
Introducing Automated Regression Testing in Open

Source Projects

Christopher Oezbek

B-10-01
05.01.2010

FACHBEREICH MATHEMATIK UND INFORMATIK
SERIE B • INFORMATIK

Introducing Automated Regression Testing in Open Source Projects

Christopher Oezbek
Freie Universität Berlin
Institut für Informatik

Takustr. 9, 14195 Berlin, Germany
christopher.oezbek@fu-berlin.de

Abstract

To learn how to introduce automated regression testing
to existing medium scale Open Source projects, a long-
term field experiment was performed with the Open Source
project FreeCol. Results indicate that (1) introducing test-
ing is both beneficial for the project and feasible for an out-
side innovator, (2) testing can enhance communication be-
tween developers, (3) signaling is important for engaging
the project participants to fill a newly vacant position left by
a withdrawal of the innovator. Five prescriptive strategies
are extracted for the innovator and two conjectures offered
about the ability of an Open Source project to learn about
innovations.

Contents

1 Introduction 1

2 Automated testing 2

3 Methodology 2
3.1 A model of external innovation introduction 3
3.2 Choosing a project 3

3.2.1 FreeCol 4
3.3 Conducting the innovation introduction . . 4
3.4 Data analysis methodology 5

4 Results 5
4.1 Insights into automated testing 8
4.2 Insights into innovation introduction 12

5 Limitations and conclusion 14
5.1 Acknowledgements 17

References 17

A Innovator Diary 20

1 Introduction

The Open Source development paradigm based on copy-
left licenses, global distributed development and volunteer
participation has become an alternative development model
for software, competing on par with proprietary solutions
in many areas. Open Source software especially has es-
tablished a good track record related to quality measures
such as number of post-release defects or time to resolution
for bug reports [50, 57]. These achievements are typically
seen as hailing from open access to source code and from
openness to participation, which leads to increased peer re-
view and involvement of bug-fixing experts as summarized
in Raymond’s quote “Given enough eyeballs, all bugs be-
come shallow” [60].

To further improve the quality assurance methods em-
ployed in Open Source projects and learn about the mech-
anisms by which Open Source projects adopt new innova-
tions in general, the introduction of automated regression
testing into an Open Source project is studied. Regression
testing was chosen because it represents a well-known and
established quality assurance practice from industry. The
perspective assumed in this study is from an individual on
the outskirts of the project who has used the project but not
actively participated and who aims to strengthen the quality
attributes of the project. This could be a developer in a com-
pany who has decided to use an Open Source software as an
off-the-shelf component for building a software application
and is now interested in long-term quality improvements in
the project.

For this study, introduction is defined as the set of activ-
ities meant to achieve adoption of a technology, practice or
tool with the boundaries of a social system such as a soft-
ware development project. In the case of this study, the in-
novation is thus the practice of using automated regression
testing. Adoption for this matter has been achieved, when
the uses of an innovation have become “embodied recur-
rent actions taken without conscious thought” [13], i.e. the
writing and executing of test cases in the case of regression

mailto:christopher.oezbek@fu-berlin.de

testing have become a habit or routine.
To develop an understanding of how to introduce au-

tomated regression testing to Open Source projects and
whether usage is as expected, an exploratory field experi-
ment was conducted (the methodology is explained in full
detail in Section 3). The study was performed with the
Open Source project FreeCol described in more detail in
Section 3.2.1 and had the following research questions in
mind:

1. Is the introduction of a quality assurance process inno-
vation such as automated regression testing a feasible
possibility for an external innovator?

2. Which aspects of the introduction and adoption of an
innovation need particular assistance?

3. How should the innovator behave and which strategic
advice can be deduced?

4. What can be learned about automated regression test-
ing within the scope of Open Source software develop-
ment?

The remainder of the article presents a more detailed
overview of the practice of automated regression testing, the
project chosen to introduce testing with and the methodol-
ogy used in the study. The last two sections then describe
the actual introduction effort and the results achieved.

2 Automated testing

Automated testing is the practice of writing executable
specification against which an application can automatically
be tested. “Automated testing” is used as a term to distin-
guish from manual testing in which software response is
verified by a human against manually entered input.1 We
typically distinguish unit testing of individual classes and
modules, integration testing of the interaction of several
modules, and system testing of the application in the con-
text of later use [76, p.77]. Since the boundaries between
these different testing scopes are often hard to draw pre-
cisely, the term unit testing, which was originally reserved
for testing the smallest possible unit in isolation and allow-
ing also manual execution, has become near synonymous
with automated testing independent of the granularity of the
tests contained in a test suite.

While automated testing is primarily a quality assurance
technique to achieve compliance with specification, it also
has become popular to view it (a) as a specification in its
own right, for instance when translating an ambiguous bug

1From now on, we will use the unqualified term of testing as referring
to automated testing exclusively and will qualify all occurrences of testing
as pertaining to manual testing respectively.

report into a specific test case, and (b) as a means to track
development progress by the individual developer (“you
will be done developing when the test runs” [5]).

It is not necessarily defined at which time the test cases
are created with relation to the code they are testing. In
a waterfall or V model software development process it is
likely that unit and integration tests will be created bottom-
up in a “sequential fashion” after implementation and in-
tegration respectively [38] and in a dedicated testing de-
partment. Yet, with the advent of more agile develop-
ment processes, developers have become increasingly in-
volved in writing tests during or even before implementa-
tion. Such test-driven development (TDD, also “test-first”)
has received a lot of attention in academia and industry [36]
and is characterized by repeated cycles of writing tests, im-
plementing functionality to pass the tests and subsequent
refactoring to improve the quality of the code.

The last step in the TDD cycle is aided by the regression
detecting capabilities of a test suite. Since tests ensure com-
pliance to the behavior coded in them, deviations from this
behavior will cause affected tests to fail. This capability of
tests is cited to increase developers’ confidence to refactor-
ing code [49, p.129].

Lastly, for the relationship between testing and finding
bugs in software, the black-box properties of the test exe-
cution must be regarded. This is famously summarized by
Dijktra’s remark that “Program testing can be used to show
the presence of bugs, but never to show their absence” [14],
which reminds us that tests compare expected and actual
output of the program for a defined set of scenarios and do
not prove correctness of the code. In practical terms this
means that even though the tester derives confidence about
the quality of the code by successfully testing a program, it
still might be that the tests (1) do not cover all the scenarios
in which the code might be used, (2) contain bugs them-
selves, and (3) do not detect interrelating defects that result
in seemingly correct behavior.

At this point we do not further qualify what kinds of
means and ends are targeted by the habit of automated test-
ing (for instance whether developers translate bug reports to
test cases or use it for test-driven development), but rather
leave the exact kind of usage up to the Open Source project
and its specific requirements.

3 Methodology

This study is a long-term field experiment [31] with post-
hoc data analysis being performed both quantitatively and
qualitatively. The study proceeded in four steps: First some
time was spent on building a theoretical model of how an
innovation introduction with regard to automated testing
should proceed. Second, a project was selected to conduct
an innovation introduction following this model with, the

2

result of which was the project FreeCol. Third, testing was
introduced to this project, which took place from April to
September 2007. Last, the outcome of the introduction was
analyzed by means of data mining the source code reposi-
tory of the project and analyzing the mailing-list communi-
cation on testing up until August 2009.

Even though Open Source projects are robust against
negative external influence, it was attempted to minimize
risk toward the project and to protect the autonomy of the
subjects [8, 53] by creating an atmosphere of collabora-
tion, involvement and participation between project and re-
searcher, and protecting privacy and confidentiality [4, 22].

3.1 A model of external innovation intro-
duction

To give the innovator a plan for introducing automated
testing according to which to operate, first a prescriptive
stage model of introduction behavior was designed. The
goal was to guide the innovator and make the process repro-
ducible in other projects and context. The resulting model
is presented in the following paragraphs and summarized in
Figure 1.

The goal of the first phase is to get to know the Open
Source project and establish the technical requirements of
participating in the project. This entails subscribing to and
reading the mailing-list of the project (lurking [52, 58]) with
a focus on community and power structures of the project,
downloading the source code from the repository, setting up
the development environment, reading mission statements
and task trackers, and building the project.

In the next phase the innovator is to become active by
writing test cases and contributing them unsolicitedly to the
project using the mailing-list (see [63] for a discussion on
contact strategies). This strategy is to be used to create
something valuable for the project [16, 72] and as a side-
effect to become known and possibly gain write access to
the project repository. Areas to test will be selected to max-
imize the learning experience for the innovator regarding
the code base, while still providing benefit to the project.
Previous work had shown that to be beneficial, close inte-
gration with existing code structure and coding conventions
is important [59]. To make these test contributions usable
for the project, documentation on testing will be written and
the build-structure of the project improved to better accom-
modate testing. An upper limit of 10-15 hours per week
in time spent on communicating and writing test code will
be set, so that the researcher is not overtaxing the capacity
of the project and is behaving in line with the average time
commitment of OSS project participants [26].

In the third phase the focus will be shifted away from
solitary activity, which is communicated primarily via the
project leadership, to collaboration with other project mem-

bers, based on three different collaboration models for au-
tomated testing: (1) The innovation will codify recent bug
tracker entries into failing test cases and contact the devel-
opers who had previously worked in that area. (2) The in-
novator will add test cases for code recently committed by
other members ex post. (3) The innovator will write fail-
ing test-first code for features that members are discussing
to implement in the very near future. Each of these areas
should generate a possibility for interaction and collabora-
tion between one or several developers and the innovator.
The goal here is to build a social network between the in-
troducer and the developers, to spread knowledge about au-
tomated testing and demonstrate benefit of the innovation to
the developers.

In the fourth phase the activity of the developer will be
phased-out slowly with an emphasis on support and main-
tenance. The introducer will actively monitor test contri-
bution by other developers and guide them to develop high
quality tests with large benefit for the project.

