
7 Types of Cooperation Episodes
in Side-by-Side Programming

Lutz Prechelt, Ulrich Stärk, Stephan Salinger
Freie Universität Berlin, Institut für Informatik, Berlin, Germany

prechelt|ustaerk|salinger@inf.fu-berlin.de

Technical Report B-08-17

December 2008

In side-by-side programming, two programmers
(typically working on related aspects of a project) move
their computers so close to one another that they can
effortlessly change between working alone and working
together, where working alone is the primary mode.
The technique was proposed in order to obtain some
of the advantages of pair programming at much lower
overhead. As a first step towards understanding how
and when to use side-by-side programming, the present
study aims at describing when and for what purpose
side-by-side programmers get together to cooperate.
The main result is a classification of the cooperation
episodes by purpose and content into different types:
Exchange project details, Exchange general knowledge,
Discuss strategy, Discuss step, Debug work product,
Integrate work products, and Make remark. These
types were derived via the Grounded Theory method
and are described conceptually in terms of the types of
events of which they consist. All concepts used in these
descriptions are grounded in actual observations.

Keywords: pair programming, collaboration, pro-
cess, qualitative research, grounded theory.

Contents

1 Introduction 2
1.1 Related work 2
1.2 Research questions 3
1.3 Research approach 3

2 Study setup 3
2.1 The data collection context 3
2.2 Data collection 4
2.3 Subjects 4

3 Data analysis process 5
3.1 Identify cooperation episodes 5
3.2 Apply the PP foundation layer concepts 5
3.3 Introduce additional concepts 6
3.4 Cluster phenomena to identify types . . 6

4 Results: Cooperation episode types 7
4.1 Type “Exchange project details” 7
4.2 Type “Exchange general knowledge” . . 7
4.3 Type “Discuss strategy” 7
4.4 Type “Discuss step” 8
4.5 Type “Debug work product” 8
4.6 Type “Integrate work products” 8
4.7 Type “Make remark” 9

5 Discussion 9
5.1 Threats to internal validity 9
5.2 Threats to external validity 9
5.3 Usefulness of the cooperation episode

types . 9

6 Conclusion 10

1 Introduction

In the last few years, the popularity of agile develop-
ment methodologies in general [10] and eXtreme Pro-
gramming (XP) in particular [1, 2] has led to a lot of
interest in pair programming, which is one of XP’s core
practices.

Studying pair programming is relevant because the
practice is such a provocative idea: On the one hand,
it claims a number of benefits such as better designs,
fewer defects, high productivity (for a number of dif-
ferent reasons), mutual learning, more people being
closely famililar with the resulting code, and others
(see for example [27]). On the other hand, investing
two people to solve a task traditionally solved by one
alone might obviously be costly.

So far, the empirical work on pair programming has
mostly focussed on the claim of high productivity by
comparing pairs to solo programmers in controlled ex-
periments. The results are somewhat mixed and also
hard to interpret, because the short-term setups used
in the experiments do not allow to observe the longer-
term benefits that would manifest only much later in
a real software development context.

Side-by-side programming [8, 3.T8] was suggested as
a compromise between solo programming and pair pro-
gramming. It can be described and interpreted for in-
stance as follows. Side-by-side programming is like solo
programming in that the two programmers involved
each use their own computer and normally work alone
on a (sub)task. However, side-by-side programming
resembles pair programming in that the programmers
can switch to a pair mode at any moment: their two
computers are located very closely side-by-side to one
another. The idea is that they will be cooperating di-
rectly for a while whenever this is particularly useful.

Side-by-side programming aims at getting at least
some of the benefits of pair programming (in particular
those related to having more knowledge at hand) at
essentially no additional cost. Obviously, this is not
a guaranteed win: The partners may cooperate too
much or too little, may interrupt each other’s train of
thought badly, etc.

Our aim is first understanding how side-by-side pro-
gramming works and then formulating advice regard-
ing how to optimize the use of side-by-side program-
ming. This involves three questions:

1. Understand when and why and for what purpose
side-by-side programmers cooperate directly.

2. Understand how they work while cooperating di-
rectly.

3. Evaluate which of these behaviors are helpful,
which are problematic, and which may be miss-
ing entirely.

We have started studying question 2 in the context
of normal pair programming a few years ago [22, 23].
The present study concerns question 1. To be practi-
cal, work on questions 1 and 2 obviously requires the
use of qualitative (rather than quantitative) research
methods.

1.1 Related work

As far as we are aware, only a single study of side-by-
side programming has been published to date. This
study by Nawrocki et al., in the tradition of previous
controlled experiments that compare the raw produc-
tivity of solo programmers to that of pair programmers
[7, 9, 12, 13, 14, 15, 16, 17, 20, 28, 29, 30], added a
third group that used side-by-side programming [18].
For side-by-side programming, the experiment found
an overhead of 20% compared to solo programming,
while for pair programming the overhead was 50%.

While there are no qualitative studies of side-by-side
programming yet, at least a few do exist on pair pro-
gramming. We discuss those which appear relevant for
our side-by-side programming research.

Chong and Hurlbutt report on field observations of
40 hours of pair programming sessions for at least four
different pairs from two different companies [6]. The
analysis is based on field notes and partial audio record-
ings (later transcribed). A coding scheme is mentioned,
but neither its content nor its role is specified. The ar-
ticle reports, among others, a finding relevant to side-
by-side programming: the programmer with greater
task knowledge or code base familiarity dominates the
process.

