
IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 1

Plat Forms: A Web Development Platform
Comparison by an Exploratory Experiment

Searching for Emergent Platform Properties
Lutz Prechelt, Member, IEEE CS

Abstract—Background: For developing web-based applications, there exist several competing and widely used technological platforms
(consisting of a programming language, framework(s), components, and tools), each with an accompanying development culture and
style. Research question: Do web development projects exhibit emergent process or product properties that are characteristic and
consistent within a platform but show relevant substantial differences across platforms or do team-to-team individual differences
outweigh such differences, if any? Such a property could be positive (i.e. a platform advantage), negative, or neutral and it might
be unobvious which is which. Method: In a non-randomized, controlled experiment, framed as a public contest called “Plat Forms”,
top-class teams of three professional programmers competed to implement the same requirements for a web-based application within
30 hours. Three different platforms (Java EE, PHP, or Perl) were used by three teams each. We compare the resulting nine products
and process records along many dimensions, both external (usability, functionality, reliability, security, etc.) and internal (size, structure,
modifiability, etc.). Results: The various results obtained cover a wide spectrum: First, there are results that many people would have
called “obvious” or “well known”, say, that Perl solutions tend to be more compact than Java solutions. Second, there are results that
contradict conventional wisdom, say, that our PHP solutions appear in some (but not all) respects to be actually at least as secure as
the others. Finally, one result makes a statement we have not seen discussed previously: Along several dimensions, the amount of
within-platform variation between the teams tends to be smaller for PHP than for the other platforms. Conclusion: The results suggest
that substantial characteristic platform differences do indeed exist in some dimensions, but possibly not in others.

Index Terms—emergent properties, usability, functionality, reliability, security, product size, design structure, modifiability, Java, PHP,
Perl

F

1 INTRODUCTION

1.1 Background: Web development platforms

Huge numbers of projects of all sizes for building web-
based applications of all sorts are started each year.
However, when faced with selecting the technology
(“platform”) to use, more than one platform may appear
sensible for a given project. In the context of web-based
application development, a technological platform is a
programming language plus the set of reusable techno-
logical pieces used in conjunction with that language,
such as components, frameworks, libraries, tools, and
auxiliary languages. Web development platforms share a
number of auxiliary languages, in particular (X)HTML,
CSS, and Javascript.

However, the technology is not the only thing that
discriminates platforms, because most of them bring
along their own distinct development culture as well.

For the purpose of this work we define platforms
(meaning web development platforms) as follows: A
platform is the combination of

• a technological ecosystem consisting of a program-
ming language (and possibly alternatives), one or

• Institut für Informatik, Freie Universität Berlin, Berlin, Germany,
prechelt@inf.fu-berlin.de

more web development frameworks, and a large set
of reusable libraries and components and

• a development culture consisting of styles, priori-
ties, process preferences, etc.

While the technological elements are clearly defined
(“hard”), the culture is a vague concept with unclear
boundaries (“soft”) although there are sometimes identi-
fiable elements as the “There is more than one way to do
it” principle of the Perl community (that emphasizes tai-
loring a solution according to varying priorities) versus
the “Pythonic style” approach of the Python community
(that emphasizes simplicity and clarity).

Despite the central role that platforms play for the
fate of web application projects, very little objective in-
formation is available that allows for direct comparison
of the effective, project-level characteristics that each
platform will exhibit when used. This is what the present
study, called Plat Forms, is attempting to change (see
also Section 3 of the Plat Forms contest announcement
[21]).

1.2 Research question

The present work starts from the assumption that the
technological and cultural elements of a platform are
inextricably intertwined and asks for the emergent prop-
erties, that is, the overall result of the combination:



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 2

• Which emergent properties (whether they are prod-
uct characteristics or process characteristics) do web
development projects exhibit when run with differ-
ent platforms?

• Do typical platform characteristics exist that consis-
tently differ from one platform to another or do the
differences between development teams mask such
differences if they exist at all?

1.3 Method considerations

The above question can obviously only be answered em-
pirically, not analytically. Any study about it will have to
make observations on a whole-project level (rather than
on smaller and isolated tasks) and will have to involve
teams (rather than just individuals) and lifelike settings
(in particular: professional developers [6]). Diagnosing
consistent platform differences (if they exist) will be
dramatically easier if we have a high amount of control
of the setting, so an experimental research approach [4]
is much preferable to a merely observational one such
as for instance case studies [26].

Unfortunately, the combined requirements of control
(which requires replication) and project-level observa-
tions induce a bad feasibility problem: Since the idea
of “naturally occurring experiment” [14], [16] is not
applicable on a project level, we will have to replicate
whole projects.

To solve this problem, we marketed the study as a
contest in order to acquire multiple teams of volunteers
for each platform; see Section 1 and 2 of the Plat Forms
contest announcement [21]. Note that the contest format
was merely a design choice in order to make it easier
to find participants: The participants were not paid;
rather, they were motivated by the reputation that their
company could gain by beating high-class competitors.
From a scientific point of view, Plat Forms is a non-
randomized, but otherwise controlled experiment (also
known as a quasi-experiment [4]). Note that a non-
randomized design is actually superior to a randomized
one in our case; see Section 2.1 for details.

1.4 Plat Forms overview

In the standard language of [2], Plat Forms is character-
ized like this: To understand the relative pros and cons
of different web development platforms, characterize
all consistent differences in the development processes
used with these platforms and the products they bring
forth with small teams of professional developers for
medium-small, stand-alone web applications, from the
perspective of developers, modifiers, customers, users,
and researchers using a replicated project study.

More concretely, Plat Forms is an event in which
several professional web-development teams meet in
one place at one time to create an implementation for the
same requirements within a fixed time frame, each team
using the platform they are most highly skilled with.

The 2007 Plat Forms event, was announced publicly in
October 2006 and held January 25-26, 2007. There were
9 teams representing 3 different platforms (Java, Perl,
PHP, with 3 teams each1). Each team had 3 members
and the allotted time was two days, starting at 9:00 in
the morning and ending at 15:00 the next afternoon.
The teams had arrived the previous day in order to
set up their own equipment and local network (with
internet access). During the contest, the teams were free
to work in whichever style they deemed most sensible —
including sleeping (which each participant indeed did).

At the end of the contest, each team turned in their
solution in three forms: source code, version archive,
and a turn-key executable system as a VMware image
(see Appendix C for screenshots). Each participant then
filled in a short, semi-structured questionnaire with some
biographical information and an assessment of the task
and the team’s solution.

1.5 Evaluation overview
In light of the research question, Plat Forms attempts
to evaluate as many characteristics as possible: We will
assess platform productivity differences by looking at
the completeness of the solutions submitted (Section 5.1)
and the participants’ subjective platform experience (Sec-
tion 5.11). We will assess platform differences with re-
spect to the development process by looking at partici-
pant activity timeseries data (Section 5.2) and the source
code archive version history (Section 5.3). We will assess
external quality factors by looking at the solutions’ ease-
of-use (Section 5.4), robustness and security (Section 5.5),
correctness (Section 5.6), and scalability (Section 5.7). We
will assess maintainability-related internal quality fac-
tors productivity by looking at product size (Section 5.8),
modularity (Section 5.9), and modifiability (Section 5.10).

1.6 Contributions
The present work is relevant from two perspectives: As
statements about the platforms involved and for learning
about empirical methodology in software engineering.
Specifically, it makes the following contributions:

• It describes the first credible controlled, project-
level, side-by-side comparison of different web de-
velopment platforms.

• It provides a number of observations that point out
what may be characteristic platform differences.

• It provides further data that cannot be interpreted
clearly at present but will be of interest once addi-
tional data of similar nature becomes available.

• It shows how the validity problems that normally
result from lack of randomization in otherwise con-
trolled experiments can be overcome by posing a
more inclusive research question.

1. We had intended to have teams for ASP.NET, Python, and Ruby
as well, but could not raise sufficient attention and interest in those
communities.



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 3

2 PLAT FORMS SETUP

2.1 Plat Forms as an experimental design

Plat Forms is an attempt to perform a controlled experi-
ment: Vary one factor (the “independent variable”, here:
the platform), keep everything else constant (“control
all other variables”), and see how the various resulting
project characteristics (“dependent variables”, such as
size, quality, efficiency, etc.) change. This approach to
observation is a fundament of the scientific method [15].