3.2 Choosing a project

Using the project hosting site SourceForge.net, I first
randomly chose among projects fitting the following set of
criteria: (1) the project uses an Open Source license and de-
velopment model (in particular this means distributed devel-
opment and openness to outside contributions [7]), (2) the
project has between 5 and 15 active developers who have
committed code to the CVS repository within the last three
months to ensure both interesting interactions and suffi-
cient possibilities for the researcher to act upon, (3) the
project uses C/C++, Java, C#, Ruby, Perl or Python, (4) the
code-base contains less than 15 test cases prior to being ap-
proached, (5) the project is not in process of adopting any
time-consuming innovations, and (6) the project consists
not primarily of GUI code (which is harder to test [48]).

These criteria were used to ensure that the case is (a) typ-
ical enough to generalize to other projects, (b) suitable for
automated testing, (c) has potential for interesting interac-
tion regarding the introduction, and (d) automated testing is
relatively new with regard to the project [54].

Ten projects were then randomly chosen from a list of
projects with at least 5 developers as given by Source-
Forge.net and analyzed for the remaining criteria. It turned
out that none of the these projects fulfilled all criteria and it
was decided not to continue by randomly selecting projects
(three projects were inactive in the last 3 months, one
project already had more than 15 test cases, three projects
were moving to another source code management system,
which was seen as major innovation introduction underway,
two projects did not have any public communication, and
one project did have more than 5 members but consisted of
several completely independent sub-projects none of which

3

http://www.sourceforge.net

 2 wks 2 wks 2 wks 2 wks
1 wk 1 wk 1 wk 1 wk 1 wk 1 wk 1 wk 1 wk

Period: Lurking Activity Collaboration Phase-Out

Activities: • Subscribe to mailing-list
• Check-out project
• Build project
• Analyse power structure and

mission statement

• Write test cases
• Contribute tests on mailing-

list

Contribute tests for...
• demonstrating current bug

tracker entries
• recently checked-in code
• test-first development

• Improve test cases
• Maintain infrastructure

Goals: • Get to know the project
• Establish infrastructure for

testing

• Demonstrate value of testing
• Understand code base
• Gain commit access

• Introduce innovation to
individual members

• Build social network

• Sustain usage of technology

Figure 1. Phases in the introduction process.

passed the five-member-hurdle). At this time, the Source-
Forge.net newsletter arrived which features a “Project of the
Month”2 chosen by the SourceForge.net staff. As the first
project listed in this newsletter already complied with all
set criteria, choosing from the list of Projects of the Month
offered a suitable alternative to a random sample.

3.2.1 FreeCol

FreeCol is a project striving to recreate the turn-based strat-
egy game Sid Meier’s Colonization – a sequel to Sid Meier’s
successful empire building game Civilization [23]. The
project was started in March 2002 and had its first re-
lease on January 2, 20033. FreeCol is structured as client-
server application to facilitate multi-user play and is writ-
ten entirely in Java. The project is regularly ranked in
the top 50 of Open Source projects hosted at the project
hoster SourceForge.net and 16,500 copies have been down-
loaded per month on average over the last six months. The
project is lead by the two maintainers Stian Grenborgen
and Michael Burschik and has 60 members enlisted on the
SourceForge.net project page4 of which 46 are designated
as developers and 13 of which are deemed active5. The
project already had one (1) test case using JUnit which was
integrated into the Ant build-scripts.

3.3 Conducting the innovation introduc-
tion

The introduction of automated testing into the project
FreeCol according to the conceptual model described in the
Section 3.1 was begun at the beginning of April 2007 and
lasted for six weeks until May 15, 2007. The lurking in par-
ticular was shortened to just 2 days, because I had become
sufficiently familiar with the code to find a defect, provide a

2http://sourceforge.net/community/potm/
3http://www.freecol.org/history.html
4http://sourceforge.net/project/memberlist.php?

group_id=43225
5http://www.freecol.org/team-and-credits.html

test case for it and fix the associated issue. I then thus pro-
ceeded directly to actively contribute on the mailing-list and
was granted commit privileges within the first week of do-
ing so. This phase of writing and contributing test code nat-
urally evolved into the more collaborative phase 3 of my en-
gagement. First, one of the test cases I had written caught a
regression caused by a previous check-in which allowed me
to start communicating with the developer who had caused
the failure. Second, when new developers asked on the list
about open tasks, I noted that writing test code could be
a good way to get started, which convinced one new de-
veloper to provide two test cases. Third, I created several
tests to show which aspects of a reported bug had not yet
been fixed. Rather than fixing the bug myself to make the
tests pass, I advertised it as opportunity for working on a
well specified problem. After 4 weeks of engagement the
number of test cases in FreeCol had then increased from
1 to 57 (see Figure 8) and this was deemed sufficient for
phase 4 to start. As part of phasing out over the next two
weeks, I added more documentation regarding testing, cre-
ated a short video for setting-up Eclipse to run the test suite
for FreeCol and fixed the Ant build-scripts to execute the
test cases for those not using Eclipse. May 15th marks the
last day of the phase-out.

Returning at the beginning of June and July each, I had to
notice that the introduction so far was unsuccessful with no
new tests having been created and the number of tests being
stuck at 65 tests. Two months later, in August 2007, one of
the project maintainers informed me that the test suite was
now “spectacularly broken” after a large feature addition
and refactoring had changed substantial parts of the soft-
ware (see [71] for an overview how refactoring and testing
relate to each other). During a discussion about the useful-
ness of testing, I then agreed to repair the test suite, which
was finished mid September 2007, before ending my en-
gagement as a committer in the project.

Over the next two years, my engagement on the mailing-
list was restricted to answering several questions with re-
gard to using Eclipse for developing FreeCol and running
the tests using Ant. When returning to the project in Au-
gust 2009 and analyzing both the repository and mailing-

4

http://sourceforge.net/community/potm/
http://www.freecol.org/history.html
http://sourceforge.net/project/memberlist.php?group_id=43225
http://sourceforge.net/project/memberlist.php?group_id=43225
http://www.freecol.org/team-and-credits.html

list, it turned out that the number of test cases had increased
markedly, which will be discussed in Section 4 on Results
after the data analysis methodology has been presented be-
low.

3.4 Data analysis methodology

The ex-post data analysis of the introduction of testing
was performed using two primary data sources. First the
source code repository of FreeCol was mined6 to discover
the number of test cases in FreeCol, failure rates and state-
ment coverage (see [80] for an overview regarding measur-
ing test case coverage). Second, e-mail lists were down-
loaded from SourceForge.net as permitted by one of the
project maintainers and were analyzed briefly and qualita-
tively for social interaction regarding testing.

The detailed steps of the repository mining were:7

1. To perform data analysis efficiently, the FreeCol
source code repository (managed via Subversion [9])
was first mirrored locally using svnsync8.

2. An XML version history log was next extracted for the
whole repository and converted to a CSV file including
revision, author, commit messages, date and affected
paths via xml2csv9. Using a regular expression search,
the commits which affected test classes were identi-
fied, the result of which was appended as a last column
to the table.

3. This data was then used to produce Figures 2, 3, 4 us-
ing the R project for statistical computing [61].

4. Using a Ruby [19] script as a driver, FreeCol was
then checked out with the appropriate version at each
month since April 2007. For each check-out, a cus-
tomized and overlaying Ant build-script10 was run,
which would compile and then execute the test cases,
thereby generating JUnit test results. Test coverage
was calculated using Cobertura11. Using the Nokogiri
XML API12, tests results were converted to CSV.

5. The concluding analysis in R resulted in Figures 5, 6,
7, 8.

6See [39] for a survey of mining source code repositories, [79, 81, 24,
47, 46] for selected articles, and [1] for the dangers associated with repos-
itory mining

7All scripts used for producing the results in this study as well as in-
termediate data to reproduce the statistical analysis is available at http:
//www.inf.fu-berlin.de/inst/ag-se/pubs/test-intro2009data.zip

8http://svn.collab.net/repos/svn/trunk/notes/
svnsync.txt

9http://www.a7soft.com/xml2csv.html
10http://ant.apache.org
11http://cobertura.sourceforge.net
12http://nokogiri.rubyforge.org/

4 Results

If we first look back quantitatively at the introduction
from April 2007 to August 2009, we find it a clear success:
First, the number of test cases has increased almost con-
stantly from 73 at the departure of the innovator to 277 as
of August 2009. Figure 8 shows this linear growth of on
average 9.9 testcases being added per month (95% confi-
dence interval: 6.3–13.4) with no noticeable plateau. Sup-
porting this linear growth is the percentage of monthly com-
mits affecting test cases which is between 10.0% to 15.1%
with 95% confidence, depicted in Figure 3) and implies that
writing novel tests was a constantly exercised practice in
the project. Second, existing test cases were maintained
to execute successfully. This indicates that besides writing
new test cases, the developers assumed the responsibility of
keeping the test suite in working condition. Only in rare
cases did the monthly snapshot copies reveal broken test
cases, such as in September 2007 when all tests were bro-
ken, or in March 2008 when 15 out of 234 test cases failed
(see Figure 8). Third, writing test code is not an activity
performed only by one or two developers. Out of 32 devel-
opers having ever committed to the FreeCol repository for
a total of 5,030 commits and thus disregarding patches sub-
mitted by other developers and committed for instance by
the maintainer, 16 made at least one of the 449 test-affecting
commits in their career at FreeCol (11 at least 5, 6 at least
10, 4 at least 20 commits). An overview of testing activities
by developer is shown in Figure 4. Fourth, while the project
grew from 31,800 non-comment source lines of code (NC-
SLOC) to 48,20013 over the course of the last two years, the
associated code being covered by tests was expanded from
200 to 11,000 lines (see Figure 5), which represents an in-
crease from 0.5% coverage to 23% (see Figure 6).

Moving away from the quantitative assessment of the
source code repository to an analysis of the communication
on the mailing-list, we also note multiple incidents in which
developers voiced their positive attitude towards testing.
For example, after a successful bug resolution episode, one
core developer asked whether additional test cases should
be added and one of the maintainers answered enthusiasti-
cally:

That goes without saying! We should have unit
tests for absolutely everything. Everyone gets
extra bonus points for writing unit tests. [free-
col:2518]14

13Source code lines for this study only include executable lines, i.e. this
excludes documentation, whitespace and tests, but also method signature
and class definitions.