Sharp and Robinson performed an ethnographic
study of eXtreme Programming (rather than pair pro-
gramming alone) [25]. The work describes how pair
programming is intertwined with the other practices of
XP and, more importantly, how it contributes to and
is influenced by the social culture of the development
team. It concludes that pair programming is mostly
about communication, in particular about achieving
and maintaining a common understanding.

Cao and Xu study the influence of high/medium/low
skill levels on the activity patterns exhibited by pairs
[5]. They study a total of 6 pairs of student program-
mers with high-high, medium-medium, and high-low
skill combinations, respectively, via protocol analysis of
videotapes. Their conclusion, whose derivation is only
partially spelled out in the paper, is that the high-
high skill pairs exhibit the largest amount of “deep-
level thinking” and high-low skill pairs the lowest.

Sallyann Bryant (now Sallyann Freudenberg) dis-
cusses a mixed quantitative-qualitative approach with
which pair programming could be studied [3]. She
presents a simple coding scheme with 11 codes for
classifying pair members’ behaviors and finds that the
behavior type frequencies correlate with the pair pro-

2

gramming experience mix in the pair (high-high, high-
low, low-low).

Xu et al. compare intermediate programmers and
experts with respect to the build-up of problem knowl-
edge during pair programming [31]. The study, based
on three long pair programming sessions, uses a coarse-
grained protocol analysis where each ”episode” (of
about five minutes) comprises the discussion of a differ-
ent programming or domain concept. The expert pair
was found for instance to discuss multiple concepts at
once (rather than serially) and to be more likely to re-
consider their previous design decisions than the two
pairs of intermediates did.

Several studies address the conventional assumption
that the “driver” (the person currently operating the
keyboard) and the “navigator” (or “observer”) have
fundamentally different roles and work on quite differ-
ent levels of abstraction: high and low for the naviga-
tor, middle for the driver. They find that this is not
the case. Rather, the members of a pair normally move
through different abstraction levels together [4, 6, 19].

1.2 Research questions

We will now specify question 1 more precisely. When
two side-by-side programmers (who work separately by
default) get together in order to work cooperatively
towards some subgoal, we call this stretch of time a
cooperation episode. The episode ends when either the
subgoal has been reached, the programmers pick a new
subgoal, or the programmers split up to work sepa-
rately again.

Note that the subgoal can be implicit, even uncon-
scious, for the programmers and is sometimes difficult
to identify for the researcher even ex-post.

Given this definition, we ask these research ques-
tions:

• P (purpose): When or why or for what purpose
do side-by-side programmers start a cooperation
episode?

• T (termination): When or why do they cut off
or terminate the cooperation episode?

Note that directly answering the when or why of
question P will sometimes require understanding the
programmers’ internal thought processes, whereas the
question for what purpose can (on some reasonable level
of abstraction) usually be answered by looking at the
content of the cooperation episode. It is thus likely
that we will have to drop the ambition to answer the
when or why.

Furthermore, the answer to question P is likely more
interesting and relevant than the answer to question T.

1.3 Research approach

As mentioned above, for learning how two program-
mers should cooperate, the first step is finding out how
they do cooperate and the second one is evaluating
what about this behavior is helpful and what is prob-
lematic (and what might be useful to add to their be-
havior). The present study concerns the first step only.

Our research approach is based on detailed record-
ings of side-by-side programming sessions. In these
recordings, we will identify the cooperation episodes
and analyze them in detail.

The analysis involves preparing a conceptual descrip-
tion of the programmer/computer and the program-
mer/programmer interactions that abstracts from the
details of the specific task in order to make visible the
conceptual similarities and differences between individ-
ual cooperation episodes. We will then cluster these
conceptual descriptions to derive recurring classes of
cooperation episodes. These classes will form the basis
for answering the research questions.

We will now describe the setup of our study (Sec-
tion 2) and the data analysis procedure used (Sec-
tion 3). We will then present the results of the analysis
(Section 4) and discuss how reliable they are and what
to do with them (Section 5).

2 Study setup

The subjects of our study are graduate students tak-
ing part in a voluntary, zero-credit university work-
shop that provided a crash course about modern Java
web development frameworks: Hibernate1 (an object-
relational mapper), Spring2 (an inversion-of-control
container), and Tapestry3 (a framework for web fron-
tend programming).

This workshop forms the context from which we have
collected the data used in the present study, we will
describe it in Section 2.1. The subjects themselves will
be characterized in Section 2.3 and the data collection
procedure in Section 2.2.

2.1 The data collection context

The workshop took place in a computer pool room dur-
ing four consecutive days in the summer break 2007.
Day 1 introduced Hibernate and Spring each by a short
lecture, after which the participants spent the rest of
the day learning the practical use of the frameworks
by solving a given two-step exercise. Day 2 intro-
duced Tapestry by a short lecture, followed by first
a Tapestry-only exercise and then a second exercise
that involved both Tapestry programming and inte-
grating the results with the results of day 1. Day 3
1www.hibernate.org
2www.springframework.org
3tapestry.apache.org

3

was a pure programming day. The participants ex-
tended their code so as to form a simple book library
management application including user management,
book management, lending, and return.

