
1 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Course "Empirical Methods in SW Engineering"

Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

Quasi-Experiments 

• Example 1: language 
comparison

• Method: Like controlled 
experiment

• but with incomplete control
• typically non-randomization

• Example 2: effects of the 
workplace



2 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

"Empirische Methoden im SW-Engineering"

Prof. Dr. Lutz Prechelt
Freie Universität Berlin, Institut für Informatik

Quasi-Experimente

• Beispiel 1: Vergleich von 
Programmiersprachen

• Methodik: wie kontrolliertes 
Experiment

• aber mit unvollständiger 
Kontrolle

• meist fehlt Randomisierung

• Beispiel 2: Wirkung von 
Arbeitsplatzbedingungen 



3 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Example 1: 
Comparing 7 programming languages

• Lutz Prechelt: 
"An empirical comparison of seven programming languages", 
IEEE Computer, October 2000 

• Question: 
How do many implementations of the same 
string processing program compare for 
C, C++, Java, Perl, Python, Rexx, and Tcl?

• Study format: Quasi-experiment

http://doi.ieeecomputersociety.org/10.1109/2.876288


4 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Approach

• Have several dozen different authors write an implementation 
for a given requirements specification
• They use a programming language of their own choice
• Independent variable: Programming language used

Dependent variables:
• Measure the time required by the programmers

• Measure various attributes of the resulting programs:
• program length
• run time
• memory consumption
• reliability



5 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Task: Phonecode

• The program converts 'telephone numbers' into word 
sequences

• Words come from a 73 000 word dictionary
• Conversion is based on the following mapping

e jnq rwx dsy ft am civ bku lop ghz
0 111 222 333 44 55 666 777 888 999

• When no completion of a partial word sequence exists, the 
program may insert one of the original digits between two 
words

• Input text files: dictionary, telephone numbers
• Output format: 3586-75: Dali um

3586-75: Sao 6 um
3586-75: da Pik 5



6 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Origin and 
number of programs per language

• C, C++, Java ("non-script group"):
Created by subjects of a controlled experiment about the PSP 
method

• Perl, Python, Rexx, Tcl ("script group"):
Created by volunteers found via a public call for participation
in Usenet 
newsgroups
• solutions 

submitted by
Email



7 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Results: Program length



8 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Results: 
Run time for loading/initialization



9 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Results: 
Run time without loading/initalization



10 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Results: Run time

• Not many differences are statistically significant,
• because of the high variance within the groups

• If we aggregate as follows: 1. C/C++ , 2. Java, 3. Script 
group, we can say the following with 80% confidence:

• Initialization phase:
• Java took at least 1.3 times as long as C/C++ (on avg.)
• Scripts took at least 5.5 times as long as C/C++ (on avg.)

• Search phase:
• No significant differences in mean times
• But variability in script group was smaller by a factor of 

2.1 to Java and a factor of 3.4 to C/C++
• Total run time:

• C/C++ was at least a little faster than Java (p=0.07)
and than scripts (p=0.15)



11 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Results: Memory consumption



12 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Results: Memory consumption

• C/C++ was most memory-effective
• Java was least memory-effective
• Script programs (except Tcl) were not worse than 

the worse half of C/C++
• Python and Perl had less variability than C/C++
• With a confidence of 80%:

• Java consumed at least 32 MB (297%) more than C/C++
• and 20 MB (98%) more than the script programs



13 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Results: Work time



14 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Results: program design

A qualitative finding when looking at the data structures used by 
the programs:

• Most script programs used associative arrays
• Map from a digit sequence to a word
• Built into all script languages

• Essentially all non-script programs used either
• one large array, indexed only by first digit

• leads to very inefficient solution
• or a 10-ary tree

• very efficient, but also complicated



15 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Validity problems

With respect to internal validity, there are two problems:
• Programmer capabilities

• Are the programmers comparable (per language group)?
• Or have the most capable ones prefered certain languages?

• There is some indication that the Perl programmers may have been 
above average

• As Java had been very young at the time (1996/97), the average 
Java language experience may be below average

• The rest appears reasonably even

• Work times of script group
• Maybe the script group has cheated about their reported work 

time?
• Can we find the plausible cheating candidates from the data we 

have?



