HuMAN

TECHNDLOGY
An Interdisciplinary Journal on Humans in ICT Emviments ISSN: 1795-6889
www.humantechnology.jyu.fi Volume 4 (1), May 2008, 9-25

A CODING SCHEME DEVELOPMENT METHODOLOGY
USING GROUNDED THEORY
FOR QUALITATIVE ANALYSIS OF PAIR PROGRAMMING

Stephan Salinger Laura Plonka
Institut fur Informatik Institut fur Informatik
Freie Universitat Berlin Freie Universitat Berlin
Germany Germany

Lutz Prechelt
Institut fur Informatik
Freie Universitat Berlin
Germany

Abstract: A number of gquantitative studies of pair programgnithe practice of two
programmers working together using just one compulave partially conflicting
results. Qualitative studies are needed to explairat is really going on. We support
such studies by taking a grounded theory (GT) apghofor deriving a coding scheme
for the objective conceptual description of specifsair programming sessions
independent of a particular research goal. The presarticle explains why our initial
attempts at using GT failed and describes how toidavhese difficulties by a
predetermined perspective on the data, concept mgannules, an analysis results
metamodel, and pair coding. These practices mayhddpful in all GT situations,
particularly those involving very rich data such a&leo data. We illustrate the
operation and usefulness of these practices by egamples derived from our coding
work and present a few preliminary hypotheses reigar pair programming that have
surfaced.

Keywords: pair programming, grounded theory, coding schemevebigment,
gualitative data analysis, video data.

INTRODUCTION

During the last few years, pair programming, as known from extreme programming (Beck,
2004), has been the subject of many empirical tigesns. This research focused mainly on
the measurement of bottom-line pair programmingat$, whereas the underlying process of
pair programming has been regarded as a kind oklidax, the output of which is analyzed
quantitatively with respect to its performanceoperate, programmer satisfaction, and so forth.

© 2008 Stephan Salinger, Laura Plonka, & Lutz Peichnd the Agora Center, University of Jyvaskyla
URN:NBNfi:jyu-200804151350

Salinger, Plonka, & Prechelt

Unfortunately, the results of this research areroftontradictory. For instance, regarding
total effort (measured in person-hours of develgpeork time), Williams (2001) found that
pair programming results in a 15% increase comp#yesblo programming, Lui and Chan
(2003) found 21%, and Nawrocki, Jaski, Olek, and Lange (2005) found 48%. Most likely
these differences are caused by differences in ratatevariables, such as programmer and
pair experience, type of task, and so on, but wenaloknow the complete set of relevant
moderator variables nor the nature and mechanigheofinfluence.

Our goal as software engineering researchersuaderstand pair programming in such a
way that we can advise practitioners how to useast efficiently. We propose that the only
way to obtain such understanding is to understhadriechanisms at work in the actual pair
programming process. Obviously, this understandimgt first be gained in qualitative form
before we can start quantifying and, since we doknow much yet, the investigation has to
start in an exploratory fashion.

We have started such an investigation based ogrthended theory (GT) methodology
(Strauss & Corbin, 1990) and working from rich setdata (full-length audio, programmer
video, and screen video of pair programming sesidie current article presents a number of
important methodological insights gained durings thesearch and a few initial results. Its
contributions are the following:

= a description of stumbling blocks for a GT-basedlygsis in this area;
= a set of practices that extend the plain GT me#ratihelp overcome obstacles;
= a sketch of a pair programming process coding sehem

In subsequent research, the coding scheme is idetodform the basis for more detailed
conceptual descriptions of the pair programmingcess. It also should support the
proposition of hypotheses and theory construction.

We will first give a short introduction to GT adéscribe the nature and origin of our raw
data. The heart of the article describes how angl pi&in traditional GT does not work well
under these constraints and which practices heljorik better. Thereafter we will present the
application of the modified GT process and a fewt®finitial results, namely excerpts of a
coding scheme for describing the activities ocagrrduring pair programming. We close by
outlining related works and offering a summary aatlook. This article is an improved and
slightly extended version of Salinger, Plonka amdcRelt (2007) and focuses on research
method, not on research results. The results phnsarve to illustrate the method.

THE GROUNDED THEORY METHODOLOGY
Selecting Among Qualitative Research Methods

We have already argued why we believe that itngetito study pair programming in an
exploratory manner. We want to avoid posing spetifipotheses and generally make as few
assumptions as possible. Using predefined codingnses (see Hughes & Parkes, 2003, for a
list) implies making such assumptions and henceldhee avoided. Considerations like these
quite naturally lead to using GT as the researchode because GT is an approach that makes
the fewest number of assumptions.

10

Coding Scheme Development

Alternative methods, such as protocol analysiscégon & Simon, 1993) or verbal
analysis (Chi, 1997), appear less suitable bectnesestart from at least partially predefined
coding schemes or theoretical models. They arerats@ specialized than appropriate: They
were designed for investigating cognitive processes

Verbal analysis aims at the ability to quantifyatiiative data, which could be an
advantage. Unfortunately, such quantification respiia well-defined granularity of
segmentation, so making such decisions at thedtéine analysis prematurely structures the
exploration space and prevents a completely opploeatory approach.