For each of these exercises, we tried to make side-by-
side programming likely without explicitly telling the
participants what it was or that they should use it:
the participants were told to work in pairs and split
up the work; time was restricted and the amount of
work was larger than one person could likely do alone;
splitting up the work involved some coordindation and
integration effort; the two computers of a pair were set
up close to each other. The participants paired with
the same partner each day.

By day 4, the participants were somewhat familiar
with the three frameworks, very familiar with their
own library application systems, and reasonably famil-
iar with cooperating with their pair partner. On day
4, the pairs were asked to build several specific exten-
sions into their respective existing systems. Fulfilling
the given requirements involved building seven addi-
tional classes or pages, but these were not mentioned
explicitly. The time for solving this task was limited to
2.5 hours. The respective programming sessions were
recorded as described in Section 2.2 and form the raw
data analyzed in the present study.

2.2 Data collection

We used Techsmith’s Camtasia Studio 4.0.24 to loss-
lessly record the 1280x1024 pixel desktop on each mem-
ber’s computer at 4 fps (frames per second). A web-
cam sitting on top of the monitor recorded the head
and upper torso of the respective user. During a coop-
eration episode, the migrating partner was always fully
or partially visible for his own and/or the partner’s we-
bcam. Each webcam’s microphone recorded audio of
the pair’s conversations.

When a pair had finished its task, each member
would individually fill in a two-part questionnaire.

• Part 1 concerned the task and the pair’s cooper-
ation and consisted of 9 open and 7 closed ques-
tions. It asked how complete the pair’s solution
was, how difficult the task had been and why,
when/why/how often the pair had split up and
joined, what had been good or not so good about
the cooperation, and how harmonious the cooper-
ation had felt.

• Part 2 concerned the workshop overall and the
subject’s background and consisted of 1 open and
23 closed questions. It asked about length of
programming experience, a subjective estimate of
their capabilities relative to their student peers
(“among best x percent”), how much they had

4www.techsmith.com

worked in pairs with this partner or with anybody
before, how much they knew about Tapestry or
Hibernate before/after the workshop, how often
they found the workshop too easy or too difficult.

As the final data collection step, we used Adobe Pre-
miere CS3 in order to join (for each pair) the four pieces
of video and two pieces of audio into a single 10 fps
video 2560 pixels wide and 1024 pixels high. This pro-
cess turned out to be quite difficult and very laborious
for two reasons:

• Imperfections of the involved codecs. After a lot
of experimentation we eventually rendered usable
videos by Xvid 1.1.2 5 via VirtualDub 1.7.7 6.

• Camtasia Studio does not record webcam and
desktop fully in sync. We had to synchronize the
webcam and desktop videos manually by adjust-
ing the desktop video playback speed separately
for each 5 minute segment in Premiere.

2.3 Subjects

The workshop had 10 participants, so we had 5 pairs to
start with. When analyzing the videos, we found that
one pair had used full pair programming throughout,
so the number of join and split evens is zero for them
and we hence eliminated them from our analysis. For
a second pair we lost one member’s video due to a file
naming conflict and decided that the other half alone
was not usable for the analysis, so we eliminated this
pair as well and ended up with 3 pairs. The subsequent
information concerns these 3 pairs only and is based on
their answers in the questionnaire.

As shown in Table 1, pair 1 had the most experi-
enced programmers, but the largest difference in self-
perceived capabilities. The lower capabilities of mem-
ber 1 made this member somewhat anxious and self-
conscious and the other somewhat unhappy. As a re-
sult, this pair was the least harmonious of all three.
These two had never before worked together—in fact
not even during the workshop, because the original
member 2 did not appear for the experiment and so the
11th workshop participant, a Ph.D. student who had
worked alone during the first three exercises, stood in
as ersatz member 2.

Pair 2, though younger, had more previous web de-
velopment experience, perceived their respective capa-
bilities as medium, the task difficulty as appropriate,
and their cooperation as very harmonious. They had
worked together with each other several times previ-
ously.

Pair 3 reported the lowest capabilities and the high-
est task difficulty, but found their cooperation to be

5www.xvid.org
6www.virtualdub.org

4

pair 1 pair 2 pair 3
Gender (male/female) m m m m f m
Been a student since (no. of terms) 14 12 6 8 7 8
Java programming experience (years) 6 7 3 4 1 4
Java web development experience (years) 1 0 2 1 1 2
I am among the most capable x% 40% 5% 40% 40% 50% 40%
Quality of cooperation (1–5)1 4 3 5 4 5 4
Task difficulty (1–5)2 3 2 3 3 4 3
11: very bad, 3: OK, 5: very good
21: much too easy, 3: just right, 5: much too difficult

Table 1: Information on background and perceptions of the six pair members

rather harmonious. This pair had never worked to-
gether before the workshop.

3 Data analysis process

From the data collection process described above, we
ended up with three videos, each of approximately 2.5
hours length.

The data analysis proceeds in four phases: mark the
relevant stretches in the videos, that is, identify the
cooperation episodes (Section 3.1); conceptualize and
encode previously expected phenomena in the episodes
(Section 3.2); identify further concepts needed to clas-
sify the episodes (Section 3.3); cluster the so-encoded
episodes in order to identify classes of episodes (Sec-
tion 3.4).