14Citations such as [freecol:2518] are hyperlinks to the respective e-
mails from the Freecol Developer Mailing-list and are numbered in the
order the e-mails appeared in the mbox archive file from SourceForge.Net.

5

http://www.inf.fu-berlin.de/inst/ag-se/pubs/test-intro2009data.zip
http://www.inf.fu-berlin.de/inst/ag-se/pubs/test-intro2009data.zip
http://svn.collab.net/repos/svn/trunk/notes/svnsync.txt
http://svn.collab.net/repos/svn/trunk/notes/svnsync.txt
http://www.a7soft.com/xml2csv.html
http://ant.apache.org
http://cobertura.sourceforge.net
http://nokogiri.rubyforge.org/
http://sourceforge.net/mailarchive/message.php?msg_name=47903EDD.6010202%40gmx.de
http://sourceforge.net/mailarchive/message.php?msg_name=47903EDD.6010202%40gmx.de
http://sourceforge.net/mailarchive/message.php?msg_name=47903EDD.6010202%40gmx.de

Month

C
om

m
its

 p
er

 m
on

th

50

100

150

200

250

A M J
2004

J A S O N D J F M A M J
2005

J A S O N D J F M A J
2006

J A S O N D J F M A M J
2007

J A S O N D J F M A M J
2008

J A S O N D J F M A M J
2009

J A

Test−affecting commits
Non test−affecting commits

Figure 2. A time series display of the number of commits per month since the beginning of the project being managed in
a source code repository. Commits which affect test cases are shown as a subset in green. It is well visible that testing
activity in the project is on-going since April 2007.

Month

P
er

ce
nt

ag
e

of
 c

om
m

its
 b

ei
ng

 te
st

s

10

20

30

40

J F M A J
2006

J A S O N D J F M A M J
2007

J A S O N D J F M A M J
2008

J A S O N D J F M A M J
2009

J A

Figure 3. A time series display of the percentage of commits affecting test cases per month since the beginning of the
project. It can be seen that testing activity per month since April 2007 was on average above 10% (mean 12.5%, first
quartile at 8.9%, third quartile at 15.5%)

6

Month

C
om

m
its

 p
er

 m
on

th

5

10

15

J F M A J
2006

J A S O N D J F M A M J
2007

J A S O N D J F M A M J
2008

J A S O N D J F M A M J
2009

J A

Others

5

10

15

Core Developers

5

10

15

Test Masters

5

10

15

Maintainers

Figure 4. A time series display of absolute number of commits affecting test cases per month separated for each de-
veloper with commit access in the project. The developers have been split into the four groups of “maintainers”, “test
masters”, “core developers” and “others”. A test master for this matter was defined as somebody with more than 30 test
commits and a core developer as a developer with more than 80 total commits. All test masters were also core develop-
ers. The engagement of the innovator is well visible as two initial bursts of testing activity in April/May of 2007 and then
in September 2007. Also the complementary patterns of activity between one of the maintainers with the test masters
can be seen, when his testing activity increased during winter 2007/2008 and late summer 2008 to offset the notable
absence of testing commits from the test masters. The display was cropped for the activity of one of the maintainers
who made 22 test affecting commits in February 2008.

7

Month

LO
C

10000

20000

30000

40000

50000

A M J
2007

J A S O N D J F M A M J
2008

J A S O N D J F M A M J
2009

J A

Covered Lines of Code
Total Lines of Code

Figure 5. A time series display of the test coverage achieved over the course of the innovation introduction. Coverage is
shown as the number of lines of the project’s source code which were executed as part of running all tests which could
be compiled for the first commit of each month displayed. We can see that while the total lines of (non-documented, non-
test, non-whitespace) source code for the software increased from 31,800 lines to 48,200, the number of lines exercised
by testing code increased from 200 to 11,000.

In another example, one core developer was able to catch
several bugs in the existing code during the implementation
of a new feature, which made him praise the test cases:

[I] Also found a couple of existing bugs (while
implementing the tests, god bless them) [free-
col:3351]

While this assessment gives us reasonable certainty
to declare the introduction of automated testing into the
project FreeCol a success, we should now look for more
general insights to be gathered from the case study. These
insights can be split into (1) results regarding automated
testing and (2) results regarding innovation introduction,
which will be discussed in turn.

4.1 Insights into automated testing

The most interesting insight regarding the use of testing
in Open Source projects is that test cases have been used
repeatedly to enhance communication in the project in two
major ways: (1) If facing a defect in the software without
the necessary knowledge to repair it, or even when unable
to understand the general problem, we have seen developers
write failing test cases which reproduce or narrow down the
failure caused by the defect and use the test case as a more

concise alternative for communicating the circumstances of
the failure (for instance [freecol:2606] [freecol:2610] [free-
col:2640] [freecol:2696] [freecol:3983]). (2) When facing
ambiguity about how FreeCol should behave, we have seen
developers codify their opinion as test cases [freecol:3276]
[freecol:3056] or existing tests being the starting-point
for discussions about how FreeCol should behave [free-
col:1935].

Thus, test cases become explicit articulations of intent
during requirements arbitrage inside the project. If we ab-
stract, we can say that in both cases the developers construct
a.) an expectation against the behavior of the software but
also b.) an expectation towards the behavior of the fellow
project members as to fix the failing test cases. This latter
aspect of communicating expectations seems to be a second
major advantage beside the regression detecting abilities of
having a test suite in an Open Source project (see for in-
stance [freecol:3961] or [freecol:4431]).

It is outside the scope of this research to assess the rel-
ative advantage of communicating an informal and vague
bug description or aspect of a specification using an ex-
ecutable test case beyond the observed episodes on the
mailing-list. In particular, it would be hard to extract how
information has flown inside the project and deduce the role
that the test cases actually played from commit messages

8

http://sourceforge.net/mailarchive/message.php?msg_name=7b94298e0811261158y48e0705aj7204153ef737180c%40mail.gmail.com
http://sourceforge.net/mailarchive/message.php?msg_name=7b94298e0811261158y48e0705aj7204153ef737180c%40mail.gmail.com
http://sourceforge.net/mailarchive/message.php?msg_name=47B8C20B.5080008%40metaintegration.net
http://sourceforge.net/mailarchive/message.php?msg_name=47BB21A0.9040903%40scarlet.be
http://sourceforge.net/mailarchive/message.php?msg_name=47C27A10.7090104%40metaintegration.net
http://sourceforge.net/mailarchive/message.php?msg_name=47C27A10.7090104%40metaintegration.net
http://sourceforge.net/mailarchive/message.php?msg_name=47DA2672.1070708%40gmx.de
http://sourceforge.net/mailarchive/message.php?msg_name=7b94298e0903220612y34f7e2e9rf175c8d77b692830%40mail.gmail.com
http://sourceforge.net/mailarchive/message.php?msg_name=49192618.8040507%40metaintegration.net
http://sourceforge.net/mailarchive/message.php?msg_name=48D4AA16.8030703%40metaintegration.net
http://sourceforge.net/mailarchive/message.php?msg_name=46BD6819.2040002%40gmx.de
http://sourceforge.net/mailarchive/message.php?msg_name=46BD6819.2040002%40gmx.de
http://sourceforge.net/mailarchive/message.php?msg_name=7b94298e0903140955x32c695byab2e269afac22ef%40mail.gmail.com
http://sourceforge.net/mailarchive/message.php?msg_name=7b94298e0907221159t1f9b9d26yde550524a27a199a%40mail.gmail.com

Month

Te
st

 c
ov

er
ag

e
in

 p
er

ce
nt

 o
f t

ot
al

 s
ou

rc
e

co
de

5

10

15

20

A M J
2007

J A S O N D J F M A M J
2008

J A S O N D J F M A M J
2009

J A

Figure 6. A time series display of the test coverage achieved over the course of the innovation introduction. Coverage
is shown as the percentage of lines of code exercised by running the test suite over the total number of lines of code.
We can take note that there are two very pronounced increases in coverage. One was induced by the innovator when
introducing automated testing into the project in April to September of 2007, which resulted in the 10% margin being
attained, and the second was in April to June 2008 when testing was hugely expanded to reach 20% coverage. After
these jumps in coverage, there is a slow increase in coverage, reaching 23% in August 2009.

9

Month

P
er

ce
nt

ag
e

of
 L

O
C

 c
ov

er
ed

by
 te

st
s

pe
r

pa
ck

ag
e

10

20

30

40

50

A M J
2007

J A S O N D J F M A M J
2008

J A S O N D J F M A M J
2009

J A

Business Model
Server
Artificial Intelligence
Other
User Interface

Figure 7. A time series display of the test coverage by major application module as a percentage of lines of code being
exercised by running the test suite over the total number of lines of code. Noticeably, the application module most tested
is the business model with around 50% which accounts for 7,400 lines of code being tested, with server code coming
second at 40%. and the artificial intelligence routines at 22%. Also striking is the absence of any user interface testing
(only 58 of 20,937 lines are tested in the latest check-out). The drop in coverage in March 2009 is induced by fifteen
failing test cases (see Figure 8) and the missing results for September 2007 where the test suite was so broken that it
did not compile.

10

Month

Te
st

s

50

100

150

200

250

A M J
2007

J A S O N D J F M A M J
2008

J A S O N D J F M A M J
2009

J A

Failing test cases
Passing test cases

Figure 8. A time series display of the number of test cases in the FreeCol test suite distinguishing passing and failing
tests on the first commit for each month. It can be seen that a.) the number of test cases is expanding on average by
9.9 test cases per month (median 9.0, standard deviation 8.9) and that b.) the source code is passing the test suite with
very low numbers of failing tests. One notable exception to the latter is September 2004 when the whole test suite did
no longer compile.

and e-mails on the mailing-list. For instance, while we have
seen defects encoded as test cases often being fixed within
24 hours [freecol:3057] [freecol:2610] [freecol:2606], we
also have at least one case in which the defect highlighted
by a test was fixed while this test was just being writ-
ten [freecol:2640]. Working out the mechanisms and actual
pathways of causation would require quite some detective
work.

Instead, we want to (1) assess the magnitude of code-
centric “hard” contributions vs. communication-based
“soft” contributions and (2) abstract from the innovation of
automated testing to innovations in general.

