ("weich")
e Anforderungsermittiung
e Entwurf
e Qualitatssicherung
e Projektmanagement

Lutz Prechelt, prechelt@inf.fu-berlin.de

[4] 3/56

Freie Universitat (| S):

What is modeling?

* Modeling consists of building an abstraction of reality
= Models ignore irrelevant details (i.e., they simplify)
e and only represent the relevant details

e What is relevant or irrelevant depends on the
purpose of the model. We typically want to

e draw complicated conclusions about reality
with simple steps in the model In order to

e get insights into the past or presence or make predictions

® Reality R:
e Real things, people, etc.
e Processes happening during some time
» Relationships between things etc.

® Model M:

= Abstractions of any or all of the above

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] yal / 56

Freie Universitat ([l Se)¢

What is a "good" model?

® |In a good model, relationships which are valid in reality R
are also valid in model M (if they exist in M at all).

e | : Mapping of reality R to the model M (abstraction)
- f,,- relationship between abstractions in M
fr: equivalent relationship between real things in R

* |In a good model, the following diagram is commutative:

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 5 / 56

Freie Universitit /Ll
Models of models of models... e T

* We can think of a model as reality and can build another
model from it (with additional abstractions)

e The development of software systems is a transformation of models:

Requirements elicitation (= req's document M,),
Requirements analysis (= analysis model M,),
Design (= design model M;),
Implementation (= source code M,)
"Model-Dri iz
odel-Dr <
IveT |\/|2 > |\/|2
Development
uses this idea for its - [[
engineering approach. AnaIySIS 1E|\/|1 |2
Ml > Ml
Requirements [[:
Elicitation 1
R > R
fr

Lutz Prechelt, prechelt@inf.fu-berlin.de

[4] 6 /56

Freie Universitat (| S):

Systems, models and views

* A model is an abstraction describing relevant aspects of a
system
e A view ("Sicht") depicts selected aspects of a model
e Any view is a model itself
e Calling a model a view makes clear it is part of a larger model

e Complex models are often shown as many views only
never as a whole

e A notation is a set of rules for depicting models
e graphically or textually

e Example:
e System: Aircraft
e Models: Flight simulator, scale model, construction plan, ...
= Views: All blueprints (e.g. electrical wiring, fuel system)

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] V4 / 56

What is UML? Freie Universitat

UML (Unified Modeling Language):
* The most-used standard for software modeling

e For both requirements modeling (application domain)
e and software modeling (solution domain)

e A set of related graphical notations
e Quite complex, we will use a subset only

three leading object-oriented methods:
-« OMT (James Rumbaug/ =
= OOSE (lvar Jacobson) 9

e Booch method (Grady Booch)
e The authors are known as "The Three Amigos"

e Supported by CASE tools
e http://de.wikipedia.org/wiki/UML-Werkzeug

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 8 / 56

http://de.wikipedia.org/wiki/UML-Werkzeug

Freie Universitit G |

Common UML diagram types

® Use Case diagrams (functional view)

= Catalog scenarios that describe the functional behavior of the
system as seen by the user [see lecture "use cases"]

e (Class diagrams / Object diagr. (static view and examples)

 Describe the static structure of the system: Classes, attributes,
object associations (class diagram) or
snapshots of possible resulting configurations (object diagram)

e Sequence diagrams (dynamic view examples)

= Describe examples of the dynamic behavior between objects of
the system (and possibly actors)

e State machine diagrams (dynamic view)

e Describe some aspects of the dynamic behavior of the individual
object of a class by a finite state automaton

e Activity diagrams (dynamic view)

= Model the dynamic behavior of a system, in particular the
workflow (essentially a flowchart, but with concurrency)

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 9 / 56

Freie Universitat (.S

Less common UML diagram types

Hardly covered in this course:

* Implementation diagrams
e Component diagrams
e Deployment diagrams

e Communication diagrams

e Equivalent to sequence diagrams, but embedded in an object
diagram (shows both static structure and dynamic interaction)

® Interaction overview diagrams
- Related to activity diagrams, for describing control flow

There is also a non-graphical language for expressing conditions:

® QObject constraint language (OCL)
e Introduced in lecture on Object Design

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 10 / 56

UML core conventions

e Diagrams are mostly graphs
e Nodes are entities
e Edges are relationships between entities