When humans play a major role in an experiment,
keeping “everything else constant” is usually possible
only via repeated measurement (and averaging over
several humans) in order to smooth out individual
characteristics. The repetition has to be combined with
random assignment of the people to the various exper-
iment conditions (“randomization”) in order to avoid
self-selection effects, say, if all the most capable people
favored platform X [4], [20]. In the Plat Forms case,
however, the last point is different.

The following decisions were made in order to make
the Plat Forms setup as credible as possible:

• use a task of somewhat realistic size and nature,
• use teams of three as subjects rather than individu-

als,
• use a setting that is more similar to real project

conditions than to laboratory conditions,
• refrain from randomization.

The last point requires elaboration. For a platform
comparison such as ours, randomization would be prob-
lematic, because it would make the setting unrealistic:
A real project owner would be unwise to let a team
work with a platform that is chosen independently of the
team. Rather, one would either choose a team and let it
work with the platform for which it has the best skills or
choose a platform and then find an appropriate team that
is skilled with it. We have no interest in learning about
what happens when teams work with random platforms.

Technically speaking, Plat Forms is thus a non-
randomized controlled experiment (quasi-experiment,
[4]) with one categorial independent variable (the plat-
form) with three levels (Java, Perl, PHP) and a large
number of dependent variables (as mentioned in Sec-
tion 1.5). It controls most human-related variables by
averaging (using teams of three and using three teams
per platform) but accepts selection effects as natural
(“appropriate self-selection”): The characteristics of the
people who choose to work with platform X (and thus
self-select group X in our experiment) should be consid-
ered part of the characteristics of the platform itself, so
our quasi-experiment is actually a better design than the
corresponding controlled experiment would be.

This is in contrast with most experimentation in
software engineering, where lack of randomization, al-
though quite common (about one third of all experi-
ments according to [9, Section 4.1]), must normally be
considered a threat to validity which has to be kept at

bay by additional measures such as those described in
[9, Section 2.3]

Our biggest constancy concern is within-platform vari-
ation between the teams which must be very small
or will make it impossible to reliably detect existing
platform differences [17]. Our only hope is to have a very
homogeneous set of teams in the contest. We attempted
to solve this problem by going for top-class teams (rather
than average teams) only: Their performance is most
likely to be very similar.

2.2 The participants and their platforms

The skill requirements for the teams implied by the
announcement were rather high2, so it was not easy to
find three qualified teams per platform at all. The result,
however, was quite satisfactory.

2.2.1 Participant demographics
All 27 team members were professional software de-
velopers. Their mean age was about 32 years on all
platforms. For each platform, a majority of the team
members reported they spent two thirds or more of
their daily worktime time with technical software de-
velopment activities. The number of years of experience
as professional developers ranged from 5 to 16 years
for PHP (mean 9.8), from 2 to 20 years for Perl (mean
8.7), and from 1 to 15 years for Java (mean 7.1). On all
platforms, the mean number of programming languages
known to each team member was in the range 4 to 5.

When asked “Among all professional programmers
creating web applications, I consider myself among
the most capable x%´´, the top three fourths of our
Java/Perl/PHP programmers, respectively, considered
themselves to be among the top 20%/30%/15% of
all professional programmers, respectively. A previous
study found evidence [18, Section 5.10] that such self-
rating is a far better predictor of an invididual pro-
grammer’s performance than common indicators such
as experience; it found no evidence of platform bias in
the self-ratings. We thus consider these self-ratings to be
reasonable evidence that our ambition to have only high-
class teams was fulfilled and consequently that (despite
the lack of randomization when assigning the people
or teams to the platforms) there is little danger of bias
when comparing the platforms. Our non-randomized
experiment design is thus likely to yield valid results.

2.2.2 Teams and their technology
We assigned numbers to the teams in the order in which
we received their request for admittance to the contest
and internally talk of team1, team2, etc. If one is mainly
interested in the platforms of the teams, this numbering
is quite confusing, so we will attach the platform name

2. “[We] strive to get the best possible teams for each platform to
make it more likely that significant differences observed in the final
systems can be attributed to the technology rather than the people.”



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 4

to the team number most of the time and talk of team1
Perl, team3 Java, etc.

These are the home organizations of our teams and
the main pieces of technology that they used:

• Team1 Perl: Etat de Genève/Optaros
DBIx::DataModel, Catalyst, Template Toolkit

• Team2 Perl: plusW
Mason, DBI

• Team3 Java: abaXX Technology
JBoss, Hibernate, abaXX.components

• Team4 Java: Accenture Technology Solutions
Tomcat, Spring, Hibernate

• Team5 Perl: Revolution Systems
Gantry, Bigtop

• Team6 PHP: OXID eSales
Zend Framework, parts of OXID framework

• Team7 PHP: Globalpark
proprietary framework

• Team8 PHP: Zend Technologies
Zend Framework

• Team9 Java: Innoopract Informationssysteme
Equinox, Jetty, RAP

All teams used variants of the Linux operating system
and either MySQL or PostgreSQL. The Perl teams used
Apache and mod perl, the PHP teams used Apache and
mod php. Most teams employed a number of Javascript
libraries.

2.2.3 Threats to validity
We cannot rule out the possibility that some teams were
inherently more capable than others. However, none of
the above data nor any other information we have about
the teams suggests that any one single team was a-priori
less capable than any other, let alone that the teams
of a platform were generally less capable than those of
another platform.

2.3 The task solved by the participants: PbT
2.3.1 Requirements document
The teams were asked to build a system called People
by Temperament (PbT). They received a 20-page require-
ments document (Appendix D or [22]) containing five
sections as follows:

• Introduction. Describes the purpose of PbT as fol-
lows: “PbT (People by Temperament) is a simple com-
munity portal where members can find others with whom
they might like to get in contact: people register to
become members, take a personality test, and then search
for others based on criteria such as personality types,
likes/dislikes, etc. Members can then get in contact with
one another if both choose to do so. The system has
both an interactive user interface via HTML pages and a
WSDL/SOAP-based programmatic interface.” Describes
the requirements notation used (151 fine-grain re-
quirements, each marked as either MUST/essential,
SHOULD/mandatory, or MAY/optional and num-
bered consecutively).

• 108 functional requirements on the GUI level, pre-
sented in use case format [5]. There are six use cases:

1) An Overview use case, integrating the other
five.

2) User registration, with a number of less-than-
common attributes, in particular GPS coordi-
nates.

3) Trivial Temperament Test (TTT), a survey of
40 binary questions (provided in an external
structured text file) leading to a 4-dimensional
classification of personality type.

4) Search for users, based on 17 different search
criteria (all combinable), some of them compli-
cated, such as selecting a subset of the 16 pos-
sible personality types or classifying distance
(in a prescribed simplified way) based on GPS
coordinates.

5) User list, used for representing search results,
users ‘in contact’ with myself, etc. This use case
also called for generating a graphical summary
of the list as a 2-d cartesian coordinate plot
visualizing the users as symbols based on se-
lectable criteria.

6) User status page, displaying details about a
user (with some attributes visible only in cer-
tain cases) and implementing a protocol by
which users can reveal their email address to
each other (’get in contact’) by sending and
answering ‘requests for contact details’ (RCDs).

• 19 functional requirements for a SOAP-based Web-
service interface, described by a WSDL file (pro-
vided separately) and explanations.

• 19 non-functional requirements regarding for in-
stance some user interface characteristics, scalability,
persistence, and programming style.

• 5 requirements regarding rules of conduct for the
contest, in particular describing packaging and de-
livery of the solutions.

2.3.2 Requirements process
The teams could ask for clarifications at any time. Apart
from a few minor imperfections of the requirements doc-
ument, this option was hardly used though. In particular,
there were hardly any questions regarding the relative
priorities of different non-functional properties.

2.3.3 Threats to validity
Many aspects of a real project are not reflected in the
task, such as requirements management, documentation,
acceptance testing, installation, administrator training,
etc. Adding these aspects would bring task size to a
range of about two or three person months, which is still
small for a professional software project (yet big enough
to be taken seriously). It would also allow additional
candidate platform differences to be analyzed which are
missing in the present study.