If we turn to the first aspect, we can note that if one is to
distinguish between the project activities of communicating
on the mailing-list (“soft” contributions) and committing to
the project repository (“hard” contributions), then a slightly
higher ratio between the number of discussion threads and
the total commits (848 threads containing 3,163 e-mails
over 3,676 commits, i.e. a ratio of 4.3 commits to 1 thread)
and the number of threads relating to testing and the test
affecting commits (71 threads containing 423 e-mails over
441 commits, i.e. 6.2 commits to 1 thread) can be found.
These ratios are in line with results from literature [66] and
help to put the communication aspect of testing into per-
spective: Open Source projects are focused on hard contri-

butions (removing user requests, off-topic discussions and
SPAM should bring the general ratio even more closely to
the testing one as well) and the majority of commits are
never discussed on the mailing-list, a phenomenon which
has been called the bias for action of Open Source software
development [78, pp.334f]. Thus one possible explanation
for the relative success of testing in an Open Source project
could derive from bridging hard and soft contributions via
test cases which can be committed to the project repository
while at the same time offering the possibility for commu-
nication.

As a second aspect and abstracting from testing as a par-
ticular innovation, we can deduce that reinvention — the us-
age of an innovation in an unexpected way [62] — can pro-
vide valuable benefits to the project not obvious to the in-
novator. Testing in this case had been targeted by the inno-
vator at improving (1) the quality of the software produced
in the Open Source project, and (2) its resistance against re-
gression. Yet, it was used instinctively and in addition as a
means of communicating complex expectations against the
code or the behavior of others inside the project.

Strategy 1. The innovator should keep an open, supportive
mind about innovations being reinvented to gain the most
tangible benefits for a project.

11

http://sourceforge.net/mailarchive/message.php?msg_name=48D4C5D9.40008%40gmx.de
http://sourceforge.net/mailarchive/message.php?msg_name=47BB21A0.9040903%40scarlet.be
http://sourceforge.net/mailarchive/message.php?msg_name=47B8C20B.5080008%40metaintegration.net
http://sourceforge.net/mailarchive/message.php?msg_name=47C27A10.7090104%40metaintegration.net

As a second insight we found that testing varies largely
by module, based on its technical complexity regarding test-
ing. While the FreeCol business logic including the game
objects attained more than 50% coverage, other areas such
as the server module at 40% and the artificial intelligence
module at 22% are less tested and UI testing is absent com-
pletely from FreeCol (see Figure 7). How to expand the
coverage of underrepresented modules substantially is an
open question for automated and unit testing in particular.

Finally, a failing of the whole test suite due to insuffi-
cient memory being allocated when running it — an event
which occurred no less than five times over the two years
— highlights the relationship between testing and specify-
ing a software. Little memory was assigned primarily to
the tests to prevent a memory leak from slipping into the
software, but each failure due to insufficient memory also
caused the question whether the failure was due to FreeCol
having actually outgrown the memory limitations assigned
to it [freecol:4276]. Developers needed to assess each time
whether a failure is an acceptable consequence of FreeCol
being expanded or a regression necessary to be rectified.
This ambiguity regarding the specification of FreeCol then
turned out to be difficult to resolve for the developers, one
of whom remarked: “I don’t remember why we decided to
restrict memory during tests. I’m not sure whether it is a
good idea, or not.” [freecol:4272]. One conclusion for the
innovator should be that the role of testing with regard to
specifying the behavior of the software is explained in more
detail to the developers so as to reduce the ambiguity if the
specification can only be vague such as with limited mem-
ory.

4.2 Insights into innovation introduction

On introducing innovations we have found two main re-
sults in this study for projects comparable to FreeCol (see
Section 5 on generalizability):

1. Open Source projects excel at incrementally expand-
ing innovation usage over long time and maintaining
an existing code base, yet does require assistance by an
innovator or particularly skilled individual to achieve
radical expansion with regard to an innovation.

2. When detaching from an Open Source project, the in-
novator should signal this to release ownership of re-
sponsibilities and code.

The first insight was deduced by analyzing the increase
in coverage in the project (see Figure 6), which shows two
notable expansions over the last two years. The first was
the expansion of coverage from 0.5% to 10% by this au-
thor (as the innovator) when introducing automated testing
to the project in 2007, and the second in April and May

of 2008 when one developer expanded coverage from 13%
to 20% by starting testing the artificial intelligence module
(see Figure 7). Yet, beside these notable increases, which
occurred over a total of only four months, coverage re-
mained relatively stable over the two years. This is unlike
the number of test cases which constantly increased with
a remarkable rate of passing tests (see Figure 8). On the
mailing-list a hint can be found that this is due to the dif-
ficulty of constructing scaffolding for new testing scenar-
ios (see for instance the discussion following [freecol:4147]
as to the problems of expanding client/server testing) and
thus indirectly with unfamiliarity with testing in the project.
This thus poses a question to our understanding of Open
Source projects: If – as studies consistently show – learn-
ing ranks highly among Open Source developers’ priorities
for participation [25, 32, 34], then why is it that coverage
expansion was conducted by just two project participants?
Even worse, it seems that the author as an innovator and
the one developer both brought existing knowledge about
testing into the project and that project participants’ affinity
for testing and their knowledge about it expanded only very
slowly.

Conjecture 1. Knowledge about and affinity for innova-
tions by individual developers is primarily gathered outside
of Open Source projects.

This conjecture can be strengthened by results from Hah-
sler who studied adoption and use of design pattern by Open
Source developers. He found that for most projects only one
developer — independently of project maturity and size up
until very large projects — used patterns [27, p.121], which
should strike us as strange if sharing of best practices and
knowledge did occur substantially.15 This argument then
on the one hand can thus emphasize the importance of an
Schumpeterian entrepreneur or innovator who pushes for
radical changes:

Conjecture 2. To expand the use and usefulness of an in-
novation radically, an innovator or highly skilled individual
needs to be involved.

On the other hand, if we put the innovator into a more
strategic role as to acquire such highly skilled and knowl-
edgeable project participants with regard to an innovation,
then we can deduce two different options:

1.) Taking an optimistic view of the technical and in-
tellectual skill of the developers participating in an OSS
project, we might conclude for the innovator that additional
training and support is necessary to counteract the lack of
progress with regard to learning about a new innovation.

15Certainly to really confirm such a conjecture an in-depth study or in-
terviews with the developers would be necessary [28].

12

http://sourceforge.net/mailarchive/message.php?msg_name=200906251907.31769.mpope%40computer.org
http://sourceforge.net/mailarchive/message.php?msg_name=4A4306E1.2020605%40gmx.de
http://sourceforge.net/mailarchive/message.php?msg_name=200905212057.08017.mpope%40computer.org

Strategy 2. The innovator needs to actively promote learn-
ing about an innovation to achieve levels of comprehension
necessary for radical improvements using this innovation.

This strategy has been used only very little by the innova-
tor by providing a tutorial video about setting up Eclipse for
testing and by writing a small tutorial document explaining
how to write test cases and explaining some rationales for
it. Yet beyond these actions by the innovator, no other at-
tempts were made to systematically learn about the innova-
tion. This poses an open question for Open Source research
to which we can only suggest some initial ideas:

Open Question 1. How can knowledge acquisition and
sharing in Open Source projects be maximized?

This open research question needs to be seen in addition
to the results of existing research about information gener-
ated inside the project (see [55] for an innovation targeting
increased information management capabilities in a project)
such as information about tasks, social relationships and
contextual factors [10]. It was found that Open Source
projects are well positioned for such information because
of their nature as Communities of Practice [41, 73, 70]
which foster both re-experience and participatory learn-
ing [33, 32] and by use of information management in-
frastructures such as bug trackers, source code management
systems or wikis [43]. Yet, we find that for innovation in-
troductions and radical changes, the knowledge acquisition
from the outside must be considered separately. This study
did not aim to answer this question, but some general ideas
come to mind if assuming the role of an at least somewhat
proficient innovator and pondering how to increase knowl-
edge about an innovation: First, the most obvious way and
certainly the status quo in an Open Source project for the
innovator to enhance knowledge is by explaining and tutor-
ing the other project members via e-mail and references to
external literature. Yet, presenting information in a static,
non-interactive way via e-mail or the web has several draw-
backs, such as for instance being more work for the author
than verbal communication, equipped with less cues about
which aspects are particular important, and with greater
ambiguity about the success of transferring information to
the recipients’ side [10, p.220f]. To alleviate these prob-
lems, the innovator might want to strive for a more direct
communication channel of which two particular kinds ex-
ist: (1) Real world meetings and conferences such as the
Free Software Developer European Meeting (FOSDEM) or
the KDE project’s yearly aKademy16 can provide a yearly
get-together in which information about a new innovation
can be distributed to all central project participants. (2)
With the increasing maturity of collaboration awareness and

16For some analysis on participation in community events such as these,
see [11, 6].

screen sharing solutions, it becomes possible to conduct dis-
tributed pair programming (DPP) sessions for demonstra-
tion and teaching purposes (see for instance [3, 67, 30] for
empirical results, [35, 51, 65, 15] for several tool solutions
supporting DPP, and [77] for a comparison of tools) which
can provide an efficient high-bandwidth synchronous com-
munication channel between a knowledgeable project par-
ticipant and those to be taught.

2.) Taking a more pessimistic view on the other hand,
we might discard such a teaching approach when noting
high turn around of participants in Open Source projects,
which would foil any long term strategies to spread knowl-
edge in OSS projects. Rather the innovator should focus
on the acquisition of new developers already skilled with
desired innovations from outside the project and focus on
their inclusion into the project.

Strategy 3. An innovator can strengthen innovation intro-
ductions by lowering entry barriers and acquiring highly
skilled individuals.