® Rectangles are classes or instances
e Qvals are functionalities or use cases

® An instance is denoted with an underlined name
 myWatch:SimpleWatch or with no classifier: myWatch:
e Jane:Firefighter or with no name: -Firefighter
e (Anonymous instance of unnamed classifier:

Please don’t use this ...)

e A classifier is denoted with a non-underlined name
e SimpleWatch
« Firefighter

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 11 / 56

Freie Universitat (| S\

UML class diagrams

Class diagrams represent the structure of the system

[Association Class
Multiplic Watch
ultiplicity 1T 1 1 11
2 1 2 1
PushButton LCDDisplay Battery Time
state blinkldx load now
push() blinkSeconds() OIS SCA——
release() blinkMinutes() BRfun
blinksHours()
stopBlinking()
[Attribute refreshQ

Eperations}

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 12 / 56

Class diagrams:

Freie Universitat (.S

Classes
TariffSchedule
zoneZ2price : Table
_ %[Name} getZones() : Enumeration
TariffSchedule 1 getPrice(zone : Zone) : Price
. 1] \
zonezprice \LAttrlbuteS}
getZones() Signature}
getPrice())

SSawe
\LOperations}
TariffSchedule
In terms of modeling:

* Problem domain: A class has a name and represents a concept
e Solution domain: A class encapsulates state (attributes) and
behavior (operations)
e Each attribute has a type
e Each operation has a signature

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 13 / 56

Freie Universitit G

Instances ("Exemplare", "Objekte")

[Instance}Ltarifflgm : TariffScheduIe~§fCIass name}
Name zone2price = {

—{'1', 0.20},
ValueT {'2%, 0.40},
{'3", 0.60}

+

e An instance represents a phenomenon

* The name of an instance is underlined and may indicate the class of
the instance

< May indicate instance name or class or both
e Attributes may be represented with their values

e \What is the fundamental difference between a class diagram
and an object diagram?

Lutz Prechelt, prechelt@inf.fu-berlin.de 2 Verstehen [4] 14 / 56

Assoclations

Freie Universitit G

TripLeg

TariffSchedule 1 * 1 *

price
getZones() S

getPrice() @ @ il

e Associations denote relationships between classes

e The multiplicity of an association end denotes how many objects the
source object can legitimately reference:

Any one TariffSchedule object is associated with at least one TripLeg
object

Any one TripLeg object is associated with at least one TariffSchedule
object

N and m can be numbers ("5") or ranges (closed/open: "1..5" or "2..*")

A missing annotation can mean "don't know yet", "is specified elsewhere"
or (by special convention) "1"

"*'" alone means "arbitrarily many" (zero, one, or several)

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 15 / 56

1-to-1 and 1-to-many associations Freie niversitst ol ¢

Country 0.1 Capital 1 City (Too restrictive?:
name : string — name : string Some countries
have a separate
seat of
government)

One-to-one association

(Too flexible?:

Polygon Point Does a Polygon with
1 *Ix :int 0,1, or 2 Points
y o int really make sense?)
draw()

One-to-many association

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 16 / 56

Many-to-many associations Freie Universitsit (|l

Problem Statement: "A stock exchange lists many companies.
Each company is uniquely identified by a ticker symbol."

list Company
StockExchange | * IStS * [hame
tickerSymbol
StockExchange lists Company
tickerSymbol name
Y * 0..1

(Now a Company could have Qualified
different tickerSymbols at each U|tip|iCit
StockExchange)

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 17 / 56

Ag greg ation Freie Universitat

® An aggregation is a special case of association denoting a
"consists of"'/"is part of" hierarchy

® The object representing the whole is called the aggregate,
the objects representing the parts are called components

ExhaustSystem ExhaustSystem 7|

A

1 0..2 1 /

Muffler Tailpipe Muffler 7 Tailpipe _|

diameter diameter diameter diameter

* A solid diamond denotes composition, a strong form of aggregation
where the parts never exist without the composite

e The association is in force - -
throughout the life of the TicketMachine

parts objects ’

ZoneButton

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 18 / 56

Freie Universitit |

Inheritance (Java: "extends')

Button Button

’ A

ZoneButton CancelButton ZoneButton CancelButton

* The children classes inherit the attributes and operations of
the parent class

* Read the triangle as an arrowhead,
meaning "inherits from" (just like "extends")
e CancelButton inherits from Button
e ZoneButton inherits from Button