3.1 Identify cooperation episodes

We viewed all videos at least once in full length and
marked time stretches as “this is certainly cooperation”
and “this is certainly none”. Certain cooperation are
situations of physical togetherness in front of just one
computer and situations with spoken interaction. Cer-
tain non-cooperation are situations with extended lack
of both of these features. We then iteratively reviewed
the remaining “maybe” stretches in order to identify
the precise beginning and end of each would-be cooper-
ation episode (defined by making contact and breaking
contact) and to make sure not to overlook cooperation
episodes consisting of only spoken dialog, without body
movement.

This process resulted in 91 stretches. During the
further analysis steps, 19 of these turned out to be
actually two different episodes glued end-to-end. We
broke these apart and ended up with 110 cooperation
episodes of lengths between 5 seconds and 39 minutes
as the net raw material for our study.

3.2 Apply the PP foundation layer
concepts

The Pair Programming Foundation Layer (PP foun-
dation layer) is a set of concepts for conceptualizing
the semantics of a pair’s interaction with each other,
with their computer, and with their environment [23].
As the name implies, it was created for describing pair
programming situations and so can be expected to fit
the cooperation episodes of side-by-side programming
well.

For the human/human interaction (HHI), the con-
cepts are noun/verb combinations, where the noun
is one of activity, completion, design, finding, gap in
knowledge, hypothesis, knowledge, off topic, rationale,
requirement, source of information, standard of knowl-
edge, state, step, strategy and the verb is one of amend,
ask, agree, challenge, decide, disagree, explain, pro-
pose, remember, say, stop, think aloud. Further con-
cepts exist for human/computer interaction (HCI, i.e
computer use) and for human/environment interaction
(HEI, describing non-verbal activity that is not com-
puter use).

Many of the HHI concepts are reasonably straight-
forward. For instance when the pair members talk
about their problem solving process, step refers to a
possible next single elementary action to be taken,
strategy refers to a plan consisting of many steps, and
design refers to a possible decision with respect to the
structure of the work product (the program). pro-
pose step means that one pair member suggests which
next action to take (likewise propose strategy and pro-
pose design). The partner then typically reacts with
either agree step/strategy/design (i.e. states approval),
disagree step/strategy/design (i.e. rejects the sugges-
tion), or challenge step/strategy/design (i.e. rejects the
suggestion by making an alternative one).

Other concepts, in contrast, are quite subtle. For
instance thinkaloud activity refers to the verbalization
of an ongoing stream of actions the driver is perform-
ing on the computer. Parts of these utterances can
often be interpreted as propose step events, etc.; hence
thinkaloud activity acts as a container for other events

5

— an idea that took months to develop.
Some of the possible combinations of the above

nouns and verbs do not make sense and many of the re-
maining ones have never been observed. Since all of the
PP foundation layer concepts are required to be firmly
grounded in actual observations (the PP foundation
layer was derived via Grounded Theory methodology
[26]), less than one third of the possible combinations
are actually included as concepts. For instance, we
have never yet seen an actual disagree strategy event
and so this concept is not in the PP foundation layer.
However, a user of the foundation layer could immedi-
ately introduce the concept when it occurs, because the
concept is obviously meaningful and consistent with
the rest. Together, we call the combination of a noun
(say, strategy) with any of its verbs a concept class and
abbreviate it as ∗ strategy.

In other words, the PP foundation layer ought not
to be used as a fixed coding scheme, but rather as use-
ful background knowledge and as a set of suggestions
of potentially useful concepts. This point is important,
because in our analysis we want to follow the Grounded
Theory methodology which allows using prior expec-
tations for sharpening one’s attention, but clearly for-
bids constraining the conceptualization to only precon-
ceived concepts [11].

We applied the PP foundation layer concepts for en-
coding each programmer’s behavior during every coop-
eration episode. The PP foundation layer was sufficient
for covering the material and the resulting conceptu-
alization was sensible and consistent. However, it was
not sufficient to discriminate all of the different types
of cooperation episode we saw. We needed further con-
cepts.

3.3 Introduce additional concepts

From the data, we discovered four new stand-alone con-
cepts. The HEI concepts move over and move back
describe temporarily joining the partner in front of
his/her computer and discriminate physical from non-
physical cooperation episodes. The HCI concepts
commit changes and update codebase describe pushing
work results to and getting them from a source code
versioning system (such as CVS or SVN), which is the
method by which our pairs join their distributed work
results on one computer.

All other new concepts, which we recognized in the
data while trying to understand the different cooper-
ation episode types describe properties to be attached
to existing concepts. Most of them are HHI:

• Instances of ∗ strategy can often be described by
an explicitness property with possible values pro-
cedural (enumerating the steps of the strategy ex-
plicitly, as for instance in “First we need to cre-
ate the Location thing and then we must add a

location field to Copy”.7) and declarative (de-
scribing the strategy as a whole, as for instance
in “I’ll create the webpage and you make the Java
stuff for it, OK?”).

• Likewise, instances of ∗ design and ∗ rationale can
have a property granularity with value fine-grained
(e.g. “In PublicationService we also need a
removeLocation with Location as parameter”) or
coarse-grained (e.g. “We also need an Entity with
name Location”).

• Instances of ∗ knowledge and ∗ standard of knowl-
edge can have a property specificity with value
generic (e.g. “How can you separate multiple pa-
rameters? With blanks?”) or project-specific (e.g.
“I have now spelled ’Gebäude’ with ae”).

• Instances of ∗ knowledge can also have a property
type of knowledge for which there are many pos-
sible values8. We only need the values descrip-
tion of phenomenon (e.g. “What is it that’s not
working?”) and explanation for phenomenon (e.g.
“Do you know how one registers a Location in
the database? I am getting an Exception.”, which
in this case is interpreted as asking for an expla-
nation of why the exception occurs.).