The Basic Ideas of Grounded Theory

GT, first described in Glaser and Strauss (1967 data analysis approach that is largely data
driven and aims at producing a theory that desgriberesting relationships between things,
situations, events, and activities (together cgllednomengreflected in the data by means of
abstractconcepts The termgroundedindicates that this theory will contain only statnts
derived from actual observations in a manner thatbe traced back to these data: The theory is
grounded in the data.

We use the variant of GT described by Strauss@uorthin (1990), who suggest three
(partially parallel) activities for a GT-based datelysis:

1. Open codingdescribes the data by means of conceptual (rétrer merely
descriptive) codes, which are derived directly friva data.

2. Axial codingidentifies relationships between the conceptsrdest by these codes.
Strauss and Corbin (1990) suggest a concrete seflasfonships to check for (in
particular:causal conditiondeading to phenomena that exist it@ntextfeaturing
intervening conditionsand leading toparticipant’s strategiesthat create certain
consequencés These relationships (plus the slightly fuzzy iowt of forming
categorie¥ they call gparadigmatic modela term we will use further below.

3. Selective codingextracts a subset of the concepts and relationstupnd and
formulates them into a coherent theory. Selectioding is not relevant for the
development of a coding scheme and thus will natis®ussed in the present article.

Strauss considered the following three aspecte thdvcore of the GT method, saying in an
interview that only these are required in ordercédl something GT (Legewie & Schervier-
Legewie, 1995):

= Theoretical coding: Codes are theoretical, not just descriptive. Theflect
concepts that have potential explanatory valughferphenomena described.

= Theoretical sampling:The selection of the material to be analyzed isdena
incrementally during the course of the analysiselaon what is expected to be
most relevant for the theory under development.
= Constant comparisonObserved phenomena (and their contexts) are caupar
many times in order to create codes that are @earid consistent.
Theoretical sampling is of less interest in thespra article, but theoretical coding and
constant comparison are of vital importance to mstded the discussion.

11

Salinger, Plonka, & Prechelt

DATA USED FOR THE ANALYSIS OF PAIR PROGRAMMING

In the following subsections, we describe our obsgon context (programmers and task).
We also describe the data capturing method used.

Observation Context: The Origin of Our Data

We observed (in the manner described below) seai&s of graduate students who all worked
on the same task. Six of them had worked togethgraas previously. The average work time
(which was not limited) was 3.8 hours. The studevese all participants of a highly technical
course on enterprise information systems and tha@2J&nterprise Edition (J2EE) architecture
and technologies. The specific task called forxdaresion of an existing Web shop application.
The task required broad passive J2EE knowledgarfalyzing and understanding the existing
system and specific operational knowledge abowt Message Service (JMS), Java Naming and
Directory Interface (JNDI), and the JBoss applaraserver for programming, configuring, and
testing the actual extension. The task was not; eady three of the pairs were completely
successful. The other four pairs terminated thenkvioefore it was completely finished. They did
not believe it to be possible to solve the remaimroblems in an acceptable time frame.

For the analysis described in the present artiwle,used the session of one of the
successful pairs only. This session ran 2 hoursb8ndinutes.

Observation Method: Data Capturing Procedure

Since we did not know in advance what would or waubt be important, we needed to start
from a rather rich data set. We used three diftedlata sources:
= An audio recording captured verbal communicatiorveen the participants, as well
as other noises, vocal or other, that may havestedith the interpretation of the data.
= A frontal-perspective video of the programmers {dhom above and behind the
screen and reaching down to about waist level) uredt aspects of facial
expression, gestures, posture, direction of atienand, most relevantly, who was
operating mouse and keyboard at any given time.
= A full-resolution screen recording captured almatcomputer activities of the
programmers on a fairly fine-grained level.

All three recordings were made simultaneously gi€lamtasia Studfaand unified into a
single, fully synchronized video file in which theamera video was superimposed
semitransparently onto a corner of the screen vittethis way, all data was visible at once
(multidimensional video).

The session was recorded in an otherwise silditeofCombined with the high audio
quality of a high-end webcalrthis arrangement provided good acoustical playkaaditions.

12

Coding Scheme Development

PROBLEMS OF A PLAIN GROUNDED THEORY DATA ANALYSIS A PPROACH

Attempting GT-style exploratory analysis of thehridata set described above (actually a
precursor study, but very similar in all respect#, quickly recognized that transcription was
not practical. Too much relevant information in geeen recording—source code fragment
input, used features of the development environr{gnth as browsing across different files
or positions within files), pointing with the moudaring discussion with the partner, and so
on—proved unclear in how to go about, or impratticahe effort of, transcribing.

This is why we decided to work on the raw videredily. We chose the qualitative data
analysis software ATLASifor achieving this task, which is one of the femgucts that
allows direct annotation to video.

One of us, Stephan Salinger, started open coditigei manner suggested by Strauss and
Corbin (1990). The short-term goal was to charaagethe activities occurring during pair
programming; the long-term goal was to identifyueing behavioral patterns and classify
them as helpful, hampering, ambivalent, or neutral.