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 19 / 56

Freie Universitat |

Realization (Java: "Implements")

cinterfaces = realization relationship PopUpMenu
hoiceBlock — T T — 7 7 7 7 setDefault (choice: String)
ChoiceBloc specifier implementation getChoice(): String
setDefault (choice: Choice)
getChoice (): Choice KX RadioButtonArray
™~

~ setDefault (choice: Button)

etChoice(): Button
g ice(): Bu choice 1..%

1..%* choice

String

1..* choice

Choice

Button

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 20 / 56

Example:
Plato’s and Aristotle’s world views

Freie Universitit G |

Plato Aristotle
Reality Reality
x* x
Thing Substance
Particular Form Form Matter

Lutz Prechelt, prechelt@inf.fu-berlin.de 3 Anwenden [4] 21 / 56

Freie Universitat (| Se 1

Association classes

* Individual associations between objects can have attributes
e Described by an association class

participating class

donor

Organization » Person

|
|
|
| association class (all one element)

DonationLevel

yearAmount: Money o ‘
lifeAmount: Money <T—— association attributes

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 22 / 56

Freie Universitat (| S®_):

Assocliation constraints

® Associations can be described by further details:

address
Person ~.| Address

b
1 navigability direction
visibility

-history

TransactionEntry
* {ordered, readOnly}

.

ordering property changeability constraint

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 23 / 56

Freie Universitat (|

Class diagrams: theater example
class
e _.and some more Customer

notation details:
e role name

name: String _
phone: String

attributes

add (name,phone) <—— static operation
e XOR constraint 1| owner
tati ti association rolenames
- Ay
statiC operation % | purchased ~— (association end names)
Reservation
date: Date
Show
generalization name: String
1 show
Subscription Individual /
Series Reservation L
] multiplicities
series: Integer constraint 0.1
o {xor} i \
T 1..% | performances
Performance
3.6 . 1
: Ticket date: Date
available:Boolean 01 1 seat: String [time: TimeOfDay
sell (c:Customer) qualifier
exchange ~— .
X ge | operations

Lutz Prechelt, prechelt@inf.fu-berlin.de

[4]

24 / 56

Freie Universitat E(L$

Packages

* A package is a UML mechanism for organizing elements (e.g.
classes or whole class diagrams) into groups

» to simplify model readability and handling

A\

Dispatcherlinterface

S N

Notification IncidentManagement

* A complex system can be decomposed into subsystems,
where each subsystem is modeled as a package

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 25 / 56

UML seqguence diagrams

e to refine the model

Act ® Used during requirements
— Actor analysis and system design

: TicketMachine ® Used for explaining behavior

Passenger

selectzone() i to other stakeholders
I |

' 1]

insertCoins()

columns (objname:classname)
Messages are represented by

D ODbjects are represented by

pickUpChange() arrows
U Activations are represented
| by narrow rectangles
l<& - -
pickUpTicket() | Lifelines are represented by
U dashed lines

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 26 / 56

Freie Universitat (.S

Nested messages

: ZoneButton : TariffSchedule : Display

Passenger

| selectZone() :
[|

|
|
|
|
getPrice(zone) :

/ displayPri:ce(price)
[Dataflow J/ | T

...to be continued...

e The source of an arrow indicates the activation which sent the
message

* An activation is as long as all nested activations (for normal calls)
* Horizontal dashed arrows indicate data flow
* Vertical dashed lines indicate lifelines

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 27 / 56

Sequence diagram: theater example

Freie Universitat (|

external call,
external return

gate
(external
call)

gate
(external
return)

synchronous call

sd processOrder)
role
: ‘TicketDB .
Creation | :Account
create() | '
—————— :Order |
| |
| lifeline |
message

reserve (date,count) |
> |
|

execution
specification

\/

=~ — — —

destruction

|
|
—‘ debit (cost)

return

bonus (date,count)
second call to object
————— —==
______ |
|

ongoing objects

Lutz Prechelt, prechelt@inf.fu-berlin.de

[4]

28 / 56

Advanced features

sd processOrder)

e destruction

creation
nesting

iteration

conditions,
branching

interaction
use

loop —

loop condition+

nested
conditional

alternate _—
branches

Lutz Prechelt, prechelt@inf.fu-berlin.de

:Tick:etDB :Account
create() | |
————— > :Order |
| |
| |
ref |
get existing customer status

|

|
|
loop | |
[get next item] | |

— reserve (date,count) |
- |
|

alt
guard |
add (seats) ~ [availablel] condition
= = — — — — —] |
_________________ - - - = |
. [unavailable] |
reject