The second insight regarding innovation introduction
arose from the circumstance and events surrounding the
phasing-out of the innovator’s involvement both in May and
September 2007. As previously discussed, the first attempt
of detaching from the project failed and the test suite as a
consequence was unmaintained during a large-scale refac-
toring and thus soon “spectacularly broken”, as one of the
maintainers stated. Comparing this phase-out with the sec-
ond much more successful one in September 2007, which
resulted in the role of maintaining the tests being picked up
by one of the maintainers, we find that the primary differ-
ence in behavior is one of signaling and ownership. When I
— as the innovator — first detached from the role of man-
aging test cases, I did neither consider ownership of the
test code just being created nor communicating my with-
drawal to the project an important priority. In fact, I did not
consider myself the code owner of the testing code. Yet,
just as Mockus et al. found in their case study of Apache
and Mozilla, code ownership is achieved implicitly for code
the developer is “known to have created or to have main-
tained consistently" [50, p.318]. While such code owner-
ship “doesn’t give them [the owner] any special rights over
change control", it stipulates a barrier for other developers
to engage with the code (see for instance [40] for a discus-
sion on code ownership as an important part of the mental
model of developers). Having not signaled the phase-out
then prevented the other project participants from under-
standing that the test code should be perceived as under
shared ownership. Shared ownership should be assumed
because, unlike separate modules of the code being main-
tained, test code is deeply dependent upon the rest of the
software as evident to it being broken completely due to the
refactoring.

13

Only when the test suite decayed to be broken com-
pletely after the refactoring must it have become apparent
that the suite was unmaintained. Abstracting from the case
of introducing automated testing, this might have been a
major factor in the success of the whole introduction: Run-
ning the test cases automatically provided a way to know
whether the test suite was still being maintained by being
signaled with a red bar of failing tests.

Thus, when phasing-out the innovator’s engagement
again after having fixed the test-suite in September 2007, a
discussion (see [freecol:2182]) was sufficient to create this
shared obligation for testing. When the innovator then dis-
engaged, one of the maintainers picked up the role of main-
taining the test cases successfully (see Figure 4), keeping
the percentage of test affecting commits at around 10% of
the total commits (see Figure 3) until another developer as-
sumed a more active role in testing. We can conclude:

Strategy 4. An innovator should explicitly signal his en-
gagement and disengagement in the project to facilitate
shared ownership of the innovation introduction. In partic-
ular this will be necessary if the innovation itself has no sig-
naling mechanisms to show individual or general engage-
ment or disengagement.

When analyzing the contributions of developers to the
testing effort, we find that besides myself as the innovator
and the aforementioned maintainer there were two notable
individuals who contributed extensively to testing. Interest-
ingly, as their contribution increased and waned according
to their time contribution to the project, the maintainer who
had already picked up the testing effort from me seemed
to adjust his own contribution to testing accordingly, which
was best visible from January to May 2008, where the in-
creasing contribution of one developer caused the main-
tainer to invest less into testing until the developer was in-
active in June to August 200817 which caused the main-
tainer to resume testing activities (see Figure 4). As con-
tributions of the other core and peripheral developers never
exceeded five testing commits per month and never contin-
ued for an extended period of time, we can interpret that the
project adopted a more flexible code ownership strategy. In
this approach, the role of a “test master” exists who con-
tributes heavily to testing and is pivotal to the expansion of
test coverage and development of knowledge regarding test-
ing. This role is not formally but rather implicitly assigned
and acknowledged explicitly in the project only for instance
when a core developer — stumped by a difficulty regarding
testing — asked: “Any suggestions, particularly from the
resident test expert [name of developer]?” [freecol:4446].

Strategy 5. To maintain constant activity with regard to in-
troducing an innovation in the face of fluctuating developer

17Due to vacation [freecol:2919].

contributions, the project leadership and/or the innovator
needs to be flexible to resume and cease their own contribu-
tions.

5 Limitations and conclusion

In the last section, the limitations of this research regard-
ing internal and external validity shall be discussed before
summing up the results.

We first want to turn to external validity, i.e. the ques-
tion whether the results of this study can be generalized
to other settings, in particular whether the introduction of
testing can be achieved in another project than FreeCol and
with a different innovator. For other Open Source projects
many aspects might be different to FreeCol, in particular
(a) attitude toward testing and similar software process im-
provements, (b) a programming language other than Java
might be used for which there is no well established auto-
mated testing framework such as JUnit, (c) the project might
be differently sized, causing many other aspects of interac-
tion to occur and have developers showing less interest in
testing, and (d) the software produced by the project might
have different characteristics regarding testing. For other
innovators similarly (a) their level of knowledge about in-
novation introduction and (b) testing might be substantially
different, as well as their (c) available time and (d) moti-
vation to achieve the introduction successfully. We discuss
these in turn.

∙ Different attitudes towards testing specifically and in-
novations in general might influence adoption and rep-
resents the most important threat to generalizability.
If nobody would have found testing to be a worth-
while innovation the introduction would have failed
with tests breaking as the source code continues to
evolve. Looking at the case of FreeCol gives us one
defenses against this threat: Contributing to testing
seems to be an individual decision. This at least can
be concluded by the large variability in testing com-
mitment where some developers contribute while oth-
ers do not. I then think it is reasonable to argue that (a)
finding a developer interested in testing is correlated to
project size and (b) that we did not see any indication
in the case of FreeCol that the fraction should be lower
in another project.

∙ If a different programming language than Java is used
in a project in which testing is to be established, this
may hurt external validity on several counts. For in-
stance, one could argue that Java provides many fea-
tures for modularizing a software into well-testable
units, such as clearly separated interface definitions,
package boundaries and visibility modifiers which
might lack in other languages. Furthermore, one could

14

http://sourceforge.net/mailarchive/message.php?msg_name=op.tyjf0tu72817da%40thimphu.pcpool.mi.fu-berlin.de
http://sourceforge.net/mailarchive/message.php?msg_name=200907292106.51433.mpope%40computer.org
http://sourceforge.net/mailarchive/message.php?msg_name=48758039.3080906%40metaintegration.net

argue that JUnit as a well-established automated test-
ing framework created by even more well-known prac-
titioners must make a Java project more likely to adopt
testing. Arguing against this validity restriction, one
could note that untyped programming languages such
as Python, Ruby and Perl in particular have a tradi-
tion to replace the safety of a compiled language with
strong test suites [17] and thus projects’ using them
should be even more inclined to use automated regres-
sion testing, and that all major programming language
have comparable automated testing libraries such as
CppUnit for C++, PerlUnit for Perl, PyUnit for Python,
NUnit for C# or Test::Unit for Ruby [45, p.14].

∙ The size of the project as well as the characteristics of
its participants might influence the results of the study
to a degree which makes a transfer to other projects
difficult. We think there are essentially three sub-types
in this threat which need to be addressed: (1) The tar-
get project might be substantially smaller than Free-
Col, (2) the project might be substantially larger than
FreeCol, and (3) the participants in the project might
have a negative attitude towards automated testing to
start with. We do not believe that the first and sec-
ond threat are fundamentally challenging the results
of this study, because for projects sufficiently smaller
than FreeCol (i.e. a maintainer and at most a handful
of developers) the contribution of a single additional
person such as an innovator will always have a much
more marked influence on the project as in a smaller
project. It is thus not likely that the contribution of the
innovator is rejected and rather possible that the inno-
vator will alone be able to achieve high levels of cover-
age within a short amount of time. Testing should then
show its benefits in uncovering defects in the software
and achieve adoption easier than with a medium-sized
software such as FreeCol, where high levels of cov-
erage are harder to attain. While achieving an initial
introduction thus should be easier to attain in a smaller
project, it should be more difficult to withdraw from
the project because the number of developers avail-
able to assume the role of testing will be smaller. In
a substantially larger project (i.e. around 20 core de-
velopers) we think it is reasonable to assume a higher
level of software engineering knowledge and thus with
a high probability either already an existing test suite
or at least some experience with it. Both should in-
crease the likelihood that an innovator willing to con-
tribute test cases or expand on an existing test suite
will be welcomed to do so. Conversely to a small
project, we would argue that initial introduction might
be harder but withdrawing would be easier. For the
third threat, that of negatively minded developers, we
must conclude that introduction will be more of a chal-

lenge and would primarily refer to existing research
about how to deal with resistance to change in OSS
projects [69]. Secondly, we should note that the in-
troduction with FreeCol contained at least two aspects
which mark it an introduction with some resistance:
For one, the first attempt to withdraw failed and the in-
novator needed to expedite additional effort to achieve
adoption, and second, only one of the maintainers sup-
ported the adoption actively while the other one had
only a minor number of testing commits (see Figure 4).
While an introduction might still be made much more
difficult if no maintainer is championing the introduc-
tion, we think it reasonable that results should general-
ize.

∙ As a third threat to external validity one might note
that a different kind of software being produced by the
OSS project should lead to different adoption behav-
ior. We agree it should, but we think that FreeCol as
a desktop application including client/server network
communication, artificial intelligence and complicated
user interface should be at the one end regarding dif-
ficulty in testing. Other types of software such as for
instance algorithmic and utility libraries, web frame-
works [69] or programming languages should be far
easier to test. Only in operating systems and systems
libraries with their dependence on different configura-
tions of hardware do we see a higher testing complex-
ity than in desktop applications.

∙ Regarding validity concerns about the person of the in-
novator we must conclude that this author had proba-
bly more knowledge about how to introduce innova-
tions than most innovators as described in Section 1.
Yet, since he acted using the phase model as described
in Section 3.1, it does not seem too difficult to repli-
cate his actions in a different project. Rather, the in-
sights presented in this study should already increase
the likelihood for innovator success, for instance by
appropriately signaling withdrawal from the project as
described in Section 4.2. As for the other mentioned
concerns of comparable motivation, testing knowledge
and available time, we think them reasonable to as-
sume for any innovator committed to establish testing
in an OSS project. Time spent on introduction was de-
liberately kept at around 10-15 hours per week, and
testing knowledge can be acquired before an introduc-
tion easily from existing technical literature. As for
motivation, we can note that while this innovator was
driven to achieve research results, the motivation by in-
creased quality and probably a desire to participate in
a project which one is dependent upon as assumed in
the introduction should establish sufficient motivation.