The lack of these aspects may have influenced some of
our results somewhat. In particular, our study does not



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 5

involve requirements changes during project execution,
which plausibly might have influenced correctness and
maintainability.

3 RELATED WORK

3.1 Platform comparisons
Many informal comparisons of web development plat-
forms or frameworks exist. Most of them are not based
on actually trying out the frameworks, however, but
rather compare features and programming styles the-
oretically. Such comparisons can sometimes be helpful
when making platform decisions, but cannot provide
objective information about the platforms’ emergent
characteristics.

There are also a number of comparisons that involve
actual programming, but they usually differ sharply
from Plat Forms with respect to one or more of the
following important aspects:

• Many of them involve much less controlled condi-
tions for the production of the solutions. Authors
can put in an arbitrary amount of work during the
course of several weeks.

• Many of them focus on only a single evaluation
criterion, such as performance or the length of the
program code.

• Some are prepared by a single author only, which
raises the question whether we can assume that a
similar level of platform-specific skills was applied
for each platform.

Examples for such limited types of study are perfor-
mance contests like the Heise Database contest [11],
which compare little else than performance and typi-
cally involve unlimited preparation time, live scenarios
[12], where experts attempt to solve a small task in
a few hours, typically at a conference or tradeshow
and visitors can look them over the shoulder (but no
in-depth evaluation is performed at all), or one-man
shows like Sean Kelly’s video [10] comparing specifically
the development process for a trivial application for
Zope/Plone, Django, TurboGears (all from the Python
world), Ruby-on-Rails, J2EE light (using Hibernate), and
full-fledged J2EE (with EJB) — which is both impressive
and entertaining, but necessarily superficial and also
visibly biased.

Green and Askins [7] made a comparison of two
web development frameworks that missed out on
Plat Forms: Ruby-on-Rails and Python’s Django. The
same web application was written by two skilled pro-
fessionals for the respective languages and the resulting
code briefly analysed with a perspective on which frame-
work to choose under which conditions.

The list could be extended, but none of these stud-
ies have the ambition to provide an evaluation that is
scientifically sound, and few of them attempt to review
many of the relevant criteria at once. To find a platform
comparison of that kind at all, one has to leave the realm
of web applications: [19] compared 80 implementations

of the same small set of requirements created individ-
ually by 74 programmers in 7 different programming
languages. It provided a detailed evaluation in a techni-
cal report [18] referring to a broad set of criteria, but the
“application” was a rather small string-processing batch
program; it did not have to do with web development.

3.2 Methodological issues

It is often suggested that controlled experiments in
software engineering should use professional subjects
[3], [6]. However, this is rarely done. Sjøberg et al.’s
survey [25] of controlled experiments reports only 9%
professional subjects used overall and none in the rare
project-level experiments.

The present experiment appears to be the first instance
of controlled experimentation with volunteer teams of
professionals in form of a public contest.

An alternative approach was used at Simula Laborato-
ries in Norway: They actually paid for the work of mul-
tiple professional teams from different companies to per-
form the same complete custom information system soft-
ware deveopment project four times [1]. These projects
may be somewhat atypical (as they lacked requirements
drift and included heavy measurement instrumentation)
but they are much larger than ours and they are not just
realistic, they are real. The purpose of this work is not
comparing any specific technology or methodology but
investigating the reproducibility of SE projects.

This may sound very different from the present study
at first glance, but in fact is quite similar. The authors at-
tempted to keep more or less constant the requirements,
team size, developer skill, programming language (Java),
and kinds of tools used. They allowed to vary and
then measured the project costs, duration, and schedule
overrun and the product reliability, usability, and main-
tainability.

Except for the variable project duration, this setup
is comparable to our setup for a single platform. Fur-
thermore, the research question of reproducability is
equivalent to our subquestion of consistent within-
platform characteristics. Since the systematically manip-
ulated platform variable is missing, the Simula study is
framed as a comparative case study. As a pronounced
difference to Plat Forms, the Simula study did not strive
for the most similar teams, but rather picked four com-
panies (out of 35) that had submitted rather different
project bids with respect to cost and then looked for pre-
dictable differences rather than merely for similarities.

4 EVALUATION RATIONALE

This section provides a quick overview of the various
facets of our evaluation. For each aspect studied we
describe what it is, why it is of interest, the evaluation
approach, and the expectations of what we might find
and why.



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 6

The results for each aspect will be given in a separate
subsection (or sometimes several) of Section 5, each also
containing more details on the evaluation method.

We will evaluate platform productivity by looking at
the completeness of the solutions in terms of how many
of the fine-grained requirements have been realized
(Section 5.1). Productivity is a fundamental attribute
for efficient software engineering. We might expect for
instance that Java is less productive than the others
because of its generally more heavyweight nature.3

We attempt to find differences in the development
processes used (without judging them as good or bad) by
analyzing observations of roughly what each team mem-
ber was doing when (recorded in 15 minute intervals,
Section 5.2) and by analyzing the version repositories
for salient differences of any kind (Section 5.3). Process
differences might indicate for which kinds of projects
or customer temperaments a platform may be most
suitable. We might expect for instance to find evidence
that the processes of the Java teams tend to be more
coarse-grained or waterfallish and those of the other
teams more incremental and iterative.

We informally evaluate ease-of-use (Section 5.4, an
aspect of usability) by subjectively judging each of the
108 GUI requirements. This might indicate platforms
whose culture provides better user focus or whose tech-
nology provides better support for ease-of-use. We have
no specific expectations in this regard.

We evaluate the applications’ robustness, error han-
dling, and (superficially) security by various user-level
blackbox tests. This might tell platforms with a less well-
developed quality culture or platforms whose technol-
ogy imposes a higher programming burden for achiev-
ing appropriate data checking and filtering. We expect
Java to be the most problem-aware platform in these
respects and PHP to be the worst.

We have not evaluated performance (Section 5.7) be-
cause too many solutions were functionally too incom-
plete for setting up a fair and sensible test scenario.

We evaluate the applications’ maintainability by quan-
titatively assessing their size (Section 5.8, discriminating
hand-written, reused, generated, and modified files) and
by evaluating the modularization. Since assessing mod-
ularity in a quantitative fashion is difficult for these plat-
forms (Section 5.9), we qualitatively investigate specific
change scenarios and determine which modifications
they would require in each case (Section 5.10). These
investigations may highlight platform-specific character-
istics of the solution structure and perhaps also how a
platform trades off productivity against design quality.
One expectation would be that Java solutions exhibit a
more orderly structure, another one would suggest that
the dynamic languages provide smaller solutions. Since
both being orderly and being smaller is an advantage

3. These expectations are formulated here only for engaging the
reader. They have no influence whatsoever on the evaluation itself or
on the results. The reader may wildly disagree with them; this would
not be a problem.

during maintenance, it is very interesting to see which
of the two (if the expectations turn out to be correct) will
appear to be more relevant in our setting.

Finally, we have a look at subjective reports of how
the participants perceived the task (Section 5.11) and
see whether we find systematic platform differences
there, which also may highlight differences in the plat-
forms’ technological support or development culture.
Such results might corroborate results found above, may
complement them with aspects not investigated, or may
contradict spurious findings.

5 RESULTS

This section describes how we evaluated the teams’
processes and solutions and what results we found. Each
evaluation criterion is discussed in a separate subsection,
each including a short discussion of the most important
threats to the validity and credibility of the results.

Due to the large number of criteria evaluated, many
details are missing from the discussion below. For an
exhaustive description and discussion, please refer to
the detailed, 118-page Plat Forms results technical report
[23]. The raw data is available as an electronic supple-
ment on computer.org. The teams’ solutions’ source code
is available from www.plat-forms.org.

Significance tests and confidence intervals are based
on a Student’s t-test with Welch correction for unequal
variances as computed by R’s t.test procedure [24].

5.1 Completeness of solutions: Differences found
The most basic quality attribute of a software application
is its functionality. In our case this boils down to the
question: Which of the functional requirements stated in
the requirements specification have been implemented
at all? Given the short timeframe and the discrimination
into MUST, SHOULD, and MAY requirements, we ex-
pected that most solutions would be incomplete to some
degree.