- - 2 L] |
| |
. | |
debit (cost) I |

|

..é ___________

|

Freie Universitit G |

Sequence diagram summary

* UML sequence diagrams represent behavior in terms of object

Interactions \
 Useful to find missing objects

= Useful for explaining design ideas
Describes examples only, no general specification

dynamic view

® Time-consuming to build, but may be worth it static view

* Complement the class diagrams (which represent structure)

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 30 / 56

Freie Universitat)

State machine diagrams (statecharts)

4[' nitial state

Knopf B / stundenErhdhen()
Event Transition Effect}

h

[Zeit anzeigen Knopf A Stunden einstellen

Knopf A
State

do / zeitAnzeigen() J do/ bImkStunden{}
Transition
Do Activit 1
Knopf A

Minuten einstellen
do/ bImkauten{}

Knopf B / minutenErhohen()

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 31 / 56

Transitions can be
subject to guard conditions

Freie Universitit G |

[Waiting

receive order < trigger event

[amount < $25]

transition

receive order ST guard condition

[amount > $25]

transition
N transition
[Confirm Credit : Process Order j
J approved/debit account()
i trigger action
rejected event

transition

Y
[Cancel Order j

Lutz Prechelt, prechelt@inf.fu-berlin.de 4 AnaIySieren [4] 32 / 56

Parallel (orthogonal)

states,

explicit exits

Freie Universitat)

Taking Class) state machine

Incomplete orthogonal state
a ab O\
lab done done .
Lab1 > final state
(default exit)
______________________________ }@
o= .
. roject done _ normal
initial state Term PTo) >© final state of completion
(default entry) { Project] one region transition
. 35S - orthogonal
I':I'Igsatl) > region
il \ exit point
>(X) failed
explicit exit ®
Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 33 / 56

A transition Is

the consequence of an event

Freie Universitat i

=4
S5

)

Event Type Description Syntax
call event Receipt of an explicit synchronous call op (a:T)
request by an object
change event A change in value of a Boolean expression | when (exp)
signal event Receipt of an explicit, named, asynchro- sname (a:T)

nous communication among objects

time event

The arrival of an absolute time or the pas-
sage of a relative amount of time

after (time)

Lutz Prechelt, prechelt@inf.fu-berlin.de [4]

34 / 56

There can be
multiple transitions at one state

Freie Universitét /(| Se ¢

e |Internal transitions don’t leave the state

e Entry and Exit Activities can be annotated inside the state box
e to avoid redundancy and encapsulate the state

state name ‘ Enter Password A
. L entry / password.reset()
entry and exit activities exit / password.test()
digit / handle character
internal transitions clear / password.reset()
help / display help
internal do activity C do / suppress echo y

e also: do / some_activity

e for a concurrent, abortable, potentially long-running activity
occuring throughout the state

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 35 / 56

Activity Diagrams

* An activity diagram shows flow control (and optionally data
flow) within a system

.%Gandlelnciden}%@ocumentl nciden}%@rchivelnciden}%@

e Two types of (executable) nodes:

e Action node:
Basic activity, cannot be decomposed any further

Predefined in UML, e.g. object creation/destruction,
accessing/modifying attributes or links, calling operations

e Activity node:
Can be decomposed further
The activity is modeled by another activity diagram

e Difference to State Chart?

Lutz Prechelt, prechelt@inf.fu-berlin.de 4 Analysieren [4] 36 / 56

State machine diagram e
- - Freie Universitat
VsS. activity diagram E

State machine diagram for Incident
(Node represents some set of attribute values)

[Active)incidentHandled>K(Inactive)incidentDogmenttﬁ(Closed)incidentArchivej\(ArChived)

Event causes }

transition

Activity diagram for Incident handling
(Node represents some collection of operations)

‘%@andlelncideMocumentl ncideMrchivelncideM
=

Completion of activity
causes execution to proceed

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 37 / 56

Freie Universitat ([l Se_

Activity diagram: decisions

Decision

[lowPriority] \/
GpenlncideM /\AllocateResource9

[fire & highPriority]

NotifyFireChieD

[not fire & highPriority]

A
otifyPoliceChief
N)

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 38 / 56

Freie Universitat (.S

Activity diagrams: concurrency

e Synchronization of multiple activities
e Splitting the flow of control into multiple threads

O
o %GllocateResou rcea— o

ert) </ Coord) elnci >
Openlincident CoordinateResources Archivelncident

%@ocumentlncide@—

e Difference between Fork (here)
and Decision Split (previous slide)?

