
Four Generic Issues for Tools-as-Plugins
Illustrated by the Distributed Editor Saros

Lutz Prechelt
Freie Universität Berlin, Institut f. Informatik

Berlin, Germany
prechelt@inf.fu-berlin.de

Karl Beecher
Freie Universität Berlin, Institut f. Informatik

Berlin, Germany
karl.beecher@fu-berlin.de

ABSTRACT
Saros is an Eclipse plugin for multi-writer, real-time, dis-
tributed collaborative text editing that also includes VoIP,
chat, whiteboard, and screen sharing functionality. We present
four problematic issues we encountered in the development
of Saros: Providing portability, choosing a metaphor, han-
dling clashes in display markups, and attributing incompat-
ibilities correctly to their source. These issues will apply to
many other plugins similarly. For three of them, no generic
solution approach yet exists but should be worked out.

Categories and Subject Descriptors
D.2.6 [Software Eng.]: Programming Environments—In-
tegrated Environments, Eclipse

General Terms
Design

Keywords
Saros, portability, metaphor, conflict, incompatibility

1. INTRODUCTION
Saros (www.saros-project.org) is an Open Source Eclipse

plugin for distributed collaborative text editing and viewing.
This means that two or more participants of a Saros session
have an identical copy of all files of a project (using any set of
textual languages) and any change made by any participant
of the session will be reproduced in real-time in the corre-
sponding files (and, if applicable, on the screen) of all other
participants. Saros shows at any time where each partici-
pant is working by annotations on the package explorer file
icons, a remote quasi-scrollbar, and other means as shown in
Figure 1. It shows what were the last few changes made by
each remote participant by highlighting in the text. Rather
than making changes, one can set Saros to follow the view
seen by another participant automatically in order to watch

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TOPI ’11, May 28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0599-0/11/05 ...$10.00.

what somebody else is doing or showing. All navigation and
editing functions of Eclipse (even including refactorings) are
still available. A VoIP connection, a whiteboard/sketching
function, and optional screen sharing (for non-editing col-
laboration steps) complete the collaboration scenario.

6

2

1

3

4

5

Figure 1: Various awareness features used in Saros
such as (1) selection, (2) text edits, and (3) view-
ports highlighted in each users’ color; (4) opened
and active files by current drivers, (5) button for ac-
tivating the follow-mode, and (6) icons showing for
which users Eclipse is currently the active window.

Among the many issues encountered in developing such a
tool, we have identified four that specifically stem from or
relate to the fact that Saros is a plug-in and that will apply
in some form to many tools designed as plug-ins.

We present each of these in a separate section and describe
first the origin and form of the issue as it appears in Saros
and then its generic core.

2. ISSUE: PROVIDING PORTABILITY

2.1 Saros Issue
In principle, Saros is for extending any text editor with

collaborative features; the dependencies on any other spe-
cific Eclipse functionality (besides pure text editing) are ei-
ther incidental or optional, but never fundamental. Saros
therefore ought to be portable to other popular IDEs, at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TOPI’11, May 28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0599-0/11/05 ...$10.00

9

least those that are based on Java, such as Netbeans or In-
telliJ.

However, when we started developing Saros, we had our
hands full with other things: We had to design and im-
plement the basic mechanism for putting and then keeping
local resources in sync, had to develop a suitable mental
model for explaining this to the user (see Section 3), had to
design UI functionality for making the user aware of what
was going on on the remote side (see Section 4), and had to
implement a non-trivial networking infrastructure. Frankly,
we did not spend even a minute thinking about portability
to other platforms than Eclipse.

Looking at Saros today, we find that it is intertwined
with Eclipse in quite a number of places: editor input han-
dling, editor output control, color markup in the edited text,
color markup in the annotation bar alongside the text, color
markup in our separate remote quasi-scrollbar (remote view-
port indication), annotation on the icons in the package ex-
plorer, reading and storing Saros preferences (options, set-
tings), editing Saros preferences, reading Eclipse preferences
regarding files to be ignored in Saros session synchronization
(such as generated files or version management metadata),
and so on.

We find the idea of having Saros in other IDEs attractive,
but have not analyzed it closely yet. However, the thought
of untangling all of the above from the Eclipse API and
realizing it via a yet-to-be-defined Saros API in such a way
that this API can be straightforwardly adapter-connected to
the APIs of multiple other IDEs feels intimidating.