• Instances of propose step can have a property type
of step of whose many possible values we only need
help me (a query for help, e.g. “Could you look?
I’m getting yet another Exception”), help you (an
offer to help), and stop help me/stop help you (a
suggestion to terminate the cooperation episode).

• Instances of verify something can have a property
outcome with values correct, incorrect, and don’t
know.

3.4 Cluster phenomena to identify types

The actual search for different cooperation episode
types started from the PP foundation layer concepts
only, looking for dominance of individual concepts or
fixed sets of concepts within individual episodes. We
then gradually introduced the additional concepts and
extended the search to cover also sequences (rather
than just sets) of concepts.

Via observing, hypothesizing, cross-checking, for-
mulating, and re-observing as it is induced by the
Grounded Theory activity of open coding [26, Section
II.7] (framed by the practices of theoretical coding [26,

7This and all subsequent examples are actual utterances from
our raw data, translated from German.

8In principle, rationale is just one such value. One main rea-
son why we present ∗ rationale as a concept class instead is
that it requires a further property granularity, which would
otherwise make the presentation overly confounded.

6

II.5] and constant comparison [26, II.1]), we finally ar-
rived at the following seven major new concepts (“cate-
gories” in Grounded Theory lingo) that each represent
one type of cooperation episode.

4 Results: Cooperation episode
types

The following subsections each characterize one of the
types we have identified and describe how to recognize
an instance of this type based on the encodings pre-
viously applied to the raw data (see Section 3.2 and
3.3).

The name we have chosen for each type character-
izes the purpose of the respective cooperation episode.
Except for one type (“Make remark”), the types can
be assigned to two different spheres according to their
purpose: coordination issues and technical issues. This
is shown in Figure 1.

Integrate
work
products

Exchange
project details

Discuss step

Discuss
strategy

Exchange
general
knowledge

Debug work
product

Coordination issues Technical issues

Figure 1: Types of cooperation episode types

4.1 Type “Exchange project details”

Instances of this type have a coordination purpose:
The partners query and/or inform one another (or only
one informs the other) about facts that are specific to
the partners’ current common task or project. Such
facts may be status information (which would typically,
but not exclusively, be encoded by concepts of classes
∗ completion and ∗ state), artifact-related details (typ-
ically concepts of class ∗ knowledge(project-specific)),
background information (∗ rationale) or similar.

The above description means the following:

• If the above concepts dominate9 the episode, the
type of the episode is likely “Exchange project de-
tails”.

• Other concepts may occur as well.

Further symptoms of “Exchange project details”
are implicit queries for information by declaring
where one’s knowledge has a gap (∗ standard of
knowledge(project-specific)).

9see Section 5.1

Episodes of this type are very frequent (in our data
this was the most common type by far), tend to be
quite short (usually well under one minute), and are
more often non-physical than physical. See Figure 2
for an overview of frequencies and durations of the dif-
ferent types of episode.

duration (minutes)

debugging

generic kn.

integration

proj.details

step

strategy

5 10

●
M

●●●●● ●●●● ●● ●● N=13

●
M

●● ●● ● ●● N=7

●
M

●● ● ●●● ● ●N=9

●
M

● ●●●●●● ●●●● ●●●● ●●●●● ●●●●●●●● ●● ●● ●●●●●●●●●●● N=43

●
M

●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●● ● ● N=28

●
M

●●●● ●● ● ●● N=9

(Each mark represents one episode, the whiskers indicate the 10-

and 90-percentiles, the fat dot is the median, the M and dotted

line are the arithmetic mean plus/minus one standard error. One

data point for ’integration’ at 31 minutes is not visible.)

Figure 2: Durations of cooperation episodes by type

4.2 Type “Exchange general knowledge”

Instances of this type have a support purpose: Ei-
ther one partner receives technology-related or domain-
related knowledge from the other (either after an ex-
plicit query or because the other has observed difficul-
ties in this respect) or the partners collect and com-
pile their fragmentary knowledge on a particular topic.
In both cases, the episode is dominated by concepts
of class ∗ knowledge(generic). Ideally, such an episode
consists of just two events (ask knowledge(generic), ex-
plain knowledge(generic), but in practice additional in-
teractions often occur.

In contrast to “Exchange project details”, the in-
formation received in “Exchange general knowledge”
episodes is meaningful also outside the scope of the
current project.

Episodes of this type can be more or less frequent
depending on the programmer pair, can be short or
longer, and in our data were all physical.

4.3 Type “Discuss strategy”

Instances of this type have a coarse-grained task and
work planning purpose: The partners roughly iden-
tify what needs to be done (∗ strategy(declarative)),
agree on a rough high-level design for the artifacts to
be produced (∗ design(coarse-grained)), and possibly
discuss reasons for either of these (∗ rationale(coarse-
grained)).

7

Episodes of this type typically occur once at the be-
ginning of a side-by-side session and perhaps another
few times during its later course and can be short or
long. The initial episode of this type is usually non-
physical, later ones are often attached to the end of an
“Integrate work products” episode and are then usually
physical.

