
Grounded Theory Methodology (2)

1/36

Part 1:
• Open Coding

• transcription, memoing,
Constant Comparison

• Theoretical Coding
• Theoretical Sensitivity

Part 2:
• Axial Coding
• Selective Coding
• Theoretical Sampling
• Theoretical Saturation

• Other qualitative methods

Lutz Prechelt, Freie Universität Berlin
V+Ü "Empirical Methods in Software Engineering"

Gegenstandsverankerte Theoriebildung (2)

2/36

Teil 1:
• Offenes Kodieren

• Transkribieren, Memos schreiben,
Ständiges Vergleichen

• Theoretisches Kodieren
• Theorie-Sensibilität

Teil 2:
• Axiales Kodieren
• Selektives Kodieren
• Theoretisches Sampling
• Theoretische Sättigung

• Andere qualitative Methoden

Lutz Prechelt, Freie Universität Berlin
V+Ü "Empirische Methoden im Software Engineering"

GTM overview:
Key activities and notions

3/36

• Theoretical Sampling:
• Data collection is always driven by

the current questions/analysis
• Do not collect lots of data without analysis

• Open Coding:
• Conceptualize the elements of the data

• "fracture the data": take it apart
• Concepts are variously called

Codes (a label only),
Concepts (label, definition), or
Category (concept, properties, relationships)

• Constant Comparison:
• Frequently compare phenomena to codes

and codes to codes to ensure grounding
• split incoherent concepts into several
• join too-similar concepts into one

• Theoretical Coding:
• Concepts should explain, not describe
• Abduction: Infer the best explanation

• Theoretical Sensitivity:
• Develop a feel for what is relevant

• Axial Coding:
• determine and conceptualize reliable

relationships between phenomena
• Selective Coding:

• Pick a core concept and arrange
a Grounded Theory around it
• and then "tell the story"

• Theoretical Saturation:
• The GT is done if new data

exhibits only known phenomena

but we are still not done with Open Coding:

Open Coding:
Developing a base terminology

4/36

• Initial Open Coding quickly leads to a
wild zoo of codes
• especially when using line-by-line or

word-by-word coding
• We need to get to an orderly system of

concepts
• so we can memorize codes
• so we can make things orthogonal
• so we can roughly explain many concepts

in a small space

• A good approach is often to form codes
with a regular structure

• Example: PP base concepts [SalPre13]
• Each HHI base concept name has the form

<verb>_<object>
• e.g propose_design, disagree_step

• Each object comes with several verbs,
forming a concept group
• Groups relate to prototypical dialog episode

structures: Bring X up, discuss/decide X.
• Most verbs recur in several groups
• Verbs and objects can roughly be

understood separately
• which leads to a useful partial understanding

of the compound concepts

Example: The PP
base concepts

5/36

[SalPre13, p.50]; an
entire book mostly
about defining
60 base concepts.

These descriptions
are not the concept
memos!

E.g. there are almost
2 pages for
discriminating
propose_step from
propose_design.

Took several years
to work out.

http://www.inf.fu-berlin.de/inst/ag-se/pubs/SalPre13-baseconbook.pdf

Open Coding:
Applying a terminology

6/36

• Working out a good terminology can
take a long time

• Even using it afterwards can be
far from simple

Example:
• View the following PP scene ZB7-135

at least once
• Use the transcript below (from slide PDF)

• or make your own
• Annotate (most of) the dialog using only

the short definitions on p.50/51 of
[SalPre13]
• P&P concepts have priority over

universal concepts

http://www.inf.fu-berlin.de/inst/ag-se/pubs/SalPre13-baseconbook.pdf

ZB-135

7/36

ZB7-135

ZB7-135 transcript

8/36

P3: Wir programmieren das mit ganz
normalem JMS, würde ich sagen.
P4: [unverständlich]

[öffnet XpetsoreEmailSpy.java]
Nehmen wir das hier als Vorlage? [P1 nickt]
Das Programm hier?
P3: Ja.
P4: Dann mache ich da 'ne Kopie von.
Das wird dann nämlich...

[legt Hand ans Kinn, wendet sich ab,
macht Keuchgeräusch]

Nee
P3: Nee, den brauchen wir ja noch.
P4: Dochdoch, können wir machen.
P3: Müssten dann das ganze Projekt aber...