-

-

Lutz Prechelt, prechelt@inf.fu-berlin.de 2 Verstehen [4] 39 / 56

Freie Universitat G

Activity diagrams: theater example

" BoxOffice::ProcessOrder h
set up
order

decision (branch) <>

guard condition

[single order] assign

seats

activity node

[subscription]
synchronization bar (fork)

assign [] charge
seats g‘”gg:ﬂ credit card

-

concurrent threads
debit \
account

synchronization bar (join)

= alternative threads ——=

merge (untoranch)

g . w
pg.‘:il\lgt @ end of activity

(ohne neue Konstrukte)

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 40 / 56

Freie Universitat (| S):

Further UML diagram types

Static view:
e Component diagrams, internal structure diagrams
e Subsystems (components) and their interfaces
e Collaboration use diagram
e A part of a structure that collaborates for a specific purpose
e Deployment diagrams
e Computers and which part of the system runs on which

Dynamic view:
e Communication diagrams

e Equivalent to sequence diagrams, but embedded in an object
diagram (shows both static structure and dynamic interaction)

® Interaction overview diagrams
- Related to activity diagrams, for describing control flow

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 41 / 56

Freie Universitat ,; \'
Components B

e Components represent classes or subsystems
(multiple classes)

e The focus is on their interfaces
= All implementation details are ignored

= | O spell-check

Dictionary O synonyms provided interfaces

component

(supplement required interface

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 42 / 56

Component diagram,

Internal structure diagram

Freie Universitit |

e Compositions of components

e Component diagram: relationships between components
e Internal structure diagram: structure of a component (as below)

or any other classifier

Booking
I TravelSystem =]
Schedul? [—O, MakeReservations
- % Updeg)gPlans i | %
Planner) L TripGUI
—

User Console

Lutz Prechelt, prechelt@inf.fu-berlin.de

[4]

43 / 56

Freie Universitat (| S |

Collaboration use diagram

* A view describing the roles different parts play for one specific
purpose
e Can be on class level or on instance level

-7 T ==~ _ _ collaboration
_ -7 TicketSale S~
~ : —_ — — — e e e — — — — — — — — — — — —m — — — — — . — — o — — — — : -
-~ ~
7 ~
Ve N
7 role name type role .
/ A\

/ seller: Person ticket: Ticket buyer: Person \
/ \
| 1
t connector f
\ /
\ . . /
\ network: TicketingNetwork /

N\ Ve
AN 7
~ -
~ 7

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 44 / 56

Deployment diagram

Freie Universitat (|

/
server:BankServer ‘
node | «database» | _ artifact
INnstance / — accountDB = instance
artifact «artifact»
instance = | Transaction.jar QKUpdate < interface
«manifest» L2 \ _—
e
= .’ communication link \ dependency o
T i / \ for distributed
ransaction . systems:
component client: ATMKiosk \ deS_C”bes
implemented \ which code
oy artifact \ runs on which
«artifact» computer
ATM-GUIl.jar (""'node")
Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 45 / 56

Freie Universitét /(| Se ¢

Communication diagram

* An object diagram with interaction annotations

 Indicates interactions (like a sequence diagram) as well as object
relationships (by the object diagram)

comm takeOrder)

role

request(order,customer) —p 2: cost=reserve(order) —»

' : ‘TicketDB
‘OrderTaker connector tickets

message flow

\

1: checkCredit(customer) * + 3: debit(customer,cost)

\ credit vV < one-way navigatipn_ on
underlying association

sequence number
: CreditBureau

Lutz Prechelt, prechelt@inf.fu-berlin.de 4 AnaIySieren 6 Beurteilen [4] 46 / 56

Interaction overview diagram

Freie Universitat)

e A combination of two other
diagram types.

intover]

initiation

decision

Wh |C h f) interaction use
ref ref
accept admission decline admission
e Activity diagram and %
- fork A
seguence diagram: rermination
L b nested sequence diagram
e activities ma e
. y sd) student| registrar ﬂ)‘ studentl ‘ housing‘
sequence diagram register 00Ty
fragments
join
decision
ﬂ)‘ 5tudent| ‘ cashier ‘ ﬂ)‘ student| ‘ registrar‘
pay exclude
Lutz Prechelt, prechelt@inf.fu-berlin.de 2 Verstehen \<§>/ [4] 47 / 56