2.2 Generic Issue
Unfortunately, we know of no set of instructions that help

achieving this untangling What would be needed to do it
was a point-by-point overview of most aspects of the vari-
ous IDEs’ APIs that describes
(1) which features of platform A look how on platform B,
(2) how their common denominator could be represented,
(3) what are the pros, cons, and limitations of each of the
different options for such representation,
(4) which parts of A cannot be achieved in B at all,
(5) which parts can be achieved but only in such a differ-
ent manner that a common representation appears hopeless.
Given the partially sketchy state of documentation of even
the best IDEs’ APIs, we do not find this likely to appear
any time soon, though.

3. ISSUE: CHOOSING METAPHOR

3.1 Saros Issue
When we design the original version of Saros, we devel-

oped what looked like a neat way (from the user’s point
of view) of integrating it into Eclipse: User A would right-
click any existing Eclipse project in the package explorer and
choose“Share project...”. This would open an invitation dia-
log in which A (called the “host”) could select one other user
B and invite her. For this, both A and B must be previously
logged into an XMPP server. Saros would then copy all files
of the respective project over from A’s Eclipse workspace to
B’s and the shared editing would start. Only one user had
write privilege at any time and the host could assign it back
and forth as needed, resulting in a strict close-collaboration
work mode as in pair programming.

Since then, we have added a lot of functionality into Saros:

There is now text chat, VoIP, screen sharing, a whiteboard
for sketching, meaningful coupling of version management
operations, an unlimited number of users in the session, and
all users can have concurrent write privilege. All members
of the session will inhabit the chat room and whiteboard,
which are automatically created with the session, and can
create subsessions for screen sharing and VoIP as needed.

The multi-writer feature turns out to be the crucial one:
Today, we find that our former metaphor of a“shared project”
as the central UI concept of Saros does no longer work well.
Rather, we are now considering sessions in which a larger
number of participants (say, five) work in a common ses-
sion all day, but closely collaborate only part of the time, a
work mode that is inspired by Alistair Cockburns Side-by-
Side Programming [1, Section 3.T8] and that we term Dis-
tributed Party Programming. In such a setting, one would
like to have:

• A session that is independent of a host and can exist
for an unlimited time.

• A common chat room for asking short questions and for
arranging close collaborations using other media.

• Chat rooms, VoIP conversations, screen sharings, and
whiteboards that are available for arbitrary subgroups
(often two people, possibly several subgroups at once)
and are possibly short-lived, to be used on a case-by-
case basis during times of close collaboration.

• The ability to share more than one project.

• The ability to share a project with an arbitrary sub-
group of the session participants and to unshare it again.

So what is the issue here? We found that this move from
shared project to session as the central metaphor is techni-
cally very hard for us. The reason for this is that we failed
to keep shared project and session clearly apart in our de-
sign structure when we started building Saros. The reason
for that is that shared project appeared so natural initially
that it never occured to us the two concepts might not be
one and the same.

3.2 Generic Issue
So why did we make this design mistake? And what has

all this to do with Saros being a plugin?
We believe that the deeper issue is the influence of the base

platform, Eclipse in our case, on the choice of metaphor and
other core concepts. It is tempting to reuse existing concepts
from the platform because this appears to make things easier
both for the user and for the designer. It appears to save
learning effort; one expects to obtain a lot of understanding
essentially for free.

The truth is, however, that such a choice might be mis-
leading. We believe that, had we designed Saros as a stand-
alone tool, we would have recognized and used session as
the central concept rather than shared project and would
not now have as much hassle with “liberating” the individ-
ual Saros services as we do.

Conclusion: Being a plugin can seduce tool designers into
less-than-optimal choices for core concepts.

4. ISSUE: HANDLING MARKUP CLASHES

4.1 Saros Issue
Being a collaboration tool, an important aspect of Saros is

the manner in which Saros shows a user what is going on on

10

the remote side(s). For this purpose, six different channels
are used:

• The existing file icons in the package explorer are ex-
tended by a yellow dot in the top left corner of the icon
of each file that is opened by some member of the cur-
rent Saros session. If the file is currently visible in an
editor, the dot is green (area 4 in Figure 1).

• Each user within a session has a personal color, these
colors are shown in each user’s the session view (area
6 in Figure 1). The annotation bar to the left of the
editor text shows this color at each line that user can
currently see in her viewport.