P4: Nee, wir können das einfach so kopieren.
An dem [Objektname] machen wir nix mehr.
Der ist einmal deployed, der läuft da in Ruhe...

[P3 nickt. P4 kopiert, gibt Zielname ein]
P3: Ja, Du hast recht
P4: So, den nenn ich jetzt… SpySendToTopic.
P3: Nee! Ach so, schon richtig.
P4: Das war der alte. Hier kann man mal
wieder.. [schließt Editoren]
P3: Ich denk immer falsch. Aber Du denkst
einfach anders. [lacht]

ZB7-135 annotated with base concepts

9/36

P3: Wir programmieren das mit ganz
normalem JMS, würde ich sagen.
{propose_design}
P4: Nehmen wir das hier als Vorlage?
{propose_step}
[P3 nickt] {agree_step}
Das Programm hier? {propose_step}
P3: Ja. {agree_step}
P4: Dann mache ich da 'ne Kopie von.
{thinkaloud_activity}
Das wird dann nämlich... {explain_knowledge}
Nee{disagree_step}
P3: Nee, {stop_activity, disagree_step} den
brauchen wir ja noch. {explain_knowledge}
P4: Doch, können wir machen. {agree_step}
P3: Müssten dann das ganze Projekt aber...
{amend_step*}

P4: Nee, wir können das einfach so kopieren.
{agree_step}
An dem JBoss[Objektname] machen wir nix
mehr. Der ist einmal deployed, der läuft da in
Ruhe... {explain_knowledge}
P3: Ja, Du hast recht {agree_step}
P4: So, den nenn ich jetzt… SpySendToTopic.
{propose_design}
P3: Nee! {disagree_design}
Ach so, schon richtig. {agree_design}
P4: Das war der alte. {agree_design**}
Hier kann man mal... {thinkaloud_activity}
P3: Ich denk immer falsch. Aber Du denkst
einfach anders. {explain_finding}

• Understand your coding differences.

*or: propose_strategy, explain_finding, propose_hypothesis
**or: explain_knowledge

ZB7-135 annotation with base concepts
Discussion: Why is this so difficult?

10/36

1. Context understanding:
a) We have not seen what happened before

• this is after 2:15 hours
• so the pair shares a lot of context

we do not know
b) Our technology knowledge is too low

• system built with Java2 Enterprise Edition
c) Both partners think fast

• they not verbalize many things and still
understand each other immediately
• even when P3 does not yet understand the

technical situation.
• (This is a sign of good Togetherness,

see below)

2. Base concepts understanding:
a) The base concepts were developed

by somebody else
b) We have no practice in applying them
c) They are more subtle than

one might think

Problem 2 disappears over time,
problem 1 is fundamental and stays

Open Coding:
Higher-level concepts

11/36

• Due to grounding, GTM work usually
starts with "low-level" concepts
• and later works towards also

"higher-level" concepts

• What does "high-level" mean?
1. Less local:

Instances stretch over more data
(annotated text is longer)

or:
2. More general:

Concept covers a larger class of instances

PP example of "more general":
• We might initially have created

suggest_variablename,
suggest_classname,
recommend_designpattern

• and then decide this is too fine-grained

• introduce propose_design for all of
those
• and no longer use the more specialized

codes

Open Coding:
Higher-level concepts (2)

12/36

PP example of "less local":
• We focused on knowledge creation and

transfer
• Creation & transfer happen in episodes

• some goal (knowledge need) is pursued,
then reached (or not)

• Episodes are driven in different ways,
each leading to a
knowledge transfer mode
(property of an episode)
a) pull: transfer driven by questions
b) push: transfer started by knowledge-

possessor

c) co-produce: partners produce the
knowledge collaboratively

• lots of dialog, very variable
d) pioneering: One partner produces the

knowledge alone (mostly by reading)
• can be silent or talking

see [ZiePre14,Zieris20]

• Good example of less local, higher-level
concepts
• found only later during Open Coding

• (but could have been found early with a
differently oriented Theoretical Sensitivity)

Open Coding:
Higher-level concepts (3)