16 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Work time validation



17 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Summing up: Results

For the given problem(!):
• Script programs were only half as long as non-script programs
• For this reason, they also took only half as long to write
• They were much slower in the I/O-intensive init phase

• but hardly slower in the actual search phase
• They consumed more memory than C/C++ programs

• but not more than Java programs

• Note: Keep in mind that the Java data was produced using 
JDK 1.2 and Java-inexperienced programmers



18 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Quasi-experiment general method

• A quasi-experiment resembles a controlled experiment:
1. One thing is varied

• It is called the experiment variable or independent variable
• (There could be more than one)

2. The rest is kept constant
• These things are called extraneous variables
• If human beings are involved, repetition is used

3. Some result variables are observed
• They are called the dependent variables

• But the control is incomplete 
• Some of the attributes may lack constancy
• Typical control reductions are discussed on the next slide



19 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Typical control reductions

• Lack of randomization in group assignment
• Self assignment

• Subjects chose a group based on personal preference  [as above]
• Historical assignment

• Groups exist before the experiment is even planned
• Assignment by an outsider

• e.g. a project manager assigns people using project criteria

• Different handling
• The groups may be instructed, supervised, equipped etc. in a 

different way [as script vs. non-script groups above]

• Possibly-biased measurement
• e.g. data measured by participants rather than the experimenter

[as work time for the script groups above]
• etc.



20 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Example 2: Effects of the workplace

• Tom DeMarco, Tim Lister: 
"Programmer performance and the effects of the workplace", 
Intl. Conf. on SW Engineering, IEEE CS press, 1985

• Question: Do high-performer or low-performer programmers 
cluster in different organizations?

• Study type: Quasi-experiment
Lister DeMarco

https://dl.acm.org/citation.cfm?id=319651


21 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Approach

• 35 organizations participated with one or more pairs of 
programmers, 166 programmers overall

• Each programmer solved the same task
• working in their usual programming language, working 

environment, and work hours
• more than 8 different languages were used overall

• Each programmer kept track of the time until two milestones:
• 1. First clean compile , 2. Work completed

• The first 100 participants tested the program of their pair-mate, 
the others tested their own

• Each answered questionnaire about workplace conditions
• Time log includes periods and types of work and interruption



22 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Task

• The task involved 
"syntactic and semantic edits 
on an input stream of calendar dates, 
followed by computation of day-intervals 
between specified dates as much as 8 centuries apart."

• Mean program length was 220 lines

• Mean time to milestone 1 was 280 minutes
•  47 LOC/h on average



23 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Results: Work time differences

• The slowest participant took 5.6 times as long as the fastest

• Average time was 2.1 times the fastest time

• The slower half took 1.9 times as long as the faster half



24 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Similarity of pairs

• Work time of the 
members of a pair 
(called Red & Blue)
correlated strongly

• 62% of the 
differences 
between people is 
explained by the 
pair (organization) 
they belong to

r  = 0.79
r2 = 0.62



25 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Similarity of pairs

• The fastest and second-fastest persons were in one pair

• The slowest and second-slowest were in one pair

• Of 13 that did not finish, 10 were paired with other non-
finishers



26 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Time versus quality

• Little coupling 
between time
required and
number of defects

• The fastest 25%
had 30% less
defects than
the rest

• More than one
third of programs
had no defects
even without
testing



27 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Comparison of workplace conditions

• 25% fastest versus 25% slowest participants: 
Output variable: time

Input variables!



28 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Validity problem

• Fact: One organization had 18 participants in similar 
conditions, plus further 6 working in a quiet "clean room"
• These 6 outperformed the other 18 by 40%
• Why?

• Cause and effect may be either way round:
• Better workplace conditions result in faster performance
• Better performers will be provided with a better workplace

But:
• Three organizations with nine or more pairs each all showed 

very little variation in workplace conditions
• so at least there the conditions are a function of the organization, 

not the individual performance



29 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Summing up: Quasi-experiments

• Quasi-experiments are like controlled experiments, 
but with reduced levels of control
• typically via non-randomized group assignment

• Relaxing control allows for very interesting studies
• that would not otherwise be possible

• Creative ways can often be found to strengthen credibility 
despite the reduced control
• e.g. the worktime validation in the language comparison
• or the use of pairs in the workplace study



30 / 30Lutz Prechelt, prechelt@inf.fu-berlin.de

Thank you!


	Quasi-Experiments �
	Quasi-Experimente �
	Example 1: �Comparing 7 programming languages
	Approach
	Task: Phonecode
	Origin and �number of programs per language
	Results: Program length
	Results: �Run time for loading/initialization
	Results: �Run time without loading/initalization
	Results: Run time
	Results: Memory consumption
	Results: Memory consumption
	Results: Work time
	Results: program design
	Validity problems
	Work time validation
	Summing up: Results
	Quasi-experiment general method
	Typical control reductions
	Example 2: Effects of the workplace
	Approach
	Task
	Results: Work time differences
	Similarity of pairs
	Similarity of pairs
	Time versus quality
	Comparison of workplace conditions
	Validity problem
	Summing up: Quasi-experiments
	Thank you!