This approach generated as many as 194 distinctepts and almost complete
confusion and despair in the course of a few dagsalysis due to the following problems:

= No predefined focus: We had no criteria for sefegtivhich observations (verbal
interaction, facial expressions, gestures, postlirections of gaze, subverbal vocal
noises, nervous tics, computer input, input methodmputer output, etc.) to code
and which to ignore, and consequently were ovemvidlby the data.

= No predefined granularity: We made no prior decigiegarding the level of detall
worth coding. As a result, we produced codes ofemdint levels of detail (e.g.,
coarse ones such aandle problemand finer ones such asst defect fix which
were difficult to delineate against one anotherssgjoently.

= No predefined level of acceptable subjectivity: Tegure of the codes chosen in
GT can be anywhere on the spectrum, ranging frodegohat reflect observations
that any observer could agree with to codes thesrpret the observation to a
degree that could be called wishful thinking. GT saxh does not provide a
criterion for deciding where “grounded in data” srahd wishful thinking begins.
As a consequence, we mixed objective—descriptivéd smbjective—evaluative
attitudes for selecting codes. This led to codediféérent nature (e.g., descriptive
ones such asises documentatioand assumption-bearing ones suchgass
knowledge of detgilexisting side-by-side, which made it harder taide which
code to use in a particular case.

= Too many topics: The codes described too manyrdiftetopics of interest, making
it impossible to properly focus on anything. Norfetlte resulting collections of
information ever reached a useful degree of corapéss.

= Lack of concept grouping: The diversity of topidscadistracted from forming
what GT calls categories: a few large groups olitg@nterrelated concepts, say,
human-human interaction (HHI) or human-computegriamttion (HCI).

= |Importance misjudgments: The high attention to @atrset of concepts overtaxed
our ability to judge their importance so that, hessaof the large number of concepts
we introduced, we completely overlooked a numbemgbrtant ones.

13

Salinger, Plonka, & Prechelt

After we had noticed and gradually understood mber of these problems, we stopped
this mode of investigation completely. We restattael complete analysis from scratch (but
very slowly and carefully, and with considerablekigacking) and concurrently redesigned
the coding procedure. The result of this redesigas va number of heuristic practices
described below that help using the GT analysisgss.

PRACTICES SUPPORTING THE ANALYSIS OF COMPLEX VIDEO DATA

The methodological heuristics presented here fdrentteart of the present article. These
intertwined practices serve to reduce or solveptioblems described in the previous section.
After introducing them, we will present an applioatthat shows how they work together
and mutually support one another.

Practice 1: Perspective on the Data

Strauss and Corbin (1990) suggest that the stalettive coding (that is, after open coding
and axial coding have been going on for quite stme) is the time when you should begin
to decide what is important and what is less sodéscribed above, we found that this is not
practical when working with rich video data. Thame three reasons why a perspective used
for the analysis should be defined before starting:

= to avoid drowning in detail;
= to provide consistency in the criteria used foratiregy and assigning concepts;
= to focus attention on the most relevant aspects.

This perspective can be defined by formulating aarsvto the following questions. These
answers should be reviewed (and perhaps revisedjadimes in the course of the analysis:

1. In which respects do you expect the data to prowvisight?

2. What kinds of phenomena do the researchers allemgblves to identify in the
data?

3. What type of result do you want the analysis todpforth?

Question 1 does not ask what you expect to fint; m what respects you expect to find
something The answer acts as a filter that tells you wipblenomena should receive more
attention than others. Furthermore, constantly eekimg and adjusting the answer to this
guestion helps in deciding when to stop the anslyshen to modify (or even replace) your
research question, and when to obtain further fferént raw data. In our case, the
expectation was that the data could help understahdt activities dominate the pair
programming process and how they relate.

Answer 2 provides the mechanism for systematidadiynding the nature and amount of
subjectivity to be found in the conceptualizatiafithe data. The strongest restriction would
be to allow only concepts that express directly eobsble phenomena, resulting in a
behaviorist (stimulus/response) research persgecteaker restrictions might also allow
concepts referring to unobservable processes (aschttitudes or thinking processes of
actors), concepts that involve predictions (sucHhedpful for reaching goal X”), and/or

14

Coding Scheme Development

concepts expressing moral judgment (good, bad)wafe convinced that, in our case, only
the behaviorist perspective would enable us td tusown results.

Finally, the result type is the standard usediémiding how much attention to invest in which
kinds of phenomena when the analysis resources legiet scarce (which very quickly they
will). It helps to stay on track. Do we want to guge a full conceptual theory, just a conceptual
structure (system of categories) for the datayengust a coding scheme? In our case, the goal
was just to produce a coding scheme, because tweefddnew so little about the internals of pair
programming that we should not yet decide on amehengineering research question.

Practice 2: Concept Name Syntax Rules

Choosing concept names is another area where wel it giving up some of the freedom
postulated by plain GT is beneficial. We found tbat initial freely chosen concept names
turned out to be highly variable and hence diffitmlunderstand, remember, and compare.

As a remedy, we developed a structured namingrseh@Vithin the confines we set for
ourselves by Practice 1, that is, describing dyrextiservable activities of the pair programmers,
the scheme does not predetermine anything witrectsp the meaning of a concept: It only
prescribes the shape of its name. When working thith scheme, we observed the following
benefits:

= A concept will be better understood right at introtion time.