Freie Universitat (L™

Diagram types overview (UML 2.2)

Diagram

7

Structure Behaviour
Diagram Diagram

A A

| | I |
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Composite Deployment Package Interaction State
Diagram Structure Diagram Diagram Diagram Machine
Diagram Diagram
A
I I I
Sequence Communication Interaction Timing
Notation: UMLbl Diagram Diagram Overview Diagram
Diagram
Lutz Prechelt, helt@inf.fu-berlin.d .y - .
tz Prechelt, prechelt@int.fu-berlinde source: Wikimedia Commons [4] 48 /56

Freie Universitat (.S

UML iIs described in UML itself

* The UML model describing UML is called the
UML metamodel

e It consists of UML class diagrams plus descriptive text

® (Class level: Every kind of UML element (e.g. "association™)
IS a class in that metamodel

e The characteristics are described by attributes or associated
classes

e e.g. the UML metamodel contains a class Association
® |Instance level: Every association in a specific UML model can

be interpreted as an instance of the Association class in the
UML metamodel

= But actually there is much more than just one class:

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 49 / 56

Freie Universitat & F,

The UML Metamodel of associations

Source:
UML 2.4.1,

section 7.2
http://www.omg.org

Class
Association
’) + isDerived : Boolean = false
0..1 + class
{ordered, subsets member}
2.k + memberEnd
Property

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 50 / 56

http://www.omg.org/

UML Is extensible

Freie Universitat &S

* Profiles add elements to the UML metamodel
e A profile is a package that defines «stereotypes» and constraints

that can be applied to certain metamodel elements

«profile» EJB
This stereotype must
A t e applied to components.
componen . stereotype|of the
cannot be «metaclass» {required} «stereotype»— metamgge
generalized | Component Bean stereotype|of the
or specialized.} A EJB profile
constraint
type usable «enumeration»
In stereotypes StateKind «stereotype» «stereotype»
and user models . .
Session Entity
stateless
statefull state: StateKind
tag value applicable to components
«metaclass» «stereotype» | This stereotype may
Artifact Jar e applied to artifacts.
Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 51 / 56

Freie Universitit G

UML is fairly precise

* |In this course, we will often use UML in a rather informal and
Imprecise manner
e Our models are usually not very detailed
e They leave many things unspecified (i.e., they are incomplete)

* However, one can produce fairly precise UML models
e Such models have a reasonably well-defined meaning, as UML
itself is specified in a semi-formal manner
No complete semantics have been specified for UML overall, though
e There is much more to UML than can be said here
UML 2.4 Infrastructure + Superstructure: 200 + 800 pages
UML 2.5, rewritten in one document: 800 pages

* Precise UML usage is relevant for automatic code generation
from the UML model
e In some domains, such as telecommunication, complete

subsystems are sometimes code-generated from UML models
today

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 52 / 56

Freie Universitat ([ool
What should you know about UML? e

e For all application domains:

e Learn as much as you can about class diagrams
(object diagrams help in doing this)
(soon maybe also component diagrams)

e Learn the basics of use case, sequence, communication, state
machine, and activity diagrams

* For realtime and formally specifiable (sub)domains:
e Also learn a lot about state machine diagrams

e |If you want to make full use of UML CASE tools:
e Learn a lot about packages and about profiles

e |If you want to build UML CASE tools:
e Learn about the UML metamodel (Warning: tough!)

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 53 / 56

UML summary

e UML provides a wide variety of notations for representing
many aspects of software development
e Powerful, but complex language
e Can be misused to generate unreadable models
e Can be misunderstood when using too many exotic features
e Many people who say they "know UML" actually know very little

e \We will concentrate on a few notations:

e Functional model: use case diagram (next lecture)
e Object model: class diagram
e Dynamic model: sequence diagrams,

state machine and activity diagrams

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 54 / 56

Freie Universitit G

Literature

e James Rumbaugh, lIvar Jacobson, Grady Booch:
"The Unified Modeling Language Reference Manual", Second
Edition (UML 2.0), Addison-Wesley 2005.

e this is also the source of the figures with blue annotations

e James Rumbaugh, lIvar Jacobson, Grady Booch:
"The Unified Modeling Language User Guide",
Second Edition (UML 2.0), Addison-Wesley 2005.