Before moving on to the discussion about internal va-

15

lidity, external validity of the results should be examined
when abstracting from the concrete case of introducing the
innovation of automated testing to the general set of inno-
vations which could be introduced into an OSS project. To
this end, testing can be categorized as (1) a knowledge in-
tensive innovation with (2) medium up-front costs to estab-
lish benefit for a project, (3) high levels of trialability be-
cause of the orthogonality of testing technology with other
infrastructure and pre-existing innovations, (4) high levels
of independence regarding individual innovation decisions
to adopt testing, (5) as requiring ongoing maintenance ef-
fort particular in the face of code refactorings, and (6) as
transparently regarding the current state of the implementa-
tion of the innovation in the project as visible by the fail-
ure state of the test suite. Other interesting innovations,
such as for instance a decentralized source code manage-
ment system such as Git [29] or a quality assurance process
of pre-commit peer reviews such as practiced by the Apache
project [18], will likely differ in at least one of these aspects.
For instance, for the introduction of a new source code man-
agement system, trialability is markedly reduced, as migrat-
ing the data from the existing repository to a novel one will
either require duplicate effort to maintain both repositories
or will lead to wasted efforts. For a process improvement
such as peer review on the other hand, a different type of in-
novation decision is likely, because peer review in particular
becomes useful if applied uniformly to all commits and thus
should need a project-wide consensus18. Nevertheless it is
hard to see why a result such as the importance of signal-
ing departure or the strategic dichotomy between teaching
existing project participants vs. recruiting new ones should
not transfer to other innovation introductions.

Two major threats need to be discussed when turning
now to internal validity: (1) This study relied exclusively
on information which was publicly available in mailing-lists
and the project source code management repository, possi-
bly leading to conclusions deviating from the events as they
actually occurred. (2) The long-term analysis performed on
the repository and the mailing-list is coarsely grained by
only performing monthly check-outs of the repository and
by using keyword searches on the mailing-list.

The first threat arises from the methodology used, which
is markedly in contrast to fieldwork and ethnographic stud-
ies conducted with companies (see for instance [42]). In
this study we only regarded intermediates and process re-
sults, such as the mailing-list messages, source code com-
mits and — to some limited extent — bug reports. One
can argue against this being a real threat as the whole com-
munication in the Open Source world is based on these

18While the argument here is that peer review is likely to be adopted after
a project-wide organizational innovation decision, Fogel notes an interest-
ing introduction episode in the Subversion project in which one particular
individual leading by example has achieved the introduction of peer review
almost single-handedly [20, p.39ff].

forms of encoded information and no face-to-face com-
munication exists. Thus, while we might not learn what
one project participant actually did, we can nevertheless
assume that most other project participants will have re-
ceived a similarly restricted view on the participant’s ac-
tivities. If one would want to strengthen the research with
regard to this threat, two major remedies can be offered:
(a) Using a more collaboration-oriented research method-
ology such as action research based on a researcher client
agreement [44, 68, 2, 12] should allow for a more de-
tailed and comprehensive communication between the open
source project participants and the researcher. Alternatively,
research by West and O’Mahonycan be named as partic-
ular successful examples of using interviews with project
members to derive interesting results about Open Source
projects and their governance [56] and firm–community re-
lations [75, 74]. (b) The researcher could use appropriate
instrumentation in agreement with the project participants
to capture more detailed information about their daily work
processes. For instance using a tool such as Hackystat [37]
or the ElectroCodeoGram [64], it should be possible to cap-
ture in detail each time a project participant executed test
cases or made changes to them.

A further threat to internal validity arises from the
coarsely-grained data analysis. First, we only took monthly
snapshots from the repository to graph the evolution of
coverage and failure rate of the test suite over time19. A
more fine-grained analysis could reveal notable stretches in-
between those check-outs in which the test suite was bro-
ken, and should show in more detail how coverage was
expanded by the project. Yet, we find it hard to see how
this threat should attack the primary results drawn from the
coverage and failure rate analysis, namely that coverage is
steadily expanding and that the failure rate is actively con-
trolled by the project members. Secondly, when searching
the mailing-list for e-mails regarding automated testing, we
employed a set of keywords20 which might have missed im-
portant events on the mailing-list regarding testing which
did not contain any of the keywords. While it is easy to
guard against this threat by a more complete analysis of the
messages sent to the mailing-list, we found that perusing
over 3,100 e-mails a markedly less effective way than key-
word searching.

When looking to future work it seems best to prioritize
conducting a second case with another project that is dif-
ferent from FreeCol and then secondly use additional data
sources such as in particular interview with project mem-
bers to strengthen internal validity.

To conclude, this study has shown that the introduction

19To be more precise: out of 3,776 commits during the observation pe-
riod, only those 29 representing the first commit of each month were ana-
lyzed for coverage and test failures, which is less than 1% of commits.

20Keywords did include: junit, test*, regression, failure, automated

16

of code-centric process innovation such as automated test-
ing into an OSS project is feasible and can be successfully
achieved. In particular, this study revealed that an innovator
(1) from the outside of the project and (2) with a relatively
short period of activity can trigger a beneficial innovation
adoption curve based on a simple four-stage model of inno-
vator activities.

Regarding automated testing, this study has found a sur-
prising number of episodes in which test cases were used
for communicating bug reports and opinions about spec-
ification more precisely and as technical “hard” contribu-
tions. Secondly, the state of the practice regarding auto-
mated testing has been found to be lacking in modules such
as the user interface, the artificial intelligence reasoner and
client/server communication, which prevents further expan-
sion in coverage and thus quality improvements.

For an innovator and innovation introduction in general,
results agree with [55] in that reinvention can be a major
source of benefit of an innovation, and that the innovator
should thus seek or at least not prevent such from occurring.
As to the radical expansion of innovation use in a project,
two strategies are deducible from the events observed in
the project FreeCol. These events highlight the importance
of external participants for radical expansions, as both of
the pushes in coverage were achieved by participants with
knowledge about automated testing which precedes their in-
volvement in FreeCol. This leads to the first strategy of re-
ducing entry barriers for external developers as to leverage
such pre-existing knowledge to the fullest. Yet, since inside
the project the amount of coaching and teaching of auto-
mated testing specific knowledge did only occur minimally,
we thus propose that an innovator or project leader could
also attempt to employ such a teaching strategy to increase
knowledge about testing and have coverage expanded as a
result of the increased skill of existing project members.

As a third and last insight, signaling the departure of the
innovator is important even for an innovation such as au-
tomated testing which has explicit signaling mechanisms
such as test cases failing. Thus, when reducing effort or
leaving the project, the innovator should inform the project
and potentially even look for a successor for sustaining an
innovation.

5.1 Acknowledgements

Dan Delorey provided the author with a list of all java
projects on Sourceforge.net that had more than 5 active de-
velopers over the course of 2006. Many thanks also to Ge-
sine Milde, Florian Thiel, Lutz Prechelt and the FreeCol
maintainers and test masters who read a draft version of this
paper.

References

[1] J. Aranda and G. Venolia. The secret life of bugs: Going past
the errors and omissions in software repositories. In ICSE
’09: Proceedings of the 2009 IEEE 31st International Con-
ference on Software Engineering, pages 298–308, Washing-
ton, DC, USA, 2009. IEEE Computer Society.

[2] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen. Action
research. Commun. ACM, 42(1):94–97, 1999.

[3] P. Baheti, E. Gehringer, and D. Stotts. Exploring the ef-
ficacy of Distributed Pair Programming. In Extreme Pro-
gramming and Agile Methods — XP/Agile Universe 2002,
volume 2418/2002 of Lecture Notes in Computer Science,
pages 387–410. Springer, Berlin / Heidelberg, Jan. 2002.

[4] M. Bakardjieva and A. Feenberg. Involving the virtual sub-
ject. Ethics and Information Technology, 2(4):233–240,
2001.

[5] K. Beck and E. Gamma. Test-infected: Programmers love
writing tests. In More Java gems, pages 357–376. Cam-
bridge University Press, New York, NY, USA, 2000.

[6] E. Berdou. Managing the bazaar: Commercialization and
peripheral participation in mature, community-led F/OS
software projects. Doctoral dissertation, London School of
Economics and Political Science, Department of Media and
Communications, 2007.

[7] A. W. Brown and G. Booch. Reusing Open-Source Soft-
ware and practices: The impact of Open-Source on com-
mercial vendors. In ICSR-7: Proceedings of the 7th Interna-
tional Conference on Software Reuse, pages 123–136, Lon-
don, UK, 2002. Springer-Verlag.

[8] J. Cassell. Ethical principles for conducting fieldwork.
American Anthropologist, 82(1):28–41, Mar. 1980.

[9] B. Collins-Sussman. The Subversion project: buiding a bet-
ter CVS. Linux J., 2002(94):3, Feb. 2002.

[10] C. D. Cramton and K. L. Orvis. Overcoming barriers to in-
formation sharing in virtual teams. In Virtual teams that
work: Creating conditions for virtual team effectiveness,
pages 214–230. John Wiley and Sons, 2003.

[11] K. Crowston, J. Howison, C. Masango, and U. Y. Es-
eryel. Face-to-face interactions in self-organizing dis-
tributed teams. Presented at Academy of Management Con-
ference, Honolulu, Hawaii, USA., Aug. 2005.

[12] R. Davison, M. G. Martinsons, and N. Kock. Principles
of canonical action research. Information Systems Journal,
14(1):65–86, Jan. 2004.

[13] P. J. Denning and R. Dunham. Innovation as language ac-
tion. Commun. ACM, 49(5):47–52, 2006.

[14] E. W. Dijkstra. Structured programming. In Software Engi-
neering Techniques. NATO Science Committee, Aug. 1970.

[15] R. Djemili, O. Christopher, and S. Salinger. Saros: Eine
Eclipse-Erweiterung zur verteilten Paarprogrammierung. In
Software Engineering 2007 - Beiträge zu den Workshops,
Hamburg, Germany, Mar. 2007. Gesellschaft für Informatik.

[16] N. Ducheneaut. Socialization in an Open Source Software
community: A socio-technical analysis. Computer Sup-
ported Cooperative Work (CSCW), V14(4):323–368, Aug.
2005.

17

[17] B. Eckel. Strong typing vs. strong testing. In J. Spolsky,
editor, The Best Software Writing I, pages 67–77. Apress,
2005.