= A naming scheme facilitates managing a large sebo€epts consistently.

= Some relationships between concepts are implicityprded as well, which greatly
simplifies axial coding and the forming of categsti

= A concept name explicitly represents several aspacbnce, which simplifies the
fundamental GT practice of constant comparison.

» |t becomes easier to understand where difficuliresdelineating one concept
against another arise, and correspondingly easiepbtain insights into the
weaknesses of the overall conceptual descriptigumantice.

In our case, the concepts needed to describeididivactivities by one or both of the
pair members, although for other domains of anslgigferent code naming structures might
be preferable. Our concept name was structuredlis@mplete sentence:

code = <actor>.<description>
actor=P1|P2|P
description = <verb>_<object>[_<criterion>]

Examples for such concept names Rfeask_knowledge and P2.explain_knowledge. The
criterion element of the structure can be useddalitional specialization where needed. Given
such codes, subsequent analysis can very easilsaethbdor instance, the verb element (to
compare contexts of objects) or the object elentencompare the variants of action types).
Without such complex codes, the same situation dvpubbably be modeled by a tuple of
codes with relationships. So while finding relasibips in plain GT involves axial coding, in
our case recording at least some relationshipsmeesfringe benefit of open coding.

15

Salinger, Plonka, & Prechelt

Practice 3: Analysis Results Metamodel

When we started practicing GT, we found some ofténminology and concepts confusing.
First, where GT talks about phenomena, concephtaiz, concepts, properties, categories,
and relationships, our analysis software (ATLASta)ks about quotations, annotation,
concepts, concepts, families, and relationshigpeaetively—and even the temalationships
denotes two different notions.

Second, even after the initial learning phase,esofrthe differences were subtle enough
that we misapplied them every once in a while. Assallt, we became confused when trying
to reconstruct what we had meant to express.

Third, when decisions regarding the introductian demarcation of codes became
difficult (which they often did), we realized weeded guidance for systematically applying
the ideas of GT to break out of the situation iragpropriate way. (An example of this will
be given in the section presenting the practicpplieation.)

Fourth, we extended the terminological framewoithvadditional ideas related to the
nature of our data, in particular the notion ofrack for partitioning data in order to support
data visualization for a better overview of nesded parallel activities.

Together, these issues prompted us to formulaxplicit analysis results metamodel,
that is, a model of the concepts that describe dinecture of an analysis result. We
formulated this metamodel as a UML class model (Raugh, Jacobson, & Booch, 2005),
which is shown in Figure 1.

Here is a very short description of the modelengnts: &uotationdefines a fragment
of the data (a scene of the video) the analysersetb. AnAnnotationconnects Quotations
with a Concept Concepts can be grouped int@€CanceptClassa single Concept can be a
member of many ConceptClasses.

conceptional world) | real world
(axial and selective coding) | {open coding}
- prganize hierarchically
| | |
H ConceptClass AnnotationRelation Track
+Mame | +hName +hame
% % % ®
25 |3
subsume | y ?temporal sorting
: . . kS 1 . & & : %
ConceptRelation Concept —|—| Annotation |
b
+MName P S 1tame | : B B I
1
A |characterize
. . 1
Property 14%@ CQuoatation
+hName +hegin
+end

Figure 1. Complete metamodel of analysis results formulated ML class model. Boxes denote
the various different kinds of elements occurringur GT analysis results and the lines
describe the relationships between them.

16

Coding Scheme Development

In order to further differentiate Concepts, thay de attributed witPPropertiesthat have
Values This allows developing concepts in a data-driseanner during axial coding and is
helpful for identifying relationships between coptee(Strauss & Corbin, 1990).

A ConceptRelationis used to describe a relationship between Coacépt instance
according to the paradigmatic model. In many casesh a relationship is not valid for all
pairs of Annotations that use these Concepts;nttbhan be expressed individually by using
AnnotationRelation A Track allows for defining subsets of annotations thdp hdentify
various kinds of recurring relationships on the capt level, typically by means of
appropriate visualization, as shown in Figure 2.

In addition to describing the structure of anaysesults (to avoid terminological
confusion), the metamodel also acts as a repositbiigeas for the analysigrocess For
instance, when one is unsure whether a certain €uRelation will always hold, the
metamodel suggests initial annotation of the cdlyenknown instances only
(AnnotationRelation) and deferring the creationtltd more general ConceptRelation until
sufficient evidence is available.

Note that the metamodel is meant to be used thamutgall phases of the GT research
process. Some of its elements (e.g., Tracks) ae osly rarely during the development of a
coding scheme, as described in this article.