• The left edge of the session view also shows an icon for
each user indicating whether the user’s Eclipse window
is currently focused (“present”) or not (“away”).

• A remote quasi-scrollbar shows the scrollbar of each re-
mote user to the right of the local user’s real scrollbar
(area 3 in Figure 1), so that the local user can under-
stand which part (if any) of this file the remote users
are viewing even when those lines are not in the local
viewport.

• Within the editor pane, the current text selection (if
one exists) of a remote user is shown in that user’s color
(area 1 in Figure 1).

• The few dozen characters affected by the most recent
edits of a remote user are also highlighted in that user’s
color in the editor pane (area 2 in Figure 1).

The markup of areas 3 and 6 appears in regions of the screen
that are private to Saros. The markup in the package ex-
plorer icons, annotation bar and in particular in the text,
however, can collide with markup provided by other plug-
ins. In the case of Saros, we find that in practice this is a
problem only rarely. Some programming language plugins
provide similar markup in the text area but the problems
resulting from these and other clashes are usually modest.

4.2 Generic Issue
However, this need not always be the case. The markup

of the next plugin a user wants to combine with Saros may
clash with Saros’ so violently as to render either of these
markups and perhaps even the plugins themselves useless.
There are no conventions (let alone mechanisms) in Eclipse
that establish a regime in which a plugin could systemati-
cally step out of harm’s way when such clashes occur.

The first step in this direction could be a technique by
which a plugin could automatically detect impending markup
clashes. The second step could be markup conventions that
define a small set of “channels” of markup, consisting of
a color palette, rules for symbol palettes, and placement
rules. With such channels, any well-behaved plugin might
use only one of them and could switch from channel (one
set of markups) to another in order to avoid markup clashes
with other plugins.

Currently, the only way for plugin authors of coping with
markup clashes is making the plugin’s markup highly user-
configurable. There are currently not even guidelines for
structuring such configuration options so that users may
have to modify dozens of settings individually.

5. ISSUE: DETECTING SOURCES OF IN-
COMPATIBILITY

5.1 Saros Issue
While markup clashes are annoying, they will only rarely

actually break the functionality of a plugin. The same is not
necessarily true for other types of incompatibility.

For Saros, it is vitally important that it be informed (as
required by the Eclipse programming guidelines) about any
changes made to any text file in the current session, because
Saros has to propagate those changes to the other partic-
ipants. If some other plug-in is not well-behaved in this
respect, the consequence is brutal: Saros has a consistency
watchdog that periodically compares checksums of all files.
If a file is found to be out-of-sync with the version present
at the session’s host, it will be flagged as inconsistent and
the user’s only options are to either ignore the problem or
to overwrite the file with the host’s version.

5.2 Generic Issue
The deeper problem behind this is misallocation of trust.

A user can work with a misbehaving plugin for a long time
and never detect the misbehavior at all.

Along comes the yet unknown Saros plugin and suddenly
things go wrong: The new plugin speaks of “inconsistency”
and if the user did not read the prompt carefully, s/he may
overwrite an important change. Saros (or some other plugin
in a similar position) will receive the blame although in fact
the other plugin is the one at fault.

However, Eclipse provides no general mechanism by which
the plugin that has detected the existence of the problem can
also detect the problem’s origin and attribute it to the actual
culprit.

6. CONCLUSION
We have used the Eclipse-based distributed editor Saros

as an example to present four problematic issues that will
affect many tools developed as plugins:

• “Providing portability” pertains to the coexistence of
several competing plugin platforms such as (in the Java
case) Eclipse, IntelliJ, and NetBeans.

• “Choosing metaphor” pertains to the influence onto the
particular plugin of the basic platform’s concepts, which
may affect UI design as well as technical architecture
negatively.

• “Handling markup clashes” pertains to the coexistence
of the particular plugin with other plugins if both of
these add markup to the default display of existing UI
elements.

• “Detecting sources of incompatibility” pertains to the
coexistence of the particular plugin X with other plugins
if the other plugins misbehave in a way that ruins X’s
ability to function properly.

7. REFERENCES
[1] Alistair Cockburn. Crystal Clear: A Human-Powered

Methodology for Small Teams. Addison-Wesley
Longman, 2004.

11