[18] R. T. Fielding. Shared leadership in the Apache project.
Commun. ACM, 42(4):42–43, 1999.

[19] D. Flanagan and Y. Matsumoto. The Ruby programming
language. O’Reilly, Sebastopol, CA, USA, 1st edition, Jan.
2008.

[20] K. Fogel. Producing Open Source Software: How to Run
a Successful Free Software Project. O’Reilly, Sebastopol,
CA, USA, 1st edition, Oct. 2005.

[21] M. Fowler. Dealing with roles. Online, July 1997. http:
//martinfowler.com/apsupp/roles.pdf,
visited 2009-09-06.

[22] M. S. Frankel and S. Siang. Ethical and legal aspects of hu-
man subjects research on the internet. Published by AAAS
online , June 1999.

[23] T. Friedman. Civilization and its discontents: Simulation,
subjectivity, and space. In On a silver platter: CD-ROMs
and the promises of a new technology, pages 137–150. NYU
Press, 1999.

[24] D. M. German. An empirical study of fine-grained software
modifications. Empirical Software Engineering, 11(3):369–
393, Sept. 2006.

[25] R. A. Ghosh, R. Glott, B. Krieger, and G. Robles. Free/Libre
and Open Source Software: Survey and study – FLOSS –
Part 4: Survey of developers. Final Report, International In-
stitute of Infonomics University of Maastricht, The Nether-
lands; Berlecon Research GmbH Berlin, Germany, June
2002.

[26] R. A. Ghosh, B. Krieger, R. Glott, G. Robles, and T. Wich-
mann. Free/Libre and Open Source Software: Survey and
Study – FLOSS. Final Report, International Institute of Info-
nomics University of Maastricht, The Netherlands; Berlecon
Research GmbH Berlin, Germany, June 2002.

[27] M. Hahsler. A quantitative study of the adoption of design
patterns by Open Source software developers. In S. Koch,
editor, Free/Open Source Software Development, chapter 5,
pages 103–123. Idea Group Publishing, 2005.

[28] M. Hahsler. Re: A quantitative study of the adoption of de-
sign patterns by Open Source software developers. Personal
communication via email, Oct. 2009.

[29] J. C. Hamano. GIT — a stupid content tracker. In Proceed-
ings of the 2008 Linux Symposium, Ottawa, Canada, July
2006.

[30] B. F. Hanks. Distributed Pair Programming: An empir-
ical study. In Extreme Programming and Agile Methods
— XP/Agile Universe 2004, volume 3134/2004 of Lecture
Notes in Computer Science, pages 81–91. Springer, Berlin /
Heidelberg, Nov. 2004.

[31] G. W. Harrison and J. A. List. Field experiments. Journal of
Economic Literature, 42(4):1009–1055, Dec. 2004.

[32] A. Hars and S. Ou. Working for free? – motivations of
participating in Open Source projects. In The 34th Hawaii
International Conference on System Sciences, 2001.

[33] A. Hemetsberger and C. Reinhardt. Sharing and creating
knowledge in Open-Source communities: The case of KDE.
In Proceedings of the Fifth European Conference on Orga-
nizational Knowledge, Learning and Capabilities (OKLC),
Apr. 2004.

[34] G. Hertel, S. Niedner, and S. Herrmann. Motivation of soft-
ware developers in Open Source projects: an internet-based
survey of contributors to the Linux kernel. Research Policy,
32(7):1159–1177, July 2003. Open Source Software Devel-
opment.

[35] C.-W. Ho, S. Raha, E. Gehringer, and L. Williams. Sangam:
a distributed pair programming plug-in for Eclipse. In
eclipse ’04: Proceedings of the 2004 OOPSLA workshop on
eclipse technology eXchange, pages 73–77, New York, NY,
USA, 2004. ACM.

[36] R. Jeffries and G. Melnik. TDD – The art of fearless pro-
gramming. IEEE Softw., 24(3):24–30, May 2007.

[37] P. M. Johnson, H. Kou, J. Agustin, C. Chan, C. Moore,
J. Miglani, S. Zhen, and W. E. J. Doane. Beyond the Per-
sonal Software Process: Metrics collection and analysis for
the differently disciplined. In ICSE ’03: Proceedings of
the 25th International Conference on Software Engineering,
pages 641–646, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[38] P. C. Jorgensen and C. Erickson. Object-oriented integration
testing. Commun. ACM, 37(9):30–38, Sept. 1994.

[39] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and tax-
onomy of approaches for mining software repositories in the
context of software evolution. Journal of Software Mainte-
nance and Evolution: Research and Practice, 19(2):77–131,
2007.

[40] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining men-
tal models: a study of developer work habits. In ICSE ’06:
Proceedings of the 28th international conference on Soft-
ware engineering, pages 492–501, New York, NY, USA,
2006. ACM.

[41] J. Lave and E. Wenger. Situated Learning: Legitimate Pe-
ripheral Participation. Cambridge University Press, Sept.
1991.

[42] T. C. Lethbridge and J. Singer. Experiences conducting stud-
ies of the work practices of software engineers. In H. Er-
dogmus and O. Tanir, editors, Advances in Software Engi-
neering: Comprehension, Evaluation, and Evolution, pages
53–76. Springer, 2001.

[43] B. Leuf and W. Cunningham. The Wiki way: quick collab-
oration on the Web. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

[44] K. Lewin. Action research and minority problems. Journal
of Social Issues, 2(4):34–46, Nov. 1946.

[45] P. Louridas. JUnit: Unit testing and coding in tandem. IEEE
Software, 22(4):12–15, 2005.

[46] L. López-Fernández, G. Robles, and J. M. Gonzalez-
Barahona. Applying social network analysis to the in-
formation in CVS repositories. IEE Seminar Digests,
2004(917):101–105, 2004.

[47] G. Madey, V. Freeh, and R. Tynan. The Open Source soft-
ware development phenomenon: An analysis based on so-
cial network theory. In 8th Americas Conference on In-
formation Systems (AMCIS2002), pages 1806–1813, Dallas,
TX, 2002.

[48] A. M. Memon and M. L. Soffa. Regression testing of GUIs.
In ESEC/FSE-11: Proceedings of the 9th European software
engineering conference held jointly with 11th ACM SIG-
SOFT international symposium on Foundations of software

18

http://martinfowler.com/apsupp/roles.pdf
http://martinfowler.com/apsupp/roles.pdf
http://www.aaas.org/spp/sfrl/projects/intres/main.htm

engineering, pages 118–127, New York, NY, USA, 2003.
ACM.

[49] T. Mens and T. Tourwé. A survey of software refactoring.
IEEE Transactions on Software Engineering, 30(2):126–
139, Feb. 2004.

[50] A. Mockus, R. T. Fielding, and J. Herbsleb. Two case
studies of Open Source Software development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):309–346, 2002.

[51] K. Navoraphan, E. F. Gehringer, J. Culp, K. Gyllstrom, and
D. Stotts. Next-generation DPP with Sangam and Facetop.
In eclipse ’06: Proceedings of the 2006 OOPSLA workshop
on eclipse technology eXchange, pages 6–10, New York,
NY, USA, 2006. ACM.

[52] B. Nonnecke and J. Preece. Why lurkers lurk. In Americas
Conference on Information Systems, June 2001.

[53] C. Oezbek. Research ethics for studying Open Source
projects. In 4th Research Room FOSDEM: Libre software
communities meet research community, February 2008.

[54] C. Oezbek and L. Prechelt. On understanding how to intro-
duce an innovation to an Open Source project. In Proceed-
ings of the 29th International Conference on Software En-
gineering Workshops (ICSEW ’07), Washington, DC, USA,
2007. IEEE Computer Society. reprinted in UPGRADE, The
European Journal for the Informatics Professional 8(6):40-
44, December 2007.

[55] C. Oezbek, R. Schuster, and L. Prechelt. Information man-
agement as an explicit role in OSS projects: A case study.
Technical Report TR-B-08-05, Freie Universität Berlin, In-
stitut für Informatik, Berlin, Germany, Apr. 2008.

[56] S. O’Mahony. The governance of Open Source initiatives:
what does it mean to be community managed? Journal of
Management & Governance, 11(2):139–150, May 2007.

[57] J. W. Paulson, G. Succi, and A. Eberlein. An empirical
study of open-source and closed-source software products.
IEEE Transactions on Software Engineering, 30(4):246–
256, 2004.

[58] J. Preece, B. Nonnecke, and D. Andrews. The top five
reasons for lurking: Improving community experiences for
everyone. Computers in Human Behavior, 20(2):201–223,
2004. The Compass of Human-Computer Interaction.

[59] L. Quintela García. Die Kontaktaufnahme mit Open Source
Software-Projekten. Eine Fallstudie. Bachelor thesis, Freie
Universität Berlin, 2006.

[60] E. S. Raymond. The cathedral and the bazaar. First Monday,
3(3):, 1998.

[61] B. D. Ripley. The R project in statistical computing. MSOR
Connections. The newsletter of the LTSN Maths, Stats & OR
Network., 1(1):23–25, Feb. 2001.

[62] E. M. Rogers. Diffusion of Innovations. Free Press, New
York, 5th edition, Aug. 2003.

[63] A. Roßner. Empirisch-qualitative Exploration verschiedener
Kontaktstrategien am Beispiel der Einführung von Informa-
tionsmanagement in OSS-Projekten. Bachelor thesis, Freie
Universität Berlin, May 2007.

[64] F. Schlesinger and S. Jekutsch. ElectroCodeoGram: An
environment for studying programming. In Workshop on
Ethnographies of Code, Infolab21, Lancaster University,
UK, Mar. 2006.

[65] T. Schümmer and S. Lukosch. Supporting the social prac-
tices of Distributed Pair Programming. In Groupware: De-
sign, Implementation, and Use, volume 5411/2008 of Lec-
ture Notes in Computer Science, pages 83–98. Springer,
Berlin / Heidelberg, Mar. 2008.