4.4 Type “Discuss step”

Instances of this type have a fine-grained work plan-
ning purpose: Based on the current work status
(∗ completion, ∗ state, but sometimes neither of those
is mentioned explicitly), the partners discuss the next
work step to be performed (∗ step) or possibly an ex-
plicit list of several such steps (∗ strategy(procedural)).
They may also talk about a specific artifact element
to be created (∗ design(fine-grained)), may postpone
a step to be performed at some yet unspecified time
in the future (∗ todo), or discuss the rationale for
steps, e.g. in order to decide between alternatives
(∗ rationale(fine-grained)).

“Discuss step” can initially look exactly like “Ex-
change project details”, but the purpose is making de-
cisions, and events in the later course of the episode will
reflect this. “Discuss step” resembles “Discuss strat-
egy”, but concerns much less far-reaching decisions.
Therefore, “Discuss step” episodes are much more fre-
quent and can (but need not) be quite short. We have
seen physical as well as non-physical ones.

4.5 Type “Debug work product”

Instances of this type have the purpose of turning a
defective work product into one that works as intended.

There are two forms how such episodes start. One
partner may explicitly ask for help (propose step(help
me), e.g. “I have a problem with X, could you
have a look?” or ask knowledge(explanation for phe-
nomenon), e.g. “Do you have an idea why I keep get-
ting X?”) or the other may notice problems of the
other (who mumbles about them) and jump in (also by
propose step(help you) or ask knowledge(description of
phenomenon))

The further course of the episode is characterized
by some (possibly long) sequence of events involv-
ing testing (verify something) or code review (ver-
ify something), discussing assumptions (∗ hypothesis)
and insights (∗ finding) (or alternatively explaining
what the culprit’s oversight was (∗ knowledge)), and
modifying the artifacts in question (write something).

The end of the episode looks different depend-
ing on success. If the defect was found, the last
few events must conceptually include an insight (ex-
plain finding) what the defect is, the correction of
the defect (write something), and a final test to make
sure the defect is repaired (verify something(correct)).

However, the last one or even the last two of these steps
may occur outside the proper cooperation episode.

If, in contrast, the partners give up, one of the last
few events will be propose step(stop help me) or pro-
pose step(stop help you).

Episodes of this type tend to be long (although the
simple task in our study reflects this only sometimes),
their frequency depends on the pair, and except for
very short ones they are physical.

4.6 Type “Integrate work products”

Instances of this type have the purpose of joining and
consolidating the partial work products of the partners
into a coherent common work product.

The instances of this type are composite: they of-
ten include sub-episodes that would qualify as one of
the other types. However, these sub-episodes must be
considered part of the integration episode, because oth-
erwise the purpose of an integration episode would no
longer be discernible; such definitions would misrepre-
sent the intentions of the programmers.

Conceptually, the structure of an “Integrate work
products” episode is as follows:

• Status: Make sure each partner’s work is suf-
ficiently complete for performing an integration.
This will be a valid “Exchange project details”
episode.

• Decision: Agree to actually perform an integra-
tion. This will be a valid “Discuss step” episode.

• Sync: Make all work products available on one
computer: commit changes by one partner fol-
lowed by update codebase by the other.

• Test: Prepare and perform a test of the
new functionality (verify something, often also
write something).

• Debug: Possibly correct any defects in the inte-
grated artifacts. This would be a valid “Debug
work product” episode.

The last two steps can be repeated multiple times, until
all aspects that need to be checked for a successful in-
tegration have been tested and debugged. Underways,
there may also be some further development of small
missing bits and pieces.

Note that status, decision, and sync may be missing
from the encoding because they have happened ear-
lier (sync) or without explicit communication (status,
decision).

Conceptually, the integration episode ends with the
successful test of the last aspect that needed testing.
Attentive readers will notice, however, that this ending
criterion is not operational: based on the given con-
cepts and encodings there is no way to decide which is

8

the “last aspect that needed testing”. An operational
ending criterion can be defined as follows, though: Inte-
gration episodes are necessarily physical10. The latest
possible end of the integration episode is thus the end
of the physical cooperation (move back). From that
point, go backwards in time and cut off the last can-
didate sub-episode (or possibly two) if it qualifies as
“Discuss step” or “Discuss strategy”, which often oc-
cur at the end of an integration but should be consid-
ered separate episodes, because they usually concern a
new topic.

Integration episodes are usually quite long and their
frequency depends on the pair.

4.7 Type “Make remark”

This type is a rather special case; its instances have
no fixed kind of purpose11, are extremely short, and
necessarily non-physical. They involve only one single
utterance (no dialog or interaction at all12) and go as
follows: One partner observes a situation faced by the
other and comments on that situation. Period.

In the two (presumably quite typical) instances we
have observed, the remark was once a propose step and
once an explain knowledge. Both episodes occured with
pair 2, the only one that had already worked together
several times previously.

Alistair Cockburn considers “Make remark” events
a Good Thing13, because they reflect just the some-
benefit-at-no-cost type of advantage for which he sug-
gested the side-by-side programming practice.

5 Discussion

5.1 Threats to internal validity

Internal validity refers to the degree to which the re-
sults as presented were correctly derived from the raw
observations underlying the study.

The only threat to validity for a Grounded Theory
study is incomplete or incorrect grounding of the state-
ments made. As for incompleteness, our grounding is
complete except for one point: Our notion of “domi-
nance of a set of concepts within a particular episode”
is an intuitive concept we have not formally grounded
in the observations (although we are sure that this can
be done). Furthermore, due to lack of space in this ar-
ticle, the description of our grounding is limited to brief
examples (and sometimes not even that) rather than
the detailed concept descriptions that are the hallmark
of Grounded Theory.

