
Evaluating Awareness Information in Distributed Collaborative Editing by
Software-Engineers

Julia Schenk
Institute of Computer Science

Freie Universität Berlin
Berlin, Germany

julia.schenk@fu-berlin.de

Abstract—In co-located collaborative software development
activities like pair programming, side-by-side programming,
code reviews or code walkthroughs, the individuals automat-
ically gain a fine granular mutual understanding of where
in the shared workspace the other participants are, what
they are doing and what their levels of interest are. These
points of so called awareness information are critical for an
efficient and smooth collaboration but cannot be obtained via
the natural mechanisms in virtual teams. Application sharing
and groupware for collaborative editing are widely used for
collaborative tasks in distributed software development but
considered from the awareness and flexibility aspect they
are far off the co-located setting. To better support virtual
team collaboration by improving tools for distributed software
development it is neccesary to evaluate awareness and its im-
pacts to certain collaborative situations. Awareness itself is an
invisible phenomenon and due to its intangible nature cannot be
easily observed or measured. Thus we recorded virtual teams
using Saros, a groupware for distributed collaborative party
programming, respectively VNC and now analyse these videos
using the grounded theory methodology. This approach for
evaluating awareness leads to various problems concerning the
recording setup and time exposure for analysis.

Keywords-Workspace Awareness; Distributed Software De-
velopment; Collaborative Editing; Groupware; Application
Sharing; CSCW;

I. AWARENESS DURING COLLABORATIVE SOFTWARE
DEVELOPMENT

Agile software development practices like Pair Program-
ming or Side-by-Side Programming [1] emphasize the im-
portance of the keen communication and interaction of the
parties concerned. The participants sit next to each other
and share a single monitor, one set of input devices, and a
common view on an artefact they are collaborating on. In
this face-to-face setting the individuals automatically gain a
fine granular mutual understanding of what the other one is
doing in the general physical environment as well as on the
shared artefact.

This mostly unconscious gained information is refered to
as awareness information and entails “an understanding of
the activities of others, which provides a context for [one’s]
own activity” [2]. Gutwin et. al [3] argue that the success
of a collaboration hardly depends on the awareness about

others and their interactions with the shared workspace.
The authors in [4] divide the awareness information that
is relevant during a collaboration into four main categories:

• Informal Awareness: “is the general sense of who’s
around and what they are up to”

• Social Awareness: “is the information that a person
maintains about others in a social or conversational
context: things like whether another person is paying
attention, their emotional state, or their level of inter-
est.”

• Group-Structure Awareness: “knowledge about such
things as people’s roles and responsibilities, their posi-
tions on an issue, their status, and group processes.”

• Workspace Awareness: “up-to-the minute knowledge
about others’ interaction with the task environment.”

When conducting code reviews, performing code walk-
throughs, introducing newbies or doing collaborative pro-
gramming tasks, workspace awareness in particular is a
critical factor because it gives indication of “where in the
space others are working, what they are doing, and what
changes they are making” [3]. But when teams are not
working co-located workspace awareness information cannot
be obtained in the natural way. For that reason the next
chapter discusses the implications of workspace awareness
in distributed teams.

II. APPROACHES FOR DISTRIBUTED COLLABORATIVE
SOFTWARE DEVELOPMENT

Virtual teams face the problem that they cannot use their
natural interaction and information gathering mechanisms.
Groupware supporting real-time collaboration is still in the
early stages of development and lacks a lot of awareness
information due to a) the technical limitation of picking up
awareness information only through input devices [5], b) the
lack of knowledge about how to present it in an undisturbing
but effective way and c) the complex and intangible nature
of awareness information.

As a consequence, virtual teams face the problem that
they do not collaborate as effectively and efficiently as their
collocated counterpart [6]. The next section describes two



approaches for virtual teams to do software development
activities cooperatively.

A. Application Sharing

Companies with distributed locations or outsourced re-
spectively offshored development departments widely use
application sharing for their collaborative tasks. Working
together via application sharing has several advantages re-
garding workspace awareness since both participants can see
the same screen:

• They are aware of each other’s viewport.
• They are always in the same artefact and thus know

where each one is working in the shared workspace.
• They directly see what the other one is doing in the

shared workspace.
• They can make use of deictic references to support

verbal communication.
But there are also some drawbacks concerning the flexi-

bility during the collaboration:
• The participants compete for the input devices and

cannot use them independently. That is also a reason
why collaboration via application sharing does not scale
well for more than two parties.

• The participants have to reside in the same artefact; they
cannot alternate between exploring separately, working
independently, and finding together again.

• When sharing an application, e.g. a webbrowser with
open tabs, there are also privacy issues to consider.