We discuss the user interface requirements 1 through
108 separately from the web service requirements 109
through 127.

5.1.1 Data gathering approach
Completeness evaluation uses the list of 127 functional
requirements as a checklist. For each of the 9 solutions,
two judges independently determine (by user-level func-
tional testing) for each requirement whether it is fulfilled
or not and record the result using the following five
point scale: (4) is implemented and works better (in
particular: with better ease-of-use) than expected; (3) is
implemented and works correctly; (2) is implemented
but works less well (in particular: with worse ease-of-
use) than expected; (1) is only partially implemented
or does not work properly; (0) is not implemented.
The two judges (who are graduate Computer Science
students and perform the judgment mostly based on
their common sense as experienced computer users)



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 7

then discuss and resolve any discrepancies between their
judgements to arrive at the unified judgement used in
the evaluation below. Across the 9 solutions thus judged,
the median agreement of the judges before the discuss-
and-resolve procedure was 80%. We count a requirement
as implemented if its grade is higher than 1. Later on, we
will use the discrimination of grades 0 vs. 1 for judging
correctness (Section 5.6) and the discrimination of grades
2 vs. 3 vs. 4 for judging ease-of-use (Section 5.4).

We used a simplified procedure for the webservice
requirements 109 through 127, because those can be
judged more canonically: Only one judge performed the
assessment. The mark 4, was not used, mark 2 was only
used to designate slight defects.

We use these data for evaluation in two different ways:
Once by merely counting the implemented requirements
and once by weighting them each according to the effort
presumably required for implementing this requirement.
Weights ranged from 0 points for redundant compound
requirements (whose content is present again in separate
detailed requirements) and 1 point for trivial require-
ments (such as simple individual input fields) up to 5
points for difficult functionality.

The completeness results of either scheme are almost
identical and we will hence present only the simpler
unweighted results below.

5.1.2 Results for user interface requirements 1-108

co
un

t

0

20

40

60

80

100

Ja
va

 3

Ja
va

 4

Ja
va

 9

P
er

l 1

P
er

l 2

P
er

l 5

P
H

P
 6

P
H

P
 7

P
H

P
 8

MUST
SHOULD
MAY

Fig. 1. Completeness of solutions in terms of the number of UI-related
requirements implemented that are working correctly (grades 2,3,4).

Figure 1 shows the amount of functionality relating
to the user interface requirements that the teams have
delivered. We can make the following observations:

• The performance of the three PHP teams is remark-
ably similar. The variance among the Perl teams is
also fairly small. In contrast, the performance among
the Java teams is wildly different:

• Team3 Java produced by far the most complete
solution overall; impressively more complete than
any of the others.

• Team9 Java produced by far the least complete so-
lution overall, with only about half as much imple-
mented functionality than the second-least complete
solution. The main reason lies in the framework,
RAP, used by this team. Team9 had participated
in the contest only reluctantly (and only because
we pressed them because all our other Java can-
didates had withdrawn), because (a) they felt that
the Eclipse UI model supported by their framework
RAP might not be well suited to the task they would
have to solve in the contest (and indeed it was not
a very good fit), and (b) they knew that RAP was
still quite immature. By the time of the contest in
January 2007, RAP had not even seen its first beta
relase (“Milestone release” in Eclipse lingo).

• Team4 Java exhibits the second-least complete so-
lution overall, with less than two thirds as much
functionality as the next bigger one (of team5 Perl).
There are two main reasons: First, the VMware
server installation the team had brought to the
contest turned out not to work correctly and they
struggled with that for almost a full day before they
could finally get it up and running satisfactorily, an
enormous loss of contest time. Second, most other
teams used a development style somewhere in the
middle between production-quality development on
the one hand and rapid prototyping on the other. In
contrast, team4 Java’s development style was heav-
ily inclined towards full production-quality devel-
opment, with an up-front design phase, fine-grained
modularization, separate documentation, and even
manually written automated regression tests.

• There is a consistent platform difference between
PHP and Perl: According to the Welch-corrected
normal-theory confidence interval for the mean dif-
ference in the number of UI requirements imple-
mented, PHP teams will implement between 15 and
28 requirements more than Perl teams in 80% of
the cases. Despite the small number of teams, this
difference is even statistically significant (p = 0.02).

When we differentiated these numbers by functional
area, we find that

• with the exception of the less complete solutions
4 and 9, all solutions have by-and-large complete
implementations of the basic use cases registration
and temperament test (TTT);

• only team3 Java, team1 Perl, and team6 PHP have
invested in the (difficult) search functionality signif-
icantly;

• compared to the other platforms, the PHP teams are
remarkably consistent in their good coverage of the
statuspage requirements.

5.1.3 Results for webservice interface requirements
109-127

Only five of the teams have managed to deliver anything
at all in this area and for three of those it is very little.



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 8

The remaining two are team7 PHP (with clearly the best
coverage) and team3 Java.

The one consistent platform difference to be found
here lies in the absence of substantial functionality in
all three Perl solutions.

5.1.4 Threats to validity

From the point of view of the Perl teams, the fact
that the webservice had to be realized via SOAP and
WSDL could be considered unfair, because very little
WSDL support is available on the Perl platform. The
Perl culture can be considered anti-SOAP because of
SOAP/WSDL’s heavyweight approach.4 On the other
hand, one could argue that SOAP and WSDL are
platform-independent standards and if a platform does
not support them well this may lead to a platform
characteristic that ought to be highlighted.

5.2 Development process: No differences found

Each platform appears to have a specific culture, regard-
ing the attitude towards how software development does
or should work. Such attitude differences ought to result
in behavioral differences and these differences ought to
be observable.

5.2.1 Data gathering method

Every 15 minutes an observer would make a tour of the
teams (using the same route each time), recording one
activity indicator for each team member (using a pen
and clipboard) and taking one or two photographs of
each team. Two observers took turns, yet the data look
smooth (no alternating codes) so the observers appear to
have used consistent criteria and produced presumably
valid data.

The activity indicators (“status codes”) represent what
the person was doing in the exact moment the indica-
tor was determined and discriminate among 17 easily
discernible types of activity. These codes were analyzed
in raw form and also in two different aggregations.
A general scheme (“statuskind”) grouped the indica-
tors into ’talk’, ’think’, ’browse’, ’develop’, ’pause’, and
’other’. A communication-oriented scheme (“commsta-
tus”) grouped the indicators into ’working alone’, ’com-
municating’, and ’pausing’.

In addition, we recorded when and how often each
team approached the customer (i.e. me) with a question
and recorded the estimated and actual times of each
team’s first public release — the teams could open their
server for the internet public, announce this fact in a
central contest weblog and obtain outside help in the
form of user feedback comments in that weblog.

4. One Perl team member remarked “We do SOAP only at gun-
point.”

5.2.2 Results from activity indicators
We investigated the activity indicator data in very many
different ways: using numerical summaries or graphical
plots; using raw status codes or statuskinds or comm-
status; on the level of individual, team, or platform; on
a granularity of 15 minutes, a few hours, or the whole
contest.

We found a number of peculiarities on the team level.
For instance (to mention a few of the extremes) web
browser usage was about 10 times as frequent for team1
Perl than for team9 Java; communication among people
was more than twice as frequent for team8 PHP than for
team7 PHP, let alone team3 Java; team1 paused only half
as much as the average team — you can see the latter
facts in Figure 2. But when we aggregated the teams into
platforms, no consistent differences remained.

5.2.3 Results regarding questions to the customer
Team members approached the customer between once
(team9 Java) and 13 times (team6 PHP) per team.

nu
m

be
r 

of
 q

ue
st

io
ns

0

5

10

15

20

Ja
va

P
er

l

P
H

P

procedure
misunderstanding
extension
error
clarification

Fig. 3. How often team members from each platform inquired at the
customer, separated by the topic or reason of the inquiry. The number
of inquiries is not large enough to find interesting structure in a bar plot
by teams or in a density plot per team running over the course of the 30
hours. The subsecting lines indicate the individual teams.

Figure 3 shows the distribution of question types over
the platforms. The overall differences might be expected
(at least in comparison to Java) by people who believe
that using a dynamic language tends to imply using
more agile development attitudes [8] and hence stronger
customer-orientation. However, the given differences are
not large enough to be considered clear-cut evidence
in this respect. It remains unclear whether there are
platform differences or not.