GT:HHLP1P2 B L | ! __

orveiere: [Il DI |
GT: Change Dnver I] | | I| i

- @uerme e werm

GT: PZHCI I . I]

ED-] IRTIE] T e (RN
ar-prac [D[l I|I] DI” III D]D

5:44:09

- o T T e o o o o o e e e e o e e e o e e e e e

Figure 2. An example of a visualization of Tracks: The uppart shows a heavily scaled-down,
automatically generated visualization of the GTaations for a full pair programming session ofa2its
and 58 minutes. The lower part shows a magnifiegg containing in particular the following four
tracks: Track HHI.P1P2 represents the HHI actisité P1 (green) and P2 (red); HCI.P1P2 is the
corresponding view of the HCI activities. Track IRdI represents each type of HHI activity perforntsd
P1 in a different color; P1.HCI is the correspoigdirew of the HCI activities.

17

Salinger, Plonka, & Prechelt

Practice 4: Pair Coding

The central and most important practice is pairimpdPair coding means that all coding
work is done by two people working together at oomputer (much like pair programming,
but that is just a coincidence). The key idea of pading is to require a consensus of two
people for all important decisions: Which phenomémand in the data to single out for
coding; where in time such a phenomenon startseadd; which existing concept to use for
coding this phenomenon; when to create a new conlceyw to name that concept.
We found a number of benefits associated with pading as compared to a single
researcher, some of them very important for suéake€§ work:
= Concept definitions become more exact, becauseategcrutinized more closely
upon their introduction. This effect is further popted by the structured naming
scheme (Practice 2).
= The differentiation between similar concepts alsgdmes more precise, due not
just to better definitions but also because aigdess likely to let a concept slip in
that is on a much different level of granularityamhthe others (and hence likely to
have big overlaps with one or more existing congept
= Remaining concept differentiation problems will betignored but rather discussed.
If they can be resolved, this will happen at adieapoint in time, leading to fewer
incorrect concept assignments and therefore legsrke If it is impossible to fully
resolve them (a not uncommon situation), the dsounswill help understanding
why, leading to a better understanding of the cptscavolved.

= The perspective on the data (Practice 1) is maietaimore consistently.
= The perspective on the data is refined more relyudard more thoroughly.
= A larger number of relevant phenomena are detentddencoded.

These results are in tune with psychological neteauggesting that groups will often
produce better decisions than isolated individug&haw, 1981). Under adverse
circumstancesgroupthink (i.e., excessive concurrence seeking in groups) make group
decisions worse (t'Hart, 1988). But there is harahy danger that this will happen in our
setting: Groupthink is most likely in cohesive gosuwith a dominant leader, where the
group is sharing common stereotypes and producingpgpressures towards conformity
(Janis, 1982). Since it is one of the routine taskany pair coder to challenge stereotypes
used by the partner and to strive towards idemiifypossible different viewpoints, only a
dominant person can pose any danger of groupthiakpair-coding context. If the coders are
equals, groupthink will be highly unlikely to happe

Taken together, these four practices provided antym leap in the usefulness of our
analysis results. The next section will illustréies with a number of examples that will also
show how the practices complement one another.

APPLICATION OF THE PRACTICES AND SOME RESULTS

This section will present a few fragments from #realysis process that used the practices
described above and that led to our coding schempdir programming. We present these

18

Coding Scheme Development

examples to make the practices clearer, to explam they interact, and to make it more
credible that they help vitally.

We first introduce four concepts from our codiceame and then present some episodes
from the process in which we created them. Finallg, state a few hypotheses about pair
programming that we have derived based on our gosttheme.

An Extract from the Coding Scheme

Our current version of the coding scheme (whichoigs the subject part of the concept
names) contains about 50 different concepts, aledteinto about 20 overlapping

ConceptClasses, with most concepts being membeesthdr two or three of them. As an

illustrative example we present the four concepthe ThinkAloudConceptClass. They are

shown in Table 1; the descriptions are heavily samnred.

Use of the Practices: A Few Examples

Early during the coding process we recognized thatso-called driver (Williams, Kessler,
Cunningham, & Jeffries, 2000) frequently verbalizedat he was doing on the computer.
Based on this observation, we made two decisioinst, ve developed two ConceptClasses
(see Practice 3) called HCI (human—computer intenac and HHI (human—human
interaction) for separating the computer-operatisgect from the verbalization aspect. These
were ConceptClasses rather than individual concbetause the same separation would
obviously be relevant in many other cases as v&tond, we postulated a new concept,
ThinkAloud_Activity. By virtue of the concept nangrsyntax structure (Practice 2), this one
concept immediately generated a whole Concept@s®ugh having only one member at
first) based on the vero think aloud This effect led to extended differentiation ohcepts
where needed but incurs only little additional céewfty for the coding scheme.

We introduced ThinkAloud_Finding as the second memdf this class, when we
found a phenomenon that was obviously thinking dldwt did not explain computer
activity. The demarcation appeared to be relatieddar. In the discussion of the pair coders
(Practice 4), we agreed that ThinkAloud_Activityndae used only for the driver and that it
has priority where ThinkAloud_Finding might also dygplicable.

Table 1. The Concepts of the ThinkAloud ConceptClass.

Concept name Description

ThinkAloud_Activity Explains a current computer-operating activity

States a newly won insight

ThinkAloud_Finding (e.g., that some prior action was a mistake)

Reflects on the current state of work

ThinkAloud_State with respect to the current strategy and goal

ThinkAloud_Completion States that a simple work step has been completed

19

Salinger, Plonka, & Prechelt

Soon thereafter we encountered a programmer’s xiden of the state of affairs and
recognized it could be annotated as ThinkAloud eSthus creating the third member of this
set of concepts. But we soon found ThinkAloud_Statexhibit two problems. First, we had a
case where it collided with ThinkAloud_Finding, bese the finding concerned the state of
work. Second, it designated statements on ratferelt levels of abstraction and granularity.