10Similar event sequences via non-physical cooperation lose their
composite nature and would be described by the respective
sequence of sub-episodes only.

11That is why they are missing in Figure 1.
12That is why they are missing in Figure 2.
13personal communication January 2008

As for correctness, our encodings will arguably con-
tain a substantial number of concept confusions (con-
cept A has been chosen although concept B could be
argued to be more appropriate). Such confusions can
occur when multiple interpretations of an utterance
are possible. For the given episode type classification,
however, such confusions are unproblematic: Wherever
they occur, the respective type description will acco-
modate A as well as B anyways, because many of the
similar episodes will have clear As and many will have
clear Bs at the corresponding point.

5.2 Threats to external validity

External validity refers to the degree to which the
results as presented generalize to other settings than
those observed in the study.

The setting of our study was not at all generally rep-
resentative of realistic software development situations
(laboratory environment, relatively inexperienced sub-
jects, simple task context) and we have analyzed only
three pairs. For most kinds of study this would lead to
rather weak external validity. Not so in our case; we
are convinced that the types we found are all valid, for
the following reason: It is conceivable that industrial
practice may exhibit additional types of cooperation
episodes or (more likely) that it might be helpful to
split up some of our types, but we have no reason to
believe that one of our types is malformed or does not
occur in other settings. Remember that most of our
classification rests on the concepts of the PP founda-
tion layer, which does reflect industrial practice.

5.3 Usefulness of the cooperation episode
types

What are the benefits from understanding the episode
types? We can think of three. First, the names of
the types of cooperation episode provide a standard-
ized vocabulary that eases communication in much the
same way as the names of design patterns do [21].

Second, knowing the episode types contributes to a
clear mental model of the side-by-side process. In par-
ticular for programmers using metacognition [24], it
provides a better tactical orientation by helping to an-
swer the questions “What is the purpose of the current
cooperation episode?” and “So what should I focus
on?” .

Third, the results suggest an entry in a side-by-side
programming etiquette that says “Do not shy away
from asking your partner for project details, even if you
could find them out yourself. Asking is often more effi-
cient overall, at least if you keep the interaction short.”
If this rule was wrong, we would not have seen such a
large number of “Exchange project details” episodes.

9

6 Conclusion

Of the research questions formulated in Section 1.2, our
results provide an answer for the question “For what
purpose do side-by-side programmers start a coopera-
tion episode?”. We have found that they do it in order
to either agree on coarse work strategies, agree on the
next work steps, exchange knowledge (either project-
specific or generic), perform debugging, or integrate
their work results.

Explicitly knowing this set of cooperation episode
types will help both practioners and researchers to talk
and write about side-by-side programming clearly.

Subsequent work should now study what types of
pairs excel (or limp) in which of the episode types and
what kinds of behavior in each of the episode types
makes an efficient and successful completion of the re-
spective episode most likely.

Acknowledgments

We thank our subjects for participating in the study.

10

References

[1] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 1999.

[2] K. Beck. Extreme Programming Explained: Em-
brace Change, Second Edition. Addison-Wesley Pro-
fessional, Boston, 2004.

[3] S. Bryant. Double trouble: Mixing qualitative and
quantitative methods in the study of extreme pro-
grammers. In Proceedings of the 2004 IEEE Sympo-
sium on Visual Languages – Human Centric Comput-
ing (VL/HCC 2004), pages 55–61, Washington, DC,
USA, 2004. IEEE Computer Society.

[4] S. Bryant, P. Romero, and B. du Boulay. Pair pro-
gramming and the mysterious role of the navigator.
International Journal of Human-Computer Studies, in
press.

[5] L. Cao and P. Xu. Activity patterns of pair program-
ming. In Proc. of the 38th Annual Hawaii Interna-
tional Conf. on System Sciences (HICSS 2005), page
88a, Washington, DC, USA, 2005. IEEE Computer
Society.

[6] J. Chong and T. Hurlbutt. The social dynamics of pair
programming. In ICSE07: Proceedings of the 29th
Int’l Conf. on Software Engineering, pages 354–363,
Washington, DC, USA, 2007. IEEE Computer Society.

[7] M. Ciolkowski and M. Schlemmer. Experiences with
a case study on pair programming. In Workshop on
Empirical Studies in Software Engineering, 2002.

[8] A. Cockburn. Crystal Clear: A Human-Powered
Methodology for Small Teams. Addison-Wesley Long-
man, 2004.

[9] B. Hanks, C. McDowell, D. Draper, and M. Krnjajic.
Program quality with pair programming in CS1. In
ITiCSE ’04: Proceedings of the 9th annual SIGCSE
conference on Innovation and technology in computer
science education, pages 176–180, New York, NY,
USA, 2004. ACM Press.

[10] J. Highsmith and A. Cockburn. Agile software devel-
opment: The business of innovation. IEEE Software,
18(5):120–122, September 2001.

[11] U. Kelle. “emergence” vs. “forcing” of empirical data?
a crucial problem of “Grounded Theory” reconsidered.
Forum Qualitative Sozialforschung / Forum: Qualita-
tive Social Research, 6(2), 2005.