5.2.4 Results regarding time of first release
Only four of the teams (team3 Java, team1 Perl, team2
Perl, team6 PHP) ever announced a release publicly
although all but one (team5 Perl) had planned to do so.
Only one team (team6 PHP) came close to its original
estimate. No consistent platform differences are visible
in these data.



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 9

x
0

50
10

0
15

0
20

0
25

0

Ja
va

 3

Ja
va

 4

Ja
va

 9

P
er

l 1

P
er

l 2

P
er

l 5

P
H

P
 6

P
H

P
 7

P
H

P
 8

alone

0
20

40
60

80

Ja
va

 3

Ja
va

 4

Ja
va

 9

P
er

l 1

P
er

l 2

P
er

l 5

P
H

P
 6

P
H

P
 7

P
H

P
 8

communicating

0
50

10
0

15
0

Ja
va

 3

Ja
va

 4

Ja
va

 9

P
er

l 1

P
er

l 2

P
er

l 5

P
H

P
 6

P
H

P
 7

P
H

P
 8

pause

end
morning 2
night
day 1
start

Fig. 2. Commstatus frequencies by team for five major phases of the contest, namely start (9:00–13:00 hours), day1 (13:00–20:00 hours), night
(20:00–6:00 hours), morning2 (6:00–12:00 hours), end (12:00–15:00 hours).

5.2.5 Threats to validity
The fact that we found no platform differences does not
mean there aren’t any. The set of status codes used was
dictated by feasibility constraints and may have hidden
the actual differences. However, a set of codes that
could provide deeper insights into the process aspects
mentioned above would have required a so immensely
higher amount of observer capacity that it was far be-
yond our reach in this first instance of the contest.

5.3 File version history: No differences found

5.3.1 Data gathering method
Each team submitted their version archive along with
their solution. We attempted to analyze the version
archives in various ways: total number of check-in
records; distribution of check-ins over time; distribution
of check-ins over team members; number of check-ins
per file; number of files checked-in at once; size of the
individual deltas. These analyses were performed on a
per-team and a per-platform basis, with or without nor-
malization for the amount of functionality implemented
overall, and using either all files or the manually written
files only (see Section 5.8.1 for an explanation).

5.3.2 Results
The author-based analysis could not be completed, be-
cause team2 Perl and team6 PHP used a special ver-
sion management account for all check-ins, so authors
could not be discriminated. The other teams exhibit no
platform-specific trends.

The sizes of the deltas were directly available only for
the two teams using CVS (team3 Java, team7 PHP). 6
teams used SVN and team8 PHP used Perforce, which
is why we decided not to afford performing a manual
determination of deltas and rather dropped the delta size
analysis instead.

The analysis of check-ins over time had to adjust for
the fact that 6 teams performed a large number of first
check-ins during a preparation phase before the start of
the actual contest. After accomodating for these effects,
no platform-specific trends were to be found.

Most of the other analyses also indicated no consistent
platform differences. There are two exceptions.

number of check−ins of each manually written file

Java 3

Java 4

Java 9

Perl 1

Perl 2

Perl 5

PHP 6

PHP 7

PHP 8

0 5 10 15 20 25

● M N=42 

●M N=54 

●M N=42 

● M N=20 

● M N=9 

● M N=22 

●M N=18 

●M N=42 

●M N=44 

Fig. 4. Number of check-ins per manually written file. Each point
represents the number of check-ins for one fully qualified filename.
The data are jittered in both x and y direction for better visibility. The
box indicates the 25- and 75-percentile, the whiskers the 10- and 90-
percentile; the fat dot is the median, the M and dashed line represent
the mean plus/minus one standard error. N is the number of files.

First, both the Perl teams and the PHP teams have
on average (over those teams’ files) performed a larger
number of check-ins of each of their individual manually
created files than the Java teams (see Figure 4). With an
80% confidence interval, the mean number of check-ins
per file is lower by 1.3 to 3.3 for a Java team compared to
a Perl team, and by 1.4 to 2.7 compared to a PHP team.
The mean for Java is 3.1, so this is a big difference. Only
a part of this effect disappears when adjusting for the
amount of functionality implemented by each team.

Second, the Perl teams performed initial check-ins
of new manually created files at a more constant rate
throughout the contest than the other teams did.

5.4 Ease-of-use: Differences found
This section provides a basic discussion of the relative
user-interface quality across the 9 solutions.

5.4.1 Data gathering method
Quantitative evaluation based on actual usability testing
with multiple subjects was out of the question, consid-
ering we had not one or two but rather nine different



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 10

systems to be evaluated and a dozen other aspects we
wanted to evaluate as well.

We could have used general usability evaluation
guidelines, for instance Heuristic Usability Analysis [13],
instead. However, these approaches are necessarily very
generic and holistic and would leave unexploited much
of the structure that is present in our scenario: the one-to-
one correspondence between the application candidates
for each of the 108 fine-grained requirements.

We therefore settled for an evaluation procedure that
employs the requirements list as an ease-of-use check-
list and evaluates each of the 108 GUI requirements
separately: We just count how many of them were
implemented in a manner that is clearly above/at/below
normal expectations with respect to ease-of-use. That is,
we now make use of the difference between grades 4, 3,
and 2 as described in Section 5.1. This highly structured
evaluation approach has two advantages and one dis-
advantage. It provides a high degree of reproducibility
and it allows for not penalizing missing features (be-
cause in this study that is a separate issue), but at the
price of hardly reflecting global usability properties; see
Section 5.4.3.

5.4.2 Results

pe
rc

en
ta

ge

0

20

40

60

80

100

Ja
va

 3

Ja
va

 4

Ja
va

 9

P
er

l 1

P
er

l 2

P
er

l 5

P
H

P
 6

P
H

P
 7

P
H

P
 8

4
3
2

Fig. 5. User interface quality of the correctly working functionality
(whose amount is normalized to 100 for each solution). The lower part
of each bar are the implementations whose ease-of-use was far below
normal expectations (grade 2), the middle part are the normal ones
(grade 3), and the upper part are those with ease-of-use far above
expectations (grade 4).

Figure 5 shows the proportion of requirements with
particularly good or bad implementations relative to the
normal ones. We observe the following:

• Particularly well implemented requirements (grade
4) are too rare for any meaningful comparison.

• The overall fraction of badly implemented require-
ments is substantial — presumably owing to the
rather severe time pressure in the contest.

• Once again, the variation among the PHP teams is
lower than for the Perl and for the Java teams.

• The Java solutions tend to have a higher percentage
of ‘bad’ implementations than the others. The 80%
confidence interval for the difference ranges from 7
to 31 percentage points when comparing to Perl, and
from 12 to 36 when comparing to PHP. Note that the
interval is too wide for strict statistical significance
(p = 0.08 and p = 0.05, respectively).

Summing up, we found that the Java solutions tend
towards lower ease-of-use than both Perl and PHP solu-
tions.

5.4.3 Threats to validity
The larger fraction of ’bad’ functionality for team4 Java
and team9 Java may partially be an artifact due to the
small amount of functionality realized by these teams
overall.

The exclusive focus on individual fine-grained func-
tional requirements means the evaluation does not di-
rectly reflect important global properties such as an in-
tuitive navigation. This could have distorted the results.
(Subjectively, however, we feel that team4 and team9
solutions are indeed the most difficult to use.)

5.5 Robustness, error handling, security: Differ-
ences found
5.5.1 Data gathering method
Fully assessing robustness and security is an extremely
laborious process. Furthermore, if white-box techniques
such as code reviews are employed, it becomes very
difficult to ensure that, despite the huge differences in
programming language and application structure, each
weakness has the same chance of being uncovered. To
ensure both feasibility and fairness, we thus resorted
to running simple user-level black-box tests only, as
follows:

• </...>: handling of HTML-tags embedded in user
input (to assess the danger of cross-site scripting)

• long: handling of very long user inputs
• int’l: handling of chinese ideograms embedded in

user inputs
• email: email address validity checking
• SQL: handling of quotes embedded in user inputs

(to assess simple attempts at SQL injection)
• cookie: operation with cookies turned off

We recorded the behavior of each solution for each test
and categorized these behaviors as correct, acceptable,
broken, or security risk. The solution of team4 Java
lacked some functionality needed for the assessment.