We solved both problems by using the metamodebcfiRe 3), specifically by
introducing the ConceptRelation “is-preconditiori-ofrom the existing concepts
Propose_Stefsuggesting the next step) aRdopose_Strategysuggesting an approach for
choosing many future steps). We postulated thatkiibud_State had to refer to a previous
Propose_Strategy and introduced a new concept Alaold_Completion that would refer to a
previous Propose_Step. This solved both problerosa: We could now discriminate large and
small granularity (strategic and tactical) and gedina criterion for when not to use
ThinkAloud_Finding, which provided the demarcatiorthe other two.

This illustrates how open coding naturally leate iaxial coding and how the combination
of the paradigmatic model with the concept namiyigtasx (Practice 2) can show a way back
into open coding, thus keeping the complexity efrbsulting annotations down.

We are convinced that this route worked only bseaof the pair coding constellation
(Practice 4), since both coders initially suggestecbdings based on the existing codes and only
the nonacceptance of these suggestions (and tpgioding arguments) by the other led to the
discovery of the “is-precondition-of” relationshapd the fourth code ThinkAloud_Completion.

Some Hypotheses Based on the Coding Scheme

Although we have not yet started the analysis efattual pair programming process as such,
a number of phenomena recurred so consistentlywbatready call them hypotheses:
= We have found no evidence that the driver and theewer do indeed work on
different levels of abstraction, as claimed in tpair programming literature
(Williams et al., 2000). Similar results have beeported for pair programmer
discussions by Bryant, Romero and du Boulay (is$te~reudenberg (née Bryant),
Romero and du Boulay (2007; based on quantitativalitgtive work), and by
Chong and Hurlbutt (2007).
= We have observed what we cphir phases characterized by a high density of
communication acts referring to just one narroweassThey look a lot like what
descriptions of pair programming suggest as thenabpair programming process,
but we realized they are all of short duration @lljuunder 3 minutes).
= We believe that pair programming is not driven Rbyategic planning and
monitoring. Rather, the plan is quite often onlyeostep long: A single step is
suggested, possibly discussed, decided (or reviaad)immediately executed.
= Besides the unavoidable roles of driver and obsepa&r programming sessions
apparently tend toward implicitly producing a leadale as well. The leader is the
person more skilled for the given task and inflesngpeed and direction of the process
much more strongly than the pair partner, no matkéch role the leader is taking.

We expect that valuable insight about pair prognamg can be gained by investigating
the reasons, consequences, and typical contexiticorsdof the above trends. For instance,

20

Coding Scheme Development

we expect to find that pair phases are episodssér-high productivity; it would be helpful
to understand when and why they occur.

RELATED WORK
Qualitative Analysis of Pair Programming

We know of no other work analyzing the process aif programming that uses a real GT
approach: Most similar works use at least partigitgdefined coding schemes and most
perform quantitative—qualitative analyses by meaiprotocol analysis or verbal analysis.
We are also not aware of any work that is usingw@idata directly in the analysis process.

Wake (2002) presented a list of typical pair pamgmer activities, but provided little
information on how it was derived. Bryant (2004)died the difference in interaction type
and frequency in novice versus expert pair programmin a pilot study, she first refined
Wake’s list into a table of 11 behavior and intéi@t types. In the actual study, she then
recorded the sequence of events in real time aicgptd this schema and analyzed these data
in a mostly quantitative way.

Such real-time categorization is obviously a ggowdcondition for analyzing a large
number of sessions, which is a positive approachti@ other hand, the simplicity of the
categorization that is needed to make it possite r@stricts the results to analyzing in terms
of the rather simple concepts already presentedhén predefined list. Neither subtle
discriminations nor surprising new insights apdéaly from this approach: It is applicable
only in narrowly scoped investigations using préusd hypotheses.

Bryant et al. (in press) investigated behavioated to the driver and observer roles.
They started from audio recordings, transcribeanthend annotated exactly each sentence
with one out of the six predefined codes. The apdicheme is based on Pennington (1987)
and characterizes the abstraction level. The aisalgsmainly quantitative. This research
aims at confirming or rejecting a conventional wisdand is thus rather more hypothesis-
driven than exploratory. A similar assessment aspid Freudenberg et al. (2007).

Cao and Xu (2005) investigated the activity patesf pair programming. Pair working
sessions were videotaped and then transcribedafdigsis used a coding scheme based on a
combination of the schemes from Lim, Ward and Beab41997) and Okada and Simon
(1997). Then, during the analysis of the data,\& sehema was developed in a manner not
described. This work shares our behaviorist obsenvaattitude; unlike our approach,
however, it ignored all information contained ire thbomputer interaction even though it was
still grounded in only objectively observable commuation acts.