[12] K. M. Lui and K. C. Chan. When does a pair outper-
form two individuals? In Extreme Programming and
Agile Processes in Software Engineering, volume 2675
of Lecture Notes in Computer Science, pages 225–233.
Springer, 2003.

[13] L. Madeyski. Software Engineering: Evolution and
Emerging Technologies, volume 130 of Frontiers in Ar-
tificial Intelligence and Applications, chapter Prelimi-
nary Analysis of the Effects of Pair Programming and
Test-Driven Development on the External Code Qual-
ity, pages 113–123. IOS Press, 2005.

[14] C. McDowell, L. Werner, H. Bullock, and J. Fernald.
The effects of pair programming on performance in an
introductory programming course. In Proceedings of
the 33rd SIGCSE technical symposium on Computer
science education, pages 38–42. ACM Press, 2002.

[15] C. McDowell, L. Werner, H. E. Bullock, and J. Fer-
nald. The impact of pair programming on student
performance, perception, and persistance. In ICSE
’03: Proc. 25th Int’l Conf. on Software Engineering,
pages 602–607. IEEE Computer Society, 2003.

[16] N. Nagappan, L. Williams, M. Ferzli, E. Wiebe,
K. Yang, C. Miller, and S. Balik. Improving the CS1
experience with pair programming. In Proceedings
of the 34th SIGCSE technical symposium on Com-
puter science education, pages 359–362, New York,
NY, USA, 2003. ACM Press.

[17] N. Nagappan, L. A. Williams, E. Wiebe, C. Miller,
S. Balik, M. Ferzli, and J. Petlick. Pair learning: With
an eye toward future success. In XP/Agile Universe,
volume 2753 of Lecture Notes in Computer Science,
pages 185–198. Springer, 2003.

[18] J. R. Nawrocki, M. Jasiñski, L. Olek, and B. Lange.
Pair programming vs. side-by-side programming. In
P. A. . R. M. I. Richardson, editor, Software Process
Improvement, volume 3792 of Lecture Notes in Com-
puter Science, pages 28–38. Springer, 2005.

[19] S. (née Bryant) Freudenberg, P. Romero, and
B. du Boulay. ”Talking the talk”: Is intermediate-
level conversation the key to the pair programming
success story? In AGILE 2007, pages 84–91, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[20] J. T. Nosek. The case for collaborative programming.
Communications of the ACM, 41(3):105–108, 1998.

[21] L. Prechelt, B. Unger, M. Philippsen, and W. F.
Tichy. Two controlled experiments assessing the use-
fulness of design pattern information during program
maintenance. IEEE Trans. on Software Engineering,
28(6):595–606, June 2002.

[22] S. Salinger, L. Plonka, and L. Prechelt. A cod-
ing scheme development methodology using grounded
theory for qualitative analysis of pair programming.
In Proceedings of the 19th Annual Workshop of the
Psychology of Programming Interest Group (PPIG
’07), pages 144–157, Joensuu, Finland, July 2007.
www.ppig.org, a polished version appeared in: Human
Technology: An Interdisciplinary Journal on Humans
in ICT Environments, 4(1):9-25, May 2008.

[23] S. Salinger and L. Prechelt. What happens during
pair programming? In Proceedings of the 20th Annual
Workshop of the Psychology of Programming Interest
Group (PPIG ’08), Lancaster, England, September
2008. www.ppig.org, to appear.

[24] T. Shaft. Helping programmers understand computer
programs: the use of metacognition. ACM SIGMIS
Database, 26(4):25–46, November 1995.

[25] H. Sharp and H. Robinson. An ethnographic study
of XP practice. Empirical Software Engineering,
9(4):353–375, December 2004.

[26] A. Strauss and J. Corbin. Basics of Qualitative Re-
search: Grounded Theory Procedures and Techniques.
Sage, 1990.

[27] L. Williams and R. Kessler. Pair Programming Illu-
minated. Addison-Wesley Professional, 2002.

[28] L. Williams and R. R. Kessler. Experimenting with
industry’s ”pair-programming” model in the computer
science classroom. Journal of Software Engineering
Education, December 2000.

11

[29] L. Williams, R. R. Kessler, W. Cunningham, and
R. Jeffries. Strengthening the case for pair program-
ming. IEEE Software, 17(4):19–25, 2000.

[30] L. Williams and R. L. Upchurch. In support of student
pair-programming. In SIGCSE ’01: Proceedings of the
thirty-second SIGCSE technical symposium on Com-
puter Science Education, pages 327–331, New York,
NY, USA, 2001. ACM Press.

[31] S. Xu, V. Rajlich, and A. Marcus. An empirical study
of programmer learning during incremental software
development. In Fourth IEEE Conf. on Cognitive In-
formatics (ICCI 2005), pages 340–349, Los Alamitos,
CA, USA, 2005. IEEE Computer Society.

12

	Introduction
	Related work
	Research questions
	Research approach

	Study setup
	The data collection context
	Data collection
	Subjects

	Data analysis process
	Identify cooperation episodes
	Apply the PP foundation layer concepts
	Introduce additional concepts
	Cluster phenomena to identify types

	Results: Cooperation episode types
	Type ``Exchange project details''
	Type ``Exchange general knowledge''
	Type ``Discuss strategy''
	Type ``Discuss step''
	Type ``Debug work product''
	Type ``Integrate work products''
	Type ``Make remark''

	Discussion
	Threats to internal validity
	Threats to external validity
	Usefulness of the cooperation episode types

	Conclusion