13/36

• Note that being "higher-level" does
not imply usefulness
• we need Theoretical Sensitivity to avoid

developing concepts that lead nowhere

PP example:
• The first higher-level concept

Franz Zieris found was
the Clarification Cascade
• a rare particular ordering of question types

in a pull episode where the questions are
misunderstood
• academically perhaps interesting, but
• of no value for practitioners and
• irrelevant for our subsequent

theory development
• see [ZiePre14,Zieris20]

GTM overview:
Key activities and notions

14/36

• Theoretical Sampling:
• Data collection is always driven by

the current questions/analysis
• Do not collect lots of data without analysis

• Open Coding:
• Conceptualize the elements of the data

• "fracture the data": take it apart
• Concepts are variously called

Codes (a label only),
Concepts (label, definition), or
Category (concept, properties, relationships)

• Constant Comparison:
• Frequently compare phenomena to codes

and codes to codes to ensure grounding
• split incoherent concepts into several
• join too-similar concepts into one

• Theoretical Coding:
• Concepts should explain, not describe
• Abduction: Infer the best explanation

• Theoretical Sensitivity:
• Develop a feel for what is relevant

• Axial Coding:
• determine and conceptualize reliable

relationships between phenomena
• Selective Coding:

• Pick a core concept and arrange
a Grounded Theory around it
• and then "tell the story"

• Theoretical Saturation:
• The GT is done if new data

exhibits only known phenomena

Axial Coding: Putting the data back together again

15/36

• Initially in GTM, the data is
a tangled mass of weird stuff
• Remember the first time you saw the

first PP scene ZA-280?

• Open Coding cuts the data into
understandable pieces
• "Open coding […] fractures the data"

[StrCor90, p.97] (dt. "aufbrechen")

• "Axial coding puts those data back
together in new ways by making
connections" [StrCor90, p.97]
• Alternate smoothly between both!

• Axial Coding is used multiple times
• Each execution focuses on one

well-developed concept and extends it
• Well-developed means:

• has precise definition (concept memo)
• perhaps has variants (subclasses)
• has enough instances
• its relevant properties are also conceptualized

• Such concepts are called "categories"
[StrCor90, p.61]
• (not a good name!)

• Axial Coding calls the focus concept the
Phenomenon
• StrCor90 do not cleanly distinguish class

(concept) from instance (which is what
"phenomenon" should stand for)

Enhancing Theoretical Sensitivity (7):
The Paradigm model (dt. "paradigmatisches Modell")

16/36

• Pick any concept/Phenomenon to focus on
• Then look in the data for the following relationships and related items:

• StrCor90: All these relations become
part of the Phenomenon's category

Diagram after [Salinger13, p.67]

"leads to" / "influences"

"pertains to"

Axial Coding example: Modes of knowledge transfer in PP

17/36

"leads to" / "influences"

"pertains to"

Axial Coding: Easy or difficult?

18/36

In interview data:
• Interviewees may point out and explain

relevant relationships directly
• this happened often in the Quality

Experience study
• But beware of lack of grounding:

These are opinions or claims,
not facts!
1. Need to validate any statement of fact by

triangulation:
• asking others about the same thing,
• and cross-check

2. Need to validate any generalization by
• asking for specific instances and episodes
• Watch for red flags! (see above)

With field observations:
• It can take long to obtain enough data

about infrequent phenomena
• Information about Context or Conditions

is often incomplete or unreliable
• There may be combinatorial explosion

of possible factors
 Paradigmatic models can rarely be filled
completely at the concept level

• and will talk only about some conditions
some strategies & possible consequences

This slide is very dense and very important

GTM overview:
Key activities and notions

19/36

• Theoretical Sampling:
• Data collection is always driven by

the current questions/analysis
• Do not collect lots of data without analysis

• Open Coding:
• Conceptualize the elements of the data

• "fracture the data": take it apart
• Concepts are variously called

Codes (a label only),
Concepts (label, definition), or
Category (concept, properties, relationships)

• Constant Comparison:
• Frequently compare phenomena to codes

and codes to codes to ensure grounding
• split incoherent concepts into several
• join too-similar concepts into one

• Theoretical Coding:
• Concepts should explain, not describe
• Abduction: Infer the best explanation

• Theoretical Sensitivity:
• Develop a feel for what is relevant

• Axial Coding:
• determine and conceptualize reliable

relationships between phenomena
• Selective Coding:

• Pick a core concept and arrange
a Grounded Theory around it
• and then "tell the story"

• Theoretical Saturation:
• The GT is done if new data

exhibits only known phenomena

Selective Coding

20/36

• If the material is rich, multiple rounds of
Selective Coding can be useful
• Each leads to a separate theory
• These theories will be densely

interconnected

https://stackoverflow.com/a/19892061/2810305

• [StrCor90, p.116]
"Selective Coding: The process of
• selecting the core category,
• systematically relating it to other

categories,
• validating those relationships, and
• filling in categories that need

further refinement and
development."
• Which means to go back to

Axial Coding and perhaps
Open Coding.

https://stackoverflow.com/a/19892061/2810305

Selective Coding: Easy or difficult?

21/36

Selective Coding can be easy:
• In the Quality Experience study,

the core concept was found and
recognized early
• so little analysis was spent on things not

important for the resulting theory

Selective Coding can be difficult:
• In PP research, it took long before we

recognized concepts of interest to
practitioners.

• So far we have (see [Zieris20]):
1. A theory of overall session dynamics

• Fine.
2. Some elements of PP skill

• Probably incomplete
3. The notions of Fluency and Togetherness

for pair self-observation and reflection
• Helpful, but only concepts, not a full theory

Selective Coding example: PP skill

22/36

Franz Zieris, Lutz Prechelt:
"Two Elements of Pair Programming Skill",
ICSE NIER 2021
• We had long felt there was such a thing

as PP skill
• distinct from programming skill.
• But what was this skill specifically?

• While investigating knowledge transfer
modes, we had seen episodes of
a) pairs losing track of what they were

trying to understand (sub-sub-sub-episodes)

b) developers drowning their partner in too
much detail (explain too much)

c) developers losing their partner in too
much Silent Pioneering (explain too little)

• Our best answer to the question what is
"good" PP was:
• Good pairs carefully maintain Togetherness

Decision:
Make "PP Skill" the core category

• One element of PP Skill is
Maintaining Togetherness
• and we found typical patterns of doing so
• there may be more

• Another is Maintaining Expediency,
i.e., avoiding process inefficiencies
• such as the patterns a), b), c)
• there may be more

• There may be more elements

https://arxiv.org/pdf/2102.06460

GTM overview:
Key activities and notions

23/36

• Theoretical Sampling:
• Data collection is always driven by

the current questions/analysis
• Do not collect lots of data without analysis

• Open Coding:
• Conceptualize the elements of the data

• "fracture the data": take it apart
• Concepts are variously called

Codes (a label only),
Concepts (label, definition), or
Category (concept, properties, relationships)

• Constant Comparison:
• Frequently compare phenomena to codes

and codes to codes to ensure grounding
• split incoherent concepts into several
• join too-similar concepts into one

• Theoretical Coding:
• Concepts should explain, not describe
• Abduction: Infer the best explanation

• Theoretical Sensitivity:
• Develop a feel for what is relevant

• Axial Coding:
• determine and conceptualize reliable

relationships between phenomena
• Selective Coding:

• Pick a core concept and arrange
a Grounded Theory around it
• and then "tell the story"

• Theoretical Saturation:
• The GT is done if new data

exhibits only known phenomena

Theoretical Sampling

24/36

• At any point during Open Coding,
Axial Coding, or Selective Coding,
we may ask: "What if <X>?"
• and then find we have no data about this

• This triggers a GTM researcher to get up
and collect data expected to have <X>
• This is Theoretical Sampling:

The theory development suggests
what data to look at.
• Depending on research interest,

Theoretical Sampling can be easy or difficult

Example:
Investigating PP Skill:
• We considered all our pairs to have

(more or less) medium levels of skill
• We wondered what high PP skill

might look like
• We found a PP-only company

("We use PP for everything")
and made some recordings there:
• No higher-PP-skill pair found
• But a too-low-PP-skill pair

• session state PPbreakdown
• helped understand PP Skill as well

Theoretical Saturation

25/36

• Our overview slide:
Theoretical Saturation:
• The GT is done if new data

exhibits only known phenomena
• StrCor90, p.188: "sample until […]

1) no new or relevant data seem to emerge
regarding a category;

2) the category development is dense,
insofar as all of the paradigm elements
are accounted for, along with variation
and process;

3) the relationships between categories are
well established and validated."