In contrast, Xu and Rajlich (2005) used the diddaged protocol in order to analyze the
cognitive activities in pair programming, which olves a far greater amount of either
subjectivity or generalized assumption. The codingeme involved classification heuristics
derived from a theory on self-directed learning ,(Rajlich, & Marcus, 2005). Xu and Rajlich
proposed to do the coding assignment by two or rooders. In contrast to our approach, the
coders worked separately and compared the redtdtsvards. This approach is sensible only
with a fixed coding scheme; a GT-like generatiorcaficepts would be very inefficient in this
manner. Immediate discussion, as in pair codingatite 4), is much more efficient.

21

Salinger, Plonka, & Prechelt

It is obvious that all five studies use ratherdefened concepts during the analysis than
concepts grounded only in the data. We fear thett approaches will be much more likely to
fall prey to unwarranted assumptions according é¢mventional wisdom, such as the
presumed driver/observer role differences, andso o

Grounded Theory Work Using Rich Video Data

Even in the broader GT-related literature, exampfestudies using video during the analysis
(rather than transcripts of videos only) are r&ve found one such example in medicine that
studied medical team leadership behavior (Xiaog@kaviackenzie, & Klein, 2004). The video
was recorded with four cameras from different angléne analysis involved four analysts and
three steps: (a) One analyst identified video setgnaith interesting verbal or nonverbal team
interactions; (b) Two analysts created conceptestigptions of the segments by consensus; and
(3) Taxonomies for leadership actions from the eptgal descriptions were developed. This
approach resembles our pair coding practice, at leaStep 2. If different people performed
Steps 1, 2, 3 (the article is very unclear in tegpect), we consider this a problematic procedure:
It is almost antithetical to the GT philosophy, dege it partially prohibits constant comparison
and fully prohibits the intertwining of open codiffsteps 1 and 2) and axial coding (Step 3).

CONCLUSION AND FURTHER WORK

We have described why a straightforward applicatadnthe standard GT method on
multidimensional video data of pair programmingssass is not likely to be successful.
Furthermore, we presented and illustrated a sefowf analysis practices that provide a
systematic way to hold the analysis problems at bay

= Perspective on the dateelps avoid drowning in detail.

= Concept name syntax rulbslp create useful and consistent concept names.

= An analysis results metamodelps keep the analysis process systematic and the

results well structured.

= Pair codingmitigates the effects of limited or distorted paption.

We have used these practices to generate a ggnepalse coding scheme of pair
programming activities, of which we presented alkexaerpt. In the future, we will proceed
with the following steps:

= Validation of the coding scheme. We will encodesgass that have very different
properties with respect to participants, task, setting.

= Qualitative and quantitative evaluation of the oodprocess itself, based on its
results, intermediate results, and process mongomformation (in particular
timestamps) recorded by ATLAS.ti.

= Refinement of the coding scheme with respect ttiquaar research applications,
in particular by adding properties according tortietamodel.

= Application of the coding scheme to produce acgralinded theories of several
aspects of the pair programming process. Thisregjlire selective coding through

22

Coding Scheme Development

which we expect to exercise even those parts ofmgsgamodel not discussed in the
present article.

Just like the four practices mutually support am®ther, these tasks will also exhibit
synergy and so will be performed partially in pkaial

ENDNOTES

1. See http://labs.jboss.com/

2. A product of the TechSmith Corporation, httpultw.techsmith.com
3. Logitech 5000 webcam

4. See http://lwww.atlasti.com/

REFERENCES

Beck, K. (2004)Extreme programming explained: Embrace chagféed.) Boston: Addison-Wesley Professional.

Bryant, S. (2004). Double trouble: Mixing qualitagi and quantitative methods in the study of extreme
programmers. InProceedings of the 2004 IEEE Symposium on Visualglages: Human Centric
Computing(VL/HCC '04; pp. 55-61). Washington, DC, USA: IEEEbmputer Society. Retrieved April
11, 2008, from http://doi.ieeecomputersociety.cdgt109/VLHCC.2004.20

Bryant, S., Romero, P., & du Boulay, B. (in pre$®ir programming and the mysterious role of thégzor.
International Journal of Human-Computer Studies.

Cao, L., & Xu, P. (2005). Activity patterns of pgrogramming. IrProceedings of the 38th Annual Hawaii
International Conference on System Scien@d#CSS '05; p. 88a) Washington, DC, USA: IEEE
Computer Society. Retrieved April 11, 2008, from
http://doi.ieeecomputersociety.org/10.1109/HICS83266

Chi, M. T. H. (1997). Quantifying qualitative anags of verbal data: A practical guidikaurnal of Learning
Sciencesb, 271-315.

Chong, J., & Hurlbutt, T. (2007). The social dynasniof pair programming. IProceedings of the 39
International Conference on Software Engineef(l@SE '07; pp. 354-363). Washington, DC, USA: IEEE
Computer Society. Retrieved April 11, 2008, from
http://doi.ieeecomputersociety.org/10.1109/ICSE7280

Ericsson, K. A., & Simon, H. A. (1993protocol analysis: Verbal reports as dat@ambridge, MA, USA: MIT
Press.