5.5.2 Results
The results are summarized in Figure 6. Except for two
solutions that presumably allow for cross-site scripting,
the PHP results are fairly solid. The only team to come
out of all tests without a failure is a PHP team. Only the
Java solutions are all immune against cross-site scripting.
Actual SQL injection is probably not possible in any of
the solutions except maybe at one point the team5 Perl
solution.



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 11

<
/..

.>

lo
ng

in
t'l

.

em
ai

l

S
Q

L

co
ok

ie

Java 3

Java 4

Java 9

Perl 1

Perl 2

Perl 5

PHP 6

PHP 7

PHP 8

OK (OK) ! OK ! (OK)

! (OK)

OK (OK) OK ! OK !

OK (OK) OK ! ! (OK)

OK ! ! OK ! (OK)

!!! (OK) OK ! ! !

OK (OK) OK OK OK (OK)

!!! (OK) OK OK OK (OK)

!!! (OK) OK OK OK (OK)

Fig. 6. Summary of the robustness test results for all 9 teams.
“OK” means correct, “(OK)” means acceptable, “!” means broken, and
“!!!” means security risk. White areas indicate results that could not
be evaluated because some required functionality is missing in the
respective implementation. Note that some of the broken entries may
actually have security risks, too, but we did not test that thoroughly
enough to be sure.

5.5.3 Threats to validity
Our robustness and security analysis is superficial (in
particular regarding SQL injection) and hence potentially
misleading. We chose this route because a deeper assess-
ment would have to use either actual penetration testing,
which would have involved much more effort than we
could muster, or rely on manual source code analysis,
which we consider too unreliable in this cross-language
setting to be acceptable for a fair comparison.

5.6 Correctness, reliability: No differences found
5.6.1 Data gathering method
We make no attempt at measuring reliability. Rather, we
focus on correctness and measure it by the number of
defects visible at the user level and count each mal-
functioning implementation of a GUI-level requirement
(i.e., a mark 1 as described in Section 5.1) as one defect.
Comparing the correctness of the webservice implemen-
tations is hardly useful because of the generally low
fraction of requirements that were implemented at all.

5.6.2 Results
The results can be seen in Figure 7. In its raw form, there
are no consistent inter-platform differences because the
differences between the teams within one platform are
too severe. Looking more closely, even some of these dif-
ferences partially disappear: Both team9 Java and team5
Perl have made their mistakes primarily for the simplest
of the requirements — applying the effort-weighting
mentioned in Section 5.1 would make these bars rather
average. Team1 Perl has 12 of its 20 defects coming from
just one routine in the code, namely the creation of the
SQL query for realizing the search functionality — which

w
ei

gh
t

0

10

20

30

40

Ja
va

 3

Ja
va

 4

Ja
va

 9

P
er

l 1

P
er

l 2

P
er

l 5

P
H

P
 6

P
H

P
 7

P
H

P
 8

MUST
SHOULD
MAY

Fig. 7. Number of UI requirements whose implementation received
a grade of 1 (“incorrect”) during completeness testing, meaning the
implementation malfunctions massively (i.e., in a quarter of all cases
or more).

most solutions have not realized at all. Counting these 12
as only 1 defect makes the team1 result average as well.
There is no indication of consistent platform differences
with respect to correctness.

5.6.3 Threats to validity

One might argue we should weight the defects by im-
portance (or value) of the respective functionality rather
than by implementation effort or not at all. However, this
would further penalize teams that have implemented
difficult functionality with defects compared to other
teams that have prefered not to implement the same
functionality at all.

5.7 Performance, scalability: Unassessable

Scalability refers to the degree to which a solution is
capable of providing rapid response times despite large
numbers of concurrent users and requests. We had in-
tended to evaluate scalability by means of load testing.
Since each of the nine solutions had a completely differ-
ent HTML user interface, designing and implementing
a fair and meaningful load test for each of them was
beyond our resources.

We had therefore planned to perform load testing
via the webservice interface which should have been
identical for each solution. Unfortunately, only two of
the solutions implemented the webservice interface to a
sufficient degree (and even those were incomplete), so
there was no basis for scalability testing. Note that even
on the HTML level the amount of functionality available
differed so much between the solutions that fully com-
parative scalability tests would have been restricted to
basically the user registration dialog (which is hardly of
interest in this regard).

Therefore, we can unfortunately not present an eval-
uation of this important aspect.



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 12

5.7.1 Threats to validity
Not evaluating performance puts at disadvantage those
teams that spent considerable effort on optimizing
the performance of their solution. Most teams appear
to have largely ignored the performance-related non-
functional requirements; we have no means of quanti-
fying the efforts of the others.

5.8 Product size: Differences found
5.8.1 Data gathering method
This analysis concerns the source code distributions
submitted by the teams which we first purged of large-
scale reused components such as application servers,
Javascript libraries, or Javascript HTML editors.

Relying on human judgement plus information from
the version archive, we then manually classified each file
by its origin as one of reused, reused-but-modified, man-
ually written, generated, generated-but-modified. Rely-
ing on file suffixes plus sometimes human judgement
we classified each file by its role as one of template,
program, documentation, data, binary (e.g. images), or
auxiliary. We counted separately the physical lines of
code (LOC), empty lines (ELOC), comment lines (CLOC),
and lines containing statements (SLOC). Counting was
performed by a program based on a parser for Perl and
a scanner for Java, PHP, and templates.

5.8.2 Results
Regarding the origin of the files:

• Team9 Java and team1 Perl are the only ones never
to modify a reused file. This can be considered good
style.

• Only one of the PHP teams uses generated files
(team6 PHP, only four files), while all Java and Perl
teams have a substantial number of these.

• Each of the Perl teams modifed one or more gener-
ated files while this was rare for Java and PHP.

Considering manually written files only:
• It appears that Perl solutions tend towards a higher

fraction of template files (in our case 50%) than do
PHP solutions (30%, lower by 6 to 36 percentage
points with 80% confidence) and Java solutions
(22%, lower by 6 to 50 percentage points with 80%
confidence).

• The Perl solutions consist of fewer manually created
files than the Java solutions (the difference is 20 to
34 files with 80% confidence) and tend to consist of
fewer than the PHP solutions (the difference is -1 to
32 files with 80% confidence).

• The Perl solutions have fewer lines-of-code in man-
ually created files than the PHP solutions (the dif-
ference is 487 to 2035 SLOC with 80% confidence)
and tend to have fewer than the Java solutions (the
difference is 332 to 2511 SLOC).

• When normalizing these numbers by dividing by
the number of requirements implemented by each

team, there remains a tendency that Perl solutions
and PHP solutions require fewer manual lines of
code (averages: 27 and 34) per requirement than
Java (average: 92), but the variance is too high to
detect a consistent trend.

• A linear regression for these data (size depending
on functionality) indicates that Java solutions tend
to be less compact and Perl solutions more compact
than the average (see Figure 8.

o
o

o

o o o

o
o

o

0 20 40 60 80 100
0

10
00

20
00

30
00

40
00

number of implemented requirements

to
ta

l S
LO

C
 o

f m
an

ua
lly

 w
rit

te
n 

fil
es

Perl 1
Perl 2

Java 3

Java 4Perl 5 PHP 6

PHP 7
PHP 8

Java 9

Fig. 8. Linear regression showing how total size in SLOC (of manually
created files only) depends on number of requirements implemented.

Summing up, we find that the Perl solutions were the
smallest ones, both in absolute terms and relative to their
functionality, and that they were also the most template-
driven ones.

5.8.3 Threats to validity
The degree of modification in the generated-but-
modified and in particular the reused-but-modified files
varies a lot. It might have been more appropriate if some
of these had in fact been counted as manually created
files. We do not expect the difference to be large enough
to change the results, though.

5.9 Modularity: Remains unassessed

A valid static analysis of cohesion and in particular of
coupling is not possible in our setting: the mechanisms
of reflection in Java and dynamic evaluation in Perl and
PHP allow for couplings that are not statically visible
and web development frameworks tend to make heavy
use of such constructs.