But:
1) What does it mean that

"no new data seem to emerge"?
How much additional data should I collect
(and not see anything new)
before I stop?

2) Accounting for all variations is very often
not feasible

• A questionable concept!

Theoretical Saturation is rarely achieved

GTM overview:
Key activities and notions

26/36

• Theoretical Sampling:
• Data collection is always driven by

the current questions/analysis
• Do not collect lots of data without analysis

• Open Coding:
• Conceptualize the elements of the data

• "fracture the data": take it apart
• Concepts are variously called

Codes (a label only),
Concepts (label, definition), or
Category (concept, properties, relationships)

• Constant Comparison:
• Frequently compare phenomena to codes

and codes to codes to ensure grounding
• split incoherent concepts into several
• join too-similar concepts into one

• Theoretical Coding:
• Concepts should explain, not describe
• Abduction: Infer the best explanation

• Theoretical Sensitivity:
• Develop a feel for what is relevant

• Axial Coding:
• determine and conceptualize reliable

relationships between phenomena
• Selective Coding:

• Pick a core concept and arrange
a Grounded Theory around it
• and then "tell the story"

• Theoretical Saturation:
• The GT is done if new data

exhibits only known phenomena
We have barely touched Constant Comparison

The resulting theory: Telling the story

27/36

GTs must be presented as a narrative

1. An understandable story:
• Finding a linear order of explanation

• There are many possibilities
• Avoid forward references
• Avoid backward references to unimportant

concepts
• Limiting the number of concepts involved

• Perhaps this should be two theories or three?
• Providing an overview diagram

2. Study quality:
• Show grounding

• Verbal quotes are great!
• Explain relevance!

• e.g. member check quotes (see below)

3. Explain the research process:
• Early generations of codes
• Difficulties encountered
• Key insights

4. Explain limitations:
• Uncertain observations or inferences

5. Explain presumed domain of
applicability

• If your findings are only existence proofs,
applicability (if not relevance) is universal

• If you formulate rules, this gets
a lot trickier

Validation: Member check

28/36

If GTM is done right, GTM outputs will never be "wrong"
• But they may be useless or incomprehensible
• And we may have done GTM wrong!

To enhance Credibility, perform a member check:
• Present your outcomes to members of your domain

• ideally including people from which you collected data and others
• Ask them if they agree

• whether the outcomes "resonate" with their experience and perceptions
• Ask them if they find the outcomes useful

Tool support

29/36

Don't attempt GTM with only a text editor
or PDF tool
• You will need e.g. the following:

• annotating directly in different types of
document (Text, PDF, audio, video, image)

• sync transcripts to audios/videos
• recording relationships between concepts
• recording relationships between

annotations
• making overlapping annotations
• finding all instances of a concept and

reviewing them together
• arranging concepts in a foldable hierarchy
• creating tailored views of just the right

parts of your data

• renaming a concept reliably
• using color and re-decide which ones
• keeping previous generations of concepts

around
• etc.

You need a specialized tool!

• Some leading tools:
• MAXQDA (from Berlin, FU campus license)

• ATLAS.ti (from Berlin)

• NVivo

C
re

at
e

Re
vi

ew

Re
vi

se

https://www.maxqda.com/
https://www.zedat.fu-berlin.de/Benutzerservice/MAXQDA
https://atlasti.com/
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

MAXQDA screenshot

30/36

Epilogue:
Some other qualitative methods

31/36

Ethnography
Thematic Analysis
Content Analysis

(a few key properties of each)

Ethnography

32/36

• Aims at description-leading-to-explanation (answering why-questions)

• Uses "the members' point-of-view": perspective of the culture being observed
• observes "ordinary detail of life" and reports in thick descriptions

• initially details-oriented (descriptive) where GTM is already explanation-oriented (theoretical coding)
• Requires field observation, often participant observation

• Employs existing theoretical lenses
• Aims at neutrality, avoids judgment

• not an obvious choice for engineering research's wish to optimize
• but useful for e.g. requirements elicitation when designing systems

Helen Sharp, Yvonne Dittrich: "The Role of Ethnographic Studies in Empirical Software Engineering",
TSE 2016

https://doi.org/10.1109/TSE.2016.2519887

Thematic analysis (TA)