[66] S. K. Sowe, I. Samoladas, I. Stamelos, and A. Lefteris. Are
FLOSS developers committing to CVS/SVN as much as
they are talking in mailing lists? challenges for integrat-
ing data from multiple repositories. In Proceedings of the
3rd International Workshop on Public Data about Software
Development (WoPDaSD), 2008.

[67] D. Stotts, L. Williams, N. Nagappan, P. Baheti, D. Jen, and
A. Jackson. Virtual teaming: Experiments and experiences
with Distributed Pair Programming. In Extreme Program-
ming and Agile Methods — XP/Agile Universe 2003, volume
2753/2003 of Lecture Notes in Computer Science, pages
129–141. Springer, Berlin / Heidelberg, Sept. 2003.

[68] G. I. Susman and R. D. Evered. An assessment of the scien-
tific merits of action research. Administrative Science Quar-
terly, 23(4):582–603, Dec. 1978.

[69] F. Thiel. Process innovations for security vulnerability pre-
vention in Open Source web applications. Diplomarbeit, In-
stitut für Informatik, Freie Universität Berlin, Germany, Apr.
2009.

[70] I. Tuomi. Internet, innovation, and Open Source: Actors in
the network. First Monday, 6(1):1, Jan. 2001.

[71] A. van Deursen and L. Moonen. The Video Store revisited
– thoughts on refactoring and testing. In M. Marchesi and
G. Succi, editors, Proceedings of the 3rd International Con-
ference on eXtreme Programming and Flexible Processes in
Software Engineering (XP 2002), pages 71–76, May 2002.
Alghero, Sardinia, Italy.

[72] G. von Krogh, S. Spaeth, and K. R. Lakhani. Community,
joining, and specialization in Open Source Software inno-
vation: A case study. Research Policy, 32:1217–1241(25),
July 2003.

[73] E. Wenger. Communities of Practice: Learning, Meaning,
and Identity. Cambridge University Press, Dec. 1999.

[74] J. West and S. O’Mahony. Contrasting community building
in sponsored and community founded Open Source projects.
In 38th Annual Hawaii International Conference on System
Sciences, volume 7, page 196c, Los Alamitos, CA, USA,
2005. IEEE Computer Society.

[75] J. West and S. O’Mahony. The role of participation archi-
tecture in growing sponsored Open Source communities. In-
dustry & Innovation, 15(2):145–168, Apr. 2008.

[76] J. A. Whittaker. What is software testing? and why is it so
hard? IEEE Software, 17(1):70–79, 2000.

[77] D. Winkler and S. Biffl. Evaluierung von Werkzeugen für
Distributed Pair Programming: Eine Fallstudie. In In Pro-
ceedings of the 2009 Conference on Software & Systems En-
gineering Essentials, Berlin, Germany, May 2009.

[78] Y. Yamauchi, M. Yokozawa, T. Shinohara, and T. Ishida.
Collaboration with lean media: how open-source software
succeeds. In CSCW ’00: Proceedings of the 2000 ACM
conference on Computer supported cooperative work, pages
329–338, New York, NY, USA, 2000. ACM.

[79] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining change history.

19

IEEE Transactions on Software Engineering, 30(9):574–
586, Sept. 2004. Member-Gail C. Murphy.

[80] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequacy. ACM Comput. Surv., 29(4):366–
427, Dec. 1997.

[81] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. IEEE
Transactions on Software Engineering, 31(6):429–445, June
2005.

A Innovator Diary

∙ 2007-04-02 Checked-out project, subscribed to mail-
ing-list and explored the application.

∙ 2007-04-03 Wrote a first test case to find a bug in the
MapGenerator.

∙ 2007-04-04 Wrote a first e-mail to the mailing-list con-
cerning test case for MapGenerator and accompanied
it with a fix. This ended phase #1 (lurking) which only
lasted 2 days thus and started phase #2 of actively con-
tributing.

∙ 2007-04-05 The MapGenerator patch was included in
FreeCol and I got a direct reply from Core Developer I
of FreeCol. Began to structure a testing framework for
FreeCol.

Got a reply from the Core Developer I indicating that
the project did not have a lot of exposure to automated
testing so far. I volunteered to write a little introduc-
tory document regarding testing.

∙ 2007-04-06 Contacted the other maintainer (Main-
tainer I) for commit privileges after prompted by Core
Developer I to do so.

∙ 2007-04-09 Received answer from Maintainer I. Com-
mit privileges were granted to me, and I was intro-
duced on the mailing-list.

∙ 2007-04-10 Wrote tests for pioneer work.

∙ 2007-04-11 Finished writing tests for pioneer work
and committed them.

Writing to the mailing-list about the deviations from
the original game specification represented by these
tests did elicit only a response from Core Developer
I. While on technical level the discussion was success-
ful in resolving the question of whether this deviation
from the original FreeCol specification was intentional
or not, from social perspective it would have been ben-
eficial to achieve communication with the project more
broadly.

∙ 2007-04-22 Running the test cases enabled me to catch
a regression. In an e-mail to the mailing-list I men-
tioned the failure as a good example of how to write
a test case to New Developer I. The next two weeks
make up phase #3 of the innovation introduction and
consisted of communicating and collaborating with
others developers about testing.

∙ 2007-04-23 New Developer I used my suggestion and
wrote two small test cases based on the code I had sent
to him the previous day. The test case showed the unfa-
miliarity with testing in general for most of the people
in the project. It helped to understand that there are
several hurdles for the adoption of an innovation. In
particular, his test cases returned the correct result and
passed, but not for the reason he anticipated but rather
because of incorrectly setting up the testing environ-
ment.

∙ 2007-04-23 Another New Developer II wrote a mes-
sage to the list of being interested in helping out with
the website, to which he got an reply one day later to
write to the current webmaster and offer him his help.

∙ 2007-04-27 New Developer II made another join-
attempt, this time based on an infrastructure suggestion
(switching from the hosting platform SourceForge.net
to Launchpad21) to which he got a short reply that his
suggestion sounded nice but would be a lot of work,
at which point the discussion stalled. This is indicative
of a wrong join-strategy by newbies, who try to ask the
members of the project for too much change.

∙ 2007-05-03 Used a bug report22 to write twelve test
cases of which 3 succeeded and 9 failed and posted it
on the mailing-list. Directly got a reply by a lurker
(New Developer III) who saw it as an opportunity to
get involved. He said he had questions and I gave him
my contact details (e-mail, IM).

∙ 2007-05-03 By now, a total of 57 tests have been writ-
ten and it was deemed sufficient for self-sustaining
growth. The next two weeks were decided to consisti-
tute phase #4, phasing out the innovator’s involvement.

∙ 2007-05-07 I produced a screencast of how to set
up FreeCol for developing and regression testing in
Eclipse.

∙ 2007-05-15 The build-scripts of the project were fixed
to let those who do not use Eclipse for developing and

21Launchpad is a project hosting platform started by Canonical Inc. as
part of their development on the Linux distribution Ubuntu. Homepage:
https://launchpad.net/

22Bug #1616384 https://sourceforge.net/tracker/
?func=detail&atid=435578&aid=1616384&group_id=
43225

20

https://launchpad.net/
https://sourceforge.net/tracker/?func=detail&atid=435578&aid=1616384&group_id=43225
https://sourceforge.net/tracker/?func=detail&atid=435578&aid=1616384&group_id=43225
https://sourceforge.net/tracker/?func=detail&atid=435578&aid=1616384&group_id=43225

testing run the tests as well. This was intended to mark
the end of my phase-out from FreeCol.

∙ 2007-05-16 The issues for which test cases were con-
tributed on 2007-05-03 was fixed.

∙ 2007-05-22 Core Developer I was granted maintainer
status and is now referred to as Maintainer II.

∙ 2007-05-30 Innovation introduction so far a failure.
The number of test cases is stalled at 65 with no ac-
tivity in the two weeks in which I did not participate.
Without the engagement of the innovator no new test
cases got written.

∙ 2007-08-28 I sent a literature suggestion to the list23

which I thought had some relevance for a current de-
sign discussion and also declared my status as phased
out. Maintainer II then informed me that this was a
pity since the test cases were “spectacularly broken”
since the refactoring of using a softcoded configura-
tion. Figure 8 shows that since June the number of test
cases had not increased anymore and that there was
some decay in July already causing several failing tests
at the beginning of August. The refactoring in August
then caused both the highest number of commits per
month in FreeCol ever (See Figure 2) and the whole
test suite to break (as indicated by zero test cases for
September 2007 in Figure 8).

∙ 2007-09-12 I asked the project how much they valued
testing before agreeing to go about fixing the test cases
broken by the restructuring.

∙ 2007-09-24 I repaired all test cases, but never indicated
that I was intending to resume activities in the project.
This thus can be seen as second attempt to phase out
involvement.

∙ 2007-09-26 Helped Maintainer II to resolve an out-of-
memory error, which occurred when running the test
cases and was due to a memory leak in FreeCol.

∙ 2007-10-15 Wrote a test to be used for Test-Driven De-
velopment.

∙ 2008-01-09 Number of test cases surpasses 100, all of
which were written by Maintainer II.

∙ 2008-01-12 A core developer who would become Test
Master II later on (if the innovator is seen as Test Mas-
ter I) contributed his first patch against the unit tests.

∙ 2008-05-18 A new developer who would later become
Test Master III contributed his first commit for the unit
tests.

23Martin Fowler’s “Dealing with Roles” [21]

∙ 2008-06-01 Number of test cases surpasses 150.

∙ 2008-10-14 New Developer III contacted me to ask
about information about how to develop test cases.

∙ 2008-12-01 Number of test cases surpasses 200.

∙ 2009-05-01 Number of test cases surpasses 250.

∙ 2009-08-23 I started a full dump both of the Free-
Col Subversion repository and requested a snapshot in
mbox format of the mailing-list from Maintainer II.

∙ 2009-09-04 I finished the analysis of the Subversion
logs and snapshot check-outs.

21

	Introduction
	Automated testing
	Methodology
	A model of external innovation introduction
	Choosing a project
	FreeCol

	Conducting the innovation introduction
	Data analysis methodology

	Results
	Insights into automated testing
	Insights into innovation introduction

	Limitations and conclusion
	Acknowledgements

	References
	Innovator Diary