B. Saros - Distributed Party Programming

Since 2006, our research group develops Saros1 which
is an Eclipse2 plugin for distributed collaborative software
development, in particular collaborative editing. The concept
of Saros is that in a session arbitrarily many distributed team
members work together on one or more fully or partially
shared Eclipse projects. All participants of the session have
a local copy of the shared projects and Saros keeps these
in sync while the participants concurrently edit the same or
different files.

As shown in Figure 1 Saros provides some relevant
awareness information like who is online, who is working
on which file, what each participant is doing in a file
and who can see which portions of a file. Regarding the
coupling of the team members Saros provides a better
flexibilty than application sharing, since in a session the team
members can work independently and explore separately in
the shared workspace while still being able to find together
for problem solving or collaborating on a task. Apart from
the awareness information in the Eclipse project explorer
that marks open and active files from the other participants,
a double-click on a buddy in the buddy list enables a jump

1http://www.saros-project.org
2http://www.http://eclipse.org/

to the position of this buddy in the workspace. Features
like VoIP, Screensharing and a collaborative whiteboard
are under active development. Nevertheless tests with users
showed that the existing awareness information in Saros is
not perceived as intended and that Saros also lacks some
relevant information because Saros shares only the Eclipse
editor. Information from the console, the project explorer,
java applications that were built and ran from Eclipse or the
webbrowser, which is important in case of web application
development, are not shared.

C. Application Sharing versus Saros

Since application sharing shares an application in its en-
tirety, the users benefit from the better workspace awareness
than they currently do with Saros. In contrast Saros allows
for different collaboration styles whereas application sharing
restricts the users to only work in the same file.

We will discuss a research problem arising from these
observations concerning awareness and flexibility in the next
section.

III. RESEARCH PROBLEM

We are not aware of any empirical work in the software
engineering domain that considers the aspects of awareness
during the stated approaches for virtual team collaboration
and discusses the awareness provided by application sharing
versus the better flexibility in a groupware like Saros. With
Saros as a testbed we do not want to draw a general good
- bad comparison between application sharing and Saros,
but we want to examine where each approach concerning
awareness and flexibility has its advantages in certain situ-
ations dependent on factors like kind of task and the mode
of collaboration. The research problem we will contemplate
on has two apects. First it pertains the question in which
situations the two aspects flexibility and awareness of each
approach are dominant and thereby relevant for an effective
and smooth collaboration. After examining these aspects
a second question of interest is how to better balance or
combine the particular strengths in a groupware like Saros.
Awareness by nature is a mostly unconscious and invisible
phenomenon and therefore the next section considers the is-
sue of evaluating awareness during distributed collaborative
editing by software engineers.

IV. EVALUATION OF AWARENESS IN DISTRIBUTED
SOFTWARE DEVELOPMENT

In our understanding awareness by itself cannot be di-
rectly observed or measured but only events that are the
results of the presence or absence of awareness can be
observed. Due to this nontrivial problem concerning the eval-
uation of awareness the next section lists different methods
and discusses their suitability for evaluating awareness.



Figure 1. 1) The buddy list: Each Participant has a list of contacts. From online contacts one can choose with whom to collaborate. During a session
each participant is assigned a unique color to match the displayed awareness information. 2) During a session the participants can communicate via a
roundtable chat. 3) Shared files and folders are annotated with a double arrow symbol. 4) A file annotated with a green dot indicates that this file is in
foreground by any other participant of the session. 5) A file annotated with a yellow dot decorates all files that are open in the editor view of any other
participant but currently not in foreground. 6) A colored bar at the left side of the editor shows which lines of the current viewport the other participant
assigned with this color can see. 7) A bar next to the scrollbar on the right of the editor marks the position of the other participants in the file. 8) If a
user writes or selects text, the selection respectively the last 20 characters written by this user are highlighted in the user’s colour and visible for all other
participants. 9) The cursor position of each user in the shared artefact is highlighted in the user’s colour.

A. Discussion of Methods for Evaluating Awareness

Several methods to evaluate awareness are conceivable:
In Interviews and questionnaires the participants would
have to bring in mind information they automatically and
unconsciously perceive and use. Only few users are able to
reflect such information and we do not have a user group
that is large enough to get a representative sample out of it.
Another issue concerning the design of the questions arises
from the nature of the problem: We do not have enough
understanding of awareness and its impact in a distributed
collaborative situation and hence do not know what infor-
mation to ask for. Semi-structured or open interviews as
well as open questions in questionnaires could be helpful to
get insight into the participant’s emotions, experience and
uncertainties but they are not adequate as a sole data source
for evaluating awareness.

Due to the distributed setting of the research problem
when observing participants, the researcher can only be
present at one side of the collaboration. Because of the
onesided perception it is very likely that valuable informa-
tion is missed: it does not provide a holisitc view of the
situation or insight as to why certain things happen or why
participants behave the way they do and there is no data
available to do a post-analysis of the context.