e actually teaches how to use the UML
this lecture did not do this, but some of the rest of the course will

e less misleading than some other books on the topic

The current version of UML is 2.5.1 (December 2017).
e http://www.omg.org/spec/UML

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 55 / 56

http://www.omg.org/spec/UML

Freie Universitat (.S

Thank you!

and now: some bonus slides

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 56 / 56

UML language elements details

Freie Universitat ([l Se)¢

* The next few slides present a number of details in the

notation of

e Classes (Class diagrams)

e Associations (Class diagrams)

e Interfaces (Class diagrams)

- States (State machine diagrams)

Lutz Prechelt, prechelt@inf.fu-berlin.de [4]

57 /56

Detalls: Class

Freie Universitat (|):

class

visibility

optional named
compartment

S

«stereotypeName»
Cname

_— 1
\

= # attrName: Chame
> — attrName: Chame [*]

+ attrName: Chame = expression

+ opName (p:C1,g:C2): C3
«constructor»
opName (v:Cname=value)

Responsibilities
text description

\
\

stereotype icon
stereotype name
class name (italics for abstract)

public attribute with initial value
protected attribute
private attribute with multiplicity many

public concrete operation with return type
stereotype on subsequent operations
abstract operation with default value

compartment name
compartment list element

stereotype application

«stereotypeName»
tagName = value

tagged value

Lutz Prechelt, prechelt@inf.fu-berlin.de

[4] 58/56

Freie Universitat (|3 -

Detalils: Association

ordering multiplicity rolename
class \z \ N class
{ordered} * oname 0.1 name
= <> gname:Chame
<4Aname T

K N
\ aggregation qualifier
composition

name association name

) . association
direction

\ association path

association class
ACname
_

(all one element)

Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 59 / 56

Detalls: Interfaces

Freie Universitat (| 5¥):

realization usage
«interface» «call» explicit
------ > Iname |=----- style
provided required
interface interface . o
N implicit
()é W style
Iname Iname
. dependenc ‘
supplier P Y client
Lutz Prechelt, prechelt@inf.fu-berlin.de [4] 60 / 56

Detalls: States

Freie Universitat (|

guard
condition

event
parameters

event name

\

w el (pC [cond]!actlon‘l action2 -

effects

/

state [StateA StateB
J transition entry / action3 entry activity
exit / action4 exit activity
e2 el /action5 internal transition
\do/ activity) do activity
h | st . n
StateC orthogonal state completion transition
4 N fires on completion of activity

@ = | @ -
initial state substate final state

region (
e3

explicit transition
(aborts nested activity)

StateD]

Lutz Prechelt, prechelt@inf.fu-berlin.de

[4] 61/56

	Modeling with UML ���
	Lernziele
	Taxonomie �"Die Welt der Softwaretechnik"
	What is modeling?
	What is a "good" model?
	Models of models of models...
	Systems, models and views
	What is UML?
	Common UML diagram types
	Less common UML diagram types
	UML core conventions
	UML class diagrams
	Class diagrams: �Classes
	Instances ("Exemplare", "Objekte")
	Associations
	1-to-1 and 1-to-many associations
	Many-to-many associations
	Aggregation
	Inheritance (Java: "extends")
	Realization (Java: "implements")
	Example: �Plato’s and Aristotle’s world views
	Association classes
	Association constraints
	Class diagrams: theater example
	Packages	
	UML sequence diagrams
	Nested messages
	Sequence diagram: theater example
	Advanced features
	Sequence diagram summary
	State machine diagrams (statecharts)
	Transitions can be �subject to guard conditions
	Parallel (orthogonal) �states, explicit exits
	A transition is �the consequence of an event
	There can be �multiple transitions at one state
	Activity Diagrams
	State machine diagram �vs. activity diagram
	Activity diagram: decisions
	Activity diagrams: concurrency
	Activity diagrams: theater example
	Further UML diagram types
	Components
	Component diagram, �internal structure diagram
	Collaboration use diagram
	Deployment diagram
	Communication diagram
	Interaction overview diagram
	Diagram types overview (UML 2.2)
	UML is described in UML itself
	The UML Metamodel of associations
	UML is extensible
	UML is fairly precise
	What should you know about UML?
	UML summary
	Literature
	Thank you!
	UML language elements details
	Details: Class
	Details: Association
	Details: Interfaces
	Details: States