We thus attempted to assess the modularity of the
solutions dynamically in the following way: Produce a
run-time profile of the subroutine calls occurring during
a fixed usage scenario; classify each subroutine as part of
either the infrastructure (framework and libraries) or the
application (actual solution code); count the number of
calls from, to, and within application code; classify the



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 13

within-application calls into intra-source-file and inter-
source-file.

Such an analysis is not easy to get right because the
meaning of profiling result data is platform-dependent
and because at least the dynamic languages allow for
program constructions for which the mentioned classifi-
cations are no longer obvious or even just well-defined.

But worse: The analysis attempt failed right at the
first platform where we tried it, Perl. The results of the
profiling runs (using Apache::DProf and Devel::DProf ) all
contained a large number of warnings about “unstacked
calls”, some of them nonsensical (negative numbers
of such calls). Furthermore, the results for team5 Perl
indicated not even one single call to an application
subroutine — in sharp contrast to what the user had
observed. We asked team5 Perl for help and although
the one who answered was (by sheer coincidence) the
author of Apache::DProf, even they had no idea what was
going wrong.

We therefore gave up at that point and can hence not
present modularity results.

5.10 Modifiability: Differences found
5.10.1 Data gathering method
We assessed the modifiability of each solution by see-
ing how two specific changes would have to be im-
plemented. We produced a verbal description for each
solution saying which files needed which changes and
had them reviewed by a member of each team (except
for team4 Java and team9 Java who did not answer).
These were the change scenarios:

• Add another text field in the user registration dialog
that would represent a user’s middle initial and
handle this data throughout the user data model.
What changes are required to the GUI form, pro-
gram logic, user data structure, database?

• Add an additional item to the TTT (1 question, 2
answers with dimension codes): What changes are
required to add the question to the set of questions
and to make sure the presentation as well as the
computation of the TTT result remains valid?

5.10.2 Results
Scenario 1: The number of changes are smallest in the
Perl solutions; for team1 Perl and team5 Perl they are
also very straightforward. Also, some of the change spots
appear to be more difficult to find in the Java and PHP
cases. The nature of the changes is quite unique for each
of the Java solutions.

Scenario 2: Both of the “conventional” Java solutions
(disregarding the very different team9 Java) use heavy-
weight approaches that provide full internationalization
support but make adding a question to the TTT difficult
and error-prone. In contrast, two thirds of the Perl
and PHP solutions take a rather pragmatic approach
and directly interpret the given structured text-file in-
stead, which provides the simplest extension procedure

conceivable. Internationalization was not asked for in
the requirements document, so we prefer the approach
implemented by team1 Perl, team5 Perl, team7 PHP, and
team8 PHP. Team9 Java took the same approach, but
did not follow it through. During day 1 of the contest,
Team1 Perl, team3 Java, and team4 Java had queried the
customer whether they should allow for modification
of the TTT questions at run time and received a “No,
thanks.” answer.

5.10.3 Threats to validity
Since it is difficult to get all 9 different build and de-
ployment processes to work, we have not actually tested
the changes. It is therefore possible that we may have
overlooked a few spots needing change. The reviews
made by the teams indeed resulted in a few changes
(both up and down) to our descriptions. However, since
all teams acted very neutrally and helpfully, we are
confident that the results are sufficiently correct now. It is
still possible that different change scenarios would have
brought different results, though.

5.11 Participants’ platform experience: Differences
found
5.11.1 Data gathering method
The questionnaire filled in by each team member after
the contest (Appendix A) contained the following ques-
tions, among others.

• 7. I think the following 2 to 5 aspects of the PbT task
were the most difficult ones.

• 8. I suspect the following 2 to 5 aspects of PbT
were those where my platform provided the biggest
competitive advantage compared to other platforms.

• 9. I think the following 2 to 5 aspects of PbT were
those where my platform provided the weakest
support.

We categorized the answers in an ad-hoc fashion in order
to find recurring topics. See Appendix B for the raw
answers.

5.11.2 Results
“Most difficult aspects of task”: Teams from all plat-
forms agree that the search was difficult. The Perl teams
complained about Perl’s lack of WSDL support for the
webservice requirements. The PHP teams show by far
the most concern about the performance requirements
and report the fewest problems with the webservice.

“Platform competitive advantages”: The actual lists of
answers read amazingly different from one platform to
another. The aspects mentioned most frequently were

• Java: good support for standard tasks
• Perl: good database support
• PHP: helpful overall development style/model
“Platform disadvantages”: All teams were quite happy

with their platforms with just two exceptions: All three
Perl teams suffered from lack of WSDL support and
team9 Java was hampered, as expected, by the imma-
turity of their RAP framework.



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 14

5.11.3 Threats to validity

The questions were too open to make sure a direct
comparison of the answers fully makes sense. The focus
of the teams was obviously quite different. One should
not rely on the above-mentioned differences too much.
We therefore refrain from relating the answers from here
to the evaluation results from the previous sections.

6 SUMMARY, DISCUSSION AND CONCLUSION

6.1 Platform-related differences observed

6.1.1 Java-centric differences
• Java was the only platform for which all three solu-

tions handle HTML tags in text field input so as to
avoid client-side cross-site-scripting (XSS) security
issues.

• The amount of functionality implemented by the
Java teams is much less uniform than for the others.
Also, the nature of the changes required for adding a
user profile data field into the application was more
dissimilar among the Java solutions than among the
solutions of the other platforms.

• The design approach chosen for representing the
content of the TTT questionnaire in the application
tended to be more heavyweight in the Java solutions
than in the others.

6.1.2 Perl-centric differences

• The Perl solutions are smaller than the Java and the
PHP solutions.

• The number of changes required for adding a user
profile data field into the application was smallest
for Perl.

• Only the Perl solutions are consistent in not having
any substantial implementation of the webservice
requirements. In the postmortem questionnaire, the
Perl teams also reported the highest level of frustra-
tion with the webservice requirements (due to lack
of WSDL support for Perl).

• Perl was the only platform for which all three solu-
tions reacted with error messages when confronted
with a simple form of manipulated HTTP requests.

6.1.3 PHP-centric differences
• The amount of functionality implemented by the

PHP teams is larger than that of the Perl teams and
more uniform than it is for both other platforms.

• A similar statement holds for several other criteria
as well: The PHP teams are more similar to one
another in those respects than are the teams from
the other platforms with respect to the fraction of
requirements implementations that have low quality
from the user’s point of view, the size and compo-
sition of the source distribution, or the number of
lines of code required on average for implementing
one of the requirements.

• PHP was the only platform for which all three solu-
tions’ SQL handling properly resisted our manipu-
lated HTTP requests, for which all three solutions
performed sufficient validation of email address
input during registration and for which all three so-
lutions could fully handle international characters.

• In contrast to all of the Java and Perl teams, we
found almost no automatically generated files in the
PHP teams’ source distributions.

• According to the answers in the postmortem ques-
tionnaires, the PHP teams have apparently spent
more attention and effort on the scalability require-
ments than the other teams.

6.1.4 Summary
The picture painted by the above empirical differences
is diverse. There are various ways to summarize these
results: One may focus on those results that confirm
what some people may consider to be common expec-
tations, such as “Perl solutions are lightweight”, “Java
solutions are heavyweight”, and “A good commercial
framework can provide higher productivity than today’s
open source frameworks do” (team3 Java was the only
one to rely on a commercial framework). One may focus
on those results that contradict such expectations such as
“The PHP solutions are at least as secure as the others”.

One may take a risk-minimization view and point out
that, over a range of different criteria, the Java solutions
exhibited the largest variation (meaning high risk), while
the PHP solutions had the smallest (hence lower risk).

Finally, one may point out that overall the results
suggest that the manner in which a platform is used
is more important than the platform technology as such.
For instance in the maintainability scenarios, the Java so-
lutions were much more complex than the Perl solutions,
but this was an arbitrary decision by the programmers;
they could as well have used the same approach as the
Perl teams. The main conclusion in this case would be
“People matter more than platform technologies”.

6.2 Methodological lessons learned
From the initial execution of the Plat Forms contest idea,
one can learn a number of things about scientific com-
parisons of the emergent properties of web development
platforms:

1) A non-randomized experimental study design
based on small teams of professional developers
can yield interesting results.