Another possiblity to monitor what the participants do
when they collaborate via application sharing or Saros is
to equip their workspace with instruments. This enables
data-collection from all participants but the generated data
is limited to record the participant’s interactions with the
workspace via their input devices and has not enough
substance to be semantically sufficient.

Video recording provides the possiblity to capture a col-
laboration situation in its entirety. Therefore it is neccessary



to capture the workspace as well as at the nonverbal (gesture
and mimic) and verbal communication of all concerned
parties. The physical distribution of the participants leads
to nontrivial issues concerning the recording infrastructure
as well as the consolidation and synchronisation of the
video and audio data. A post-analysis of video recordings is
very costly in terms of time. However, we believe that the
information about what is happening in each participant’s
workspace, their verbal communication, and nonverbal hints
from gestures and facial expressions is valuable data in order
to get an understanding of awareness and its impacts on
collaborative editing. It is important to get an understanding
of where and why from the awareness point of view their
collaboration works well, where difficulties arise and how
the participants handle or bypass them, particularly where
verbal or written communication substitues natural aware-
ness mechanisms.

Our goal for the workshop is to exchange opinions
and discover new approaches concerning the evaluation of
awareness in distributed collabroative editing. We also would
like to discuss our method of qualitative post-analysis of
video recordings. Therefore the next section will give an
explanation of the considerations and experiences we have so
far concerning the post-analysis of captured collaborations.

B. The Technical Approach for Evaluating Awareness

In our setting the participants among themselves collabo-
rate via VNC3 respectively Saros, communicate via a voice
over IP connection and have a webcam installed. For a
holistic analysis of the collaboration we synchronize the
recordings of the participants and merge them into one
video. The physical distribution of the participants implicates
several problematic aspects for the data recording where we
elaborated two approaches: Either screen, video and audio
are recorded on each participant’s local machine using a
screen recording software or each participant connects to
a host machine where the recording of both participants
happens central at the same time.

For the VNC setup we used the central recording approach
and it worked well. The local recoding on the participants’
machines lead to problems since on the participants’ ma-
chines the audio and video signal ran out of sync. We had
to sync the signals for each participant and then consolidate
and sync the single videos into one.

C. The Methodical Approach for Evaluating Awareness

Awareness during a collaboration only manifests through
symptoms of the presence or absence of awareness. Our as-
sumption is that for evaluating awareness during distributed
collaboration situations it is neccessary to gradually get an

3http://www.realvnc.com/

understanding of the phenomena indicating the presence
or absence of awareness and to consider them in their
context in order to evaluate their implication for a certain
situation. The understanding of the symptoms of awareness
and their impact to the effectiveness of distributed software
develpoment is a sociological phenomenon in a technical
context. This area of research is relatively unexplored and
little is known about how to grasp awareness information.
We want to be open-minded and want do develop an un-
derstanding of awareness that emerges from the considered
data. That is why we think the grounded theory methodology
is well suited to investigate and evaluate awareness informa-
tion. During the research process it will become clear what
is relevant in the region under examination. Data sources
are video recordings of virtual teams collaborating via
application sharing or a Saros. To sanity-check the observed
phenomena and to clarify them as well as to gain deeper
insights into what happens in the participants’ heads, open
or semi-structered interviews will be conducted shortly after
the recording. The research process is guided by systematic
elicitation and analysis of the video recordings but we are
also aware of the scale-problem concerning the analysis
and therefore the risk of not being able to analyse enough
material. That is why one of our goals for the workshop
is to discuss and get ideas how to improve or optimize the
evaluation of awareness in distributed collaborative editing
by software engineers.

REFERENCES

[1] A. Cockburn, Crystal Clear: A Human-Powered Methodology
for Small Teams. Addison-Wesley Longman, 2004. [Online].
Available: http://www.amazon.de/dp/0201699478/

[2] P. Dourish and V. Bellotti, “Awareness and coordination in
shared workspaces,” in CSCW ’92: Proceedings of the 1992
ACM conference on Computer-supported cooperative work.
New York, NY, USA: ACM, 1992, pp. 107–114.

[3] C. Gutwin, S. Greenberg, and M. Roseman, “Supporting
awareness of others in groupware,” in CHI ’96: Conference
companion on Human factors in computing systems. New
York, NY, USA: ACM, 1996, p. 205.

[4] ——, “Workspace awareness in real-time distributed group-
ware: Framework, widgets, and evaluation,” in HCI ’96: Pro-
ceedings of HCI on People and Computers XI. London, UK:
Springer-Verlag, 1996, pp. 281–298.

[5] C. Gutwin and S. Greenberg, The Importance of Awareness
for Team Cognition in Distributed Collaboration, 2004, pp.
177–201.

[6] G. M. Olson and J. S. Olson, “Distance matters,”
Hum.-Comput. Interact., vol. 15, no. 2, pp. 139–178,
Sep. 2000. [Online]. Available: http://dx.doi.org/10.1207/
S15327051HCI1523 4