33/36

• Aims at identifying frequent "themes" in material
• typically interviews or documents called a corpus of items

from which extracts are made to identify themes

• Essentially a particular form of iterative Open Coding
• with its own specialized instructions and terminology:

Themes are concepts, extracts are annotated stretches, items have no name in GTM.
• Can be applied from constructionist/interpretivist as well as realist/essentialist

epistemological stances.
• May use a theoretical lens (theoretical TA) or not (inductive, "grounded" TA)
• Themes can be semantic (low-level) or latent (high-level)

Virginia Braun & Victoria Clarke: "Using thematic analysis in psychology",
Qualitative Research in Psychology 2006

https://doi.org/10.1191/1478088706qp063oa

Content analysis

34/36

• Aims at quantifying the frequency of qualitative concepts in material
• A qualitative quantitative method: qualitative input data, quantitative results

• Positivist epistemological stance!

Procedure:

• Take (or perhaps derive via Open Coding) a set of concepts
• Each concept must have a precise definition

• Go through the material and identify each instance of each concept

• Report frequencies

• Judge each item at least twice, independently, and report inter-rater agreement

e.g. Maalej, Robillard: "Patterns of Knowledge in API Reference Documentation",
TSE 2013

https://doi.org/10.1109/TSE.2013.12

Literature

35/36

• [Charmaz14] Kathy Charmaz:
"Constructing grounded theory", Sage 2014.

• [Salinger13] Stephan Salinger: "Ein
Rahmenwerk für die qualitative Analyse der
Paarprogrammierung",
Dissertation FU Berlin, 2013

• [SalPre13] Stephan Salinger, Lutz Prechelt:
"Understanding Pair Programming: The Base
Layer", BoD 2013

• [StrCor90] Anselm Strauss, Juliet Corbin:
"Basics of Qualitative Research: Grounded
Theory Procedures and Techniques",
1st ed., Sage 1990

• [ZiePre14] Franz Zieris, Lutz Prechelt: "On
Knowledge Transfer Skill in Pair
Programming", ESEM 2014

• [Zieris20] Franz Zieris: "Qualitative Analysis
of Knowledge Transfer in Pair
Programming", Dissertation FU Berlin 2020

https://books.google.de/books?hl=en&lr=&id=v_GGAwAAQBAJ
https://refubium.fu-berlin.de/bitstream/handle/fub188/9852/ssr_thesis_vertical.pdf?sequence=1&isAllowed=y
http://www.inf.fu-berlin.de/inst/ag-se/pubs/SalPre13-baseconbook.pdf
http://www.inf.fu-berlin.de/inst/ag-se/pubs/ZiePre14-ppknowtrans.pdf
https://refubium.fu-berlin.de/handle/fub188/28968

Thank you!

36/36

	Grounded Theory Methodology (2)
	Gegenstandsverankerte Theoriebildung (2)
	GTM overview:�Key activities and notions
	Open Coding:�Developing a base terminology
	Example: The PP �base concepts
	Open Coding:�Applying a terminology
	ZB-135
	ZB7-135 transcript
	ZB7-135 annotated with base concepts
	ZB7-135 annotation with base concepts�Discussion: Why is this so difficult?
	Open Coding:�Higher-level concepts
	Open Coding:�Higher-level concepts (2)
	Open Coding:�Higher-level concepts (3)
	GTM overview:�Key activities and notions
	Axial Coding: Putting the data back together again
	Enhancing Theoretical Sensitivity (7):�The Paradigm model (dt. "paradigmatisches Modell")
	Axial Coding example: Modes of knowledge transfer in PP
	Axial Coding: Easy or difficult?
	GTM overview:�Key activities and notions
	Selective Coding
	Selective Coding: Easy or difficult?
	Selective Coding example: PP skill
	GTM overview:�Key activities and notions
	Theoretical Sampling
	Theoretical Saturation
	GTM overview:�Key activities and notions
	The resulting theory: Telling the story
	Validation: Member check
	Tool support
	MAXQDA screenshot
	Epilogue:�Some other qualitative methods
	Ethnography
	Thematic analysis (TA)
	Content analysis
	Literature
	Thank you!