Freudenberg, S. (née Bryant), Romero, P., & du 8guB. (2007). “Talking the talk”: Is intermedialevel
conversation the key to the pair programming sweetsry? INAGILE 2007(pp. 84-91). Washington,
DC, USA: IEEE Computer Society. Retrieved April 2008, from
http://doi.ieeecomputersociety.org/10.1109/AGILB20Q

Glaser, B. G., & Strauss, A. L. (1967Mhe discovery of grounded theory: Strategies falitptive research
New York: Aldine de Gruyter.

Hughes, J., & Parkes, S. (2003). Trends in theofiserbal protocol analysis in software engineeriegearch.
Behaviour and Information Technolgd2, 127-140.

Janis, I. L. (1982)Groupthink(2nd ed.). Boston: Houghton Mifflin Company.

Legewie, H., & Schervier-Legewie, B. (1995). Im @eich: Anselm Strauss [An interview of Anselm Sgsju
Journal fur Psychologie3, 64-75.

23

Salinger, Plonka, & Prechelt

Lim, K., Ward, L., & Benbasat, I. (1997). An empi study of computer system learning: Comparisocoe
discovery and self-discovery methottsformation Systems Resear8h254-272.

Lui, K. M., & Chan, K. C. (2003). When does a pairtperform two individuals? In M. Marchesi & G. Siuc
(Eds.),Extreme programming and agile processes in softvesmgineering(Lecture Notes in Computer
Science 2675, pp. 225-233). Berlin, Germany: Spring

Nawrocki, J. R., Jasski, M., Olek, t., & Lange, B. (2005). Pair prograrimg vs. side-by-side programming. In
I. Richardson, P. Abrahamsson, & R. Messnarz (E@aftware process improvemeiecture Notes in
Computer Science 3792, pp. 28-38). Berlin, Germ&pyinger.

Okada, T., & Simon, H. (1997). Collaborative disepyin a scientific domairCognitive Scienge21, 109-146.

Pennington, N. (1987). Comprehension strategiggragramming. In G. Olson, S. Sheppard, & E. Soloway
(Eds.),Empirical Studies of Programmers: Second Worksfpgp 100-113). Norwood, NJ, USA: Ablex
Publishing Corp.

Rumbaugh, J., Jacobson, I., & Booch, G. (200%k unified modeling language reference mar(@Xl ed.).
Boston: Addison-Wesley Professional.

Salinger, S., Plonka, L., & Prechelt, L. (2007).cAding scheme development methodology using grailinde
theory for qualitative analysis of pair programming J. Sajaniemi, M. Tukiainen, R. Bednarik, &
S. Nevalainen (Eds.)Proceedings of the 19th Annual Workshop of the Rdggy of Programming
Interest Group (pp. 144-157). Joensuu, Finland: Department of Qderp Science and Statistics,
University of Joensuu. Also available at http://w\ppig.org/papers/19th-Salinger.pdf

Shaw, M. E. (1981)Group dynamics: The psychology of small group befaew York: McGraw Hill.

Strauss, A., & Corbin, J. (199asics of qualitative research: Grounded theorygadures and techniques
London: Sage Publications, Inc.

t'Hart, P. (1988, July)Groupthink: Observations toward a theorlPaper presented at the meeting of the
International Society of Political Psychology, Meadands, NJ, USA.

Wake, W. (2002)Extreme programming exploreBoston: Addison-Wesley.

Williams, L. (2001). Integrating pair programmingd a software development processPhoceedings of the
14th Conference on Software Engineering Educatiwh Braining(CSEET '01; pp. 27—36 Washington,
DC, USA: IEEE Computer Society. Retrieved April 2008, from
http://doi.ieeecomputersociety.org/10.1109/CSEEI2903816

Williams, L., Kessler, R. R., Cunningham, W., & flefs, R. (2000). Strengthening the case for pair
programminglEEE Softwargl17(4), 19-25.

Xiao, Y., Seagull, F., Mackenzie, C., & Klein, KQ04). Adaptive leadership in trauma resuscitatéams: A
grounded theory approach to video analySgnition, Technology & Worlg, 158—164.

Xu, S., & Rajlich, V. (2005). Dialog-based protocéin empirical research method for cognitive adidg in
software engineering. Imternational Symposium on Empirical Software Eegiting (ISESE 2005; pp.
383-392). Los Alamitos, CA, USA: IEEE Computer Stgi Retrieved April 11, 2008, from
http://doi.ieeecomputersociety.org/10.1109/ISESE520541848

Xu, S., Rajlich, V., & Marcus, A. (2005). An emmal study of programmer learning during incremental
software development. IRourth IEEE Conference on Cognitive Informat{¢SCl 2005; pp. 340-349).
Los Alamitos, CA, USA: IEEE Computer Society. Rewed April 11, 2008, from
http://doi.acm.org/10.1145/1145287.1145289

24

Coding Scheme Development

Author’'s Note

All correspondence should be addressed to:
Stephan Salinger

Institut far Informatik

Freie Universitat Berlin

Takustr. 9

14195 Berlin

Germany

salinger@inf.fu-berlin.de

Human Technology: An Interdisciplinary Journal onrflans inCT Environments
ISSN1795-6889
www.humantechnology.jyu.fi

25