2) By wrapping the study in a contest, it becomes
feasible at moderate cost.

3) Interesting results are possible with only three
teams per platform.

4) The results will disappear if the teams are not
uniformly high-class or if other disturbances get
in the way (see the Java results).

5) In principle, a wide variety of aspects can be stud-
ied in such a design.



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 15

6) In practice, a sound evaluation of many of these
is extremely difficult, sometimes because of huge
effort (for example for assessing ease-of-use via
actual end-user studies), sometimes because techni-
cal difficulties get in the way (for example profiler
problems when assessing modularity), sometimes
because they interfere with other aspects (for ex-
ample scalability load testing makes no sense if
many solutions’ functionality is very incomplete),
and sometimes for still other reasons.

7) The results do not always confirm or contradict
common expectations, but may be something else
entirely, even to the point of being hard to interpret.

8) Even though the results are credible as they stand,
it is unclear where they generalize. As usual, there
are more open questions after the research than
before.

6.3 Conclusion and further work
Regarding the platform differences found one could
say that we have learned a lot but the question is
certainly rather far from settled. A number of repetitions
of Plat Forms is obviously needed before a full picture
will emerge. Such repetitions should also include other
relevant platforms such as C#/ASP.NET, Python, and
Ruby on Rails.

In terms of methodology we conclude that the overall
approach of Plat Forms is feasible and appears worth-
while. However, with respect to actually evaluating the
individual criteria, a lot of detail remains to be worked
out — several of the evaluations turned out to be ex-
ceedingly difficult. We should spell out procedures and
provide technology to simplify these tasks for future
comparisons.

ACKNOWLEDGEMENTS

I would like to say thank you to the following people and
organizations (for the following reason): Gaylord Aulke (ig-
niting spark); Jürgen Langner (providing contacts); Richard
Seibt, Eduard Heilmayr (publicity, contacts, infrastructure);
Zend Technologies, Accenture Technology Solutions, Optaros
(sponsoring); Richard Seibt, Jürgen Langner, Alvar Freude
(team acquisition); Marion Kunz (on-site organization); Carsten
Schäuble, Philipp Schmidt (on-site network); Peter Ertel, Will
Hardy, Florian Thiel, Ulrich Stärk (observation and evaluation
work, comments on report); Sebastian Jekutsch, Christopher
Oezbek, Gesine Milde, the anonymous reviewers (helpful com-
ments on report); and in particular our 27 participants (for
being patient, willful, and skillful).

REFERENCES
[1] Bente C.D. Anda, Dag I.K. Sjøberg, and Audris Mockus. Variabil-

ity and reproducibility in software engineering: A study of four
companies that developed the same system. IEEE Transactions on
Software Engineering, 35(3):407–429, May/June 2009.

[2] Victor R. Basili, Richard W. Selby, and David H. Hutchens.
Experimentation in software engineering. IEEE Trans. on Software
Engineering, 12(7):733–743, 1986.

[3] Victor R. Basili, Forrest Shull, and Filippo Lanubile. Building
knowledge through families of experiments. IEEE Trans. Softw.
Eng., 25(4):456–473, 1999.

[4] Larry Christensen. Experimental Methodology. Allyn and Bacon,
10th edition, 2006.

[5] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley,
2001.

[6] Bill Curtis. By the way, did anyone study any real programmers?
In First workshop on Empirical studies of Programmers, pages 256–
262, Norwood, NJ, USA, 1986. Ablex Publishing Corp.

[7] Alan Green and Ben Askins. A Rails/Django compari-
son. http://docs.google.com/View?docid=dcn8282p 1hg4sr9,
September 2006.

[8] Jim Highsmith and Alistair Cockburn. Agile software develop-
ment: The business of innovation. IEEE Software, 18(5):120–122,
September 2001.

[9] Vigdis By Kampenes, Tore Dybå, Jo E. Hannay, and Dag I. K.
Sjøberg. A systematic review of quasi-experiments in software
engineering. Information and Software Technology, 51(1):71–82,
January 2009.

[10] Sean Kelly. Better web app development. Quicktime video on
http://oodt.jpl.nasa.gov/better-web-app.mov, February 2006.

[11] Michael Kunze and Hajo Schulz. Gute Nachbarschaft: c’t
lädt zum Datenbank-Contest ein. c’t, 20/2005:156, 2005. see
also http://www.heise.de/ct/05/20/156/, english translation
on http://firebird.sourceforge.net/connect/ct-dbContest.html,
overview on http://www.heise.de/ct/dbcontest/ (all accessed
2007-05-01), results in issue 13/2006.

[12] Detlef Müller-Solger. Wettbewerb der Portale. IT Management,
9-2006:47–48, 2006.

[13] Jakob Nielsen and Robert L. Mack, editors. Usability Inspection
Methods. Wiley and Sons, New York, 1994.

[14] J. M. Perpich, D. E. Perry, A. A. Porter, L. G. Votta, and M. W.
Wade. Anywhere, anytime code inspections: using the web to re-
move inspection bottlenecks in large-scale software development.
In Proc. of the 19th Int’l Conference on Software Engineering, pages
14–21. ACM Press, 1997.

[15] Karl Popper. The Logic of Scientific Discovery. Routledge,
1959/2002. ISBN 9780415278430.

[16] Adam A. Porter, Harvey P. Siy, Carol A. Toman, and Lawrence G.
Votta. An experiment to assess the cost-benefits of code inspec-
tions in large scale software development. IEEE Transactions on
Software Engineering, 23(6):329–346, 1997.

[17] Lutz Prechelt. The 28:1 Grant/Sackman legend is misleading,
or: How large is interpersonal variation really? Technical Report
1999-18, Fakultät für Informatik, Universität Karlsruhe, Germany,
December 1999. ftp.ira.uka.de.

[18] Lutz Prechelt. An empirical comparison of C, C++, Java, Perl,
Python, Rexx, and Tcl for a search/string-processing program.
Technical Report 2000-5, Fakultät für Informatik, Universität Karl-
sruhe, Germany, March 2000. ftp.ira.uka.de.

[19] Lutz Prechelt. An empirical comparison of seven programming
languages. IEEE Computer, 33(10):23–29, October 2000.

[20] Lutz Prechelt. Kontrollierte Experimente in der Softwaretechnik –
Potenzial und Methodik. Springer Verlag, Heidelberg, 2001.

[21] Lutz Prechelt. Plat Forms – a contest: The web development plat-
form comparison. Technical Report TR-B-06-11, Freie Universität
Berlin, Institut für Informatik, Germany, October 2006.

[22] Lutz Prechelt. Plat Forms 2007 task: PbT. Technical Report TR-B-
07-03, Freie Universität Berlin, Institut für Informatik, Germany,
January 2007.

[23] Lutz Prechelt. Plat Forms 2007: The web development platform
comparison — evaluation and results. Technical Report TR-B-
07-10, Freie Universität Berlin, Institut für Informatik, Germany,
April 2007. www.plat-forms.org.

[24] R Development Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2006. ISBN 3-900051-07-0.

[25] Dag I.K. Sjøberg, Jo E. Hannay, Ove Hansen, Vigdis By Kampenes,
Amela Karahasanovic, Nils-Kristian Liborg, and Anette C. Rek-
dal. A survey of controlled experiments in software engineering.
IEEE Trans. on Software Engineering, 31(9):733–753, 2005.

[26] Robert K. Yin. Case Study Research: Design and Methods. Sage, 2003.



IEEE TRANS. ON SOFTWARE ENGINEERING, 2009 (TO APPEAR) 16

Lutz Prechelt is full professor of Informatics at the
Freie Universität Berlin since 2003. Until 2000, he worked
as senior researcher at the School of Informatics, Uni-
versity of Karlsruhe, where he also received his Ph.D.
in Informatics in 1995. In between, he was with abaXX
Technology, Stuttgart, first as the head of various depart-
ments, then as Chief Technology Officer. His research in-
terests include software engineering (using an empirical
research approach), measurement and benchmarking is-
sues, and research methodology. Current research topics
revolve around open source software development, agile
methods, and web development platforms. Prechelt is a
member of IEEE CS, ACM, and GI and is the editor of
the Forum for Negative Results (FNR) within the Journal
of Universal Computer Science (J.UCS).


