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Abstract. Since a number of quantitative studies of pair programming
(the practice of two programmers working together using just one com-
puter) have produced somewhat conflicting results, a number of research-
ers have started to study pair programming qualitatively. While most
such studies use coding schemes that are fully or partially predefined,
we have decided to go the long way and use Grounded Theory (GT) to
ground each and every statement we make directly in observations.
The first intermediate goal, which we talk about here, was to produce a
coding scheme that would allow the objective conceptual description of
specific pair programming sessions independent of a particular research
goal.
The present article explains how our initial attempts at using the method
of Grounded Theory failed and which practices we developed to avoid
these difficulties: predetermined perspective on the data, concept naming
rules, analysis results meta-model, and pair coding. We expect these
practices be helpful in all GT situations, in particular those involving
very rich data such as video data.
We illustrate the operation and usefulness of these practices by real ex-
amples derived from our coding work and also present a few preliminary
hypotheses regarding pair programming that we have stumbled across.

1 Introduction

During the last few years, pair programming, as it is known from extreme pro-
gramming [1], has been the subject of many empirical investigations. This re-
search focussed mainly on the measurement of bottom line pair programming
effects, whereas the underlying process of pair programming has been regarded as
a kind of black box, the output of which is analyzed quantitatively with respect
to its performance, error rate, programmer satisfaction etc.

Unfortunately, the results of this research are often contradictory. For in-
stance regarding total effort, Williams found that pair programming results in
a 15% increase compared to solo programming [2], Lui and Chan found 21%
[3], and Nawrocki et al. found 48% [4]. Most likely these differences are caused
by differences in moderator variables such as programmer and pair experience,
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type of task etc., but neither do we know the complete set of relevant moderator
variables nor the nature and mechanism of their influence.

Our goal as software engineering researchers is to understand pair program-
ming in such a way that we can advise practitioners how to use it most efficiently.

We propose that the only way to obtain such understanding is to understand
the mechanisms at work in the actual pair programming process. Obviously,
this understanding must first be gained in qualitative form before we can start
quantifying, and since we do not know much yet, the investigation has to start
in an exploratory fashion.

We have started such an investigation based on the Grounded Theory (GT)
methodology [5] and working from rich sets of data (full-length audio, program-
mer video, and screen video of pair programming sessions). The present paper
presents a number of important methodological insights gained during this re-
search and a few initial results. Its contributions are the following:

– a description of stumbling blocks for a GT-based analysis in this area;
– a set of practices that extend the plain GT method and help overcoming

these obstacles;
– a sketch of a pair programming process coding scheme.

In subsequent research, the coding scheme is supposed to form the basis for
more detailed conceptual descriptions of the pair programming process and also
to support the proposition of hypotheses and theory construction.

We will first give a short introduction to Grounded Theory (Section 2) and
describe the nature and origin of our raw data (Section 3). The heart of the paper
describes how and why plain GT does not work well under these constraints
(Section 4) and which practices help to make it work better (Section 5). Section
6 presents the application of the modified GT process and a few of its initial
results, namely excerpts of a coding scheme for describing the activities occuring
during pair programming. We close by outlining related works (Section 7) and
offering a summary and outlook (Section 8).

The paper focuses on research method, not on research results. The results
mostly serve to illustrate the method.

2 The Grounded Theory methodology

As mentioned above, the initial analysis of pair programming has to be ex-
ploratory. In order to be as open as possible with respect to the nature and
content of the results, we pick Grounded Theory as our analysis approach.

GT, first described in [6], is a data analysis approach that is largely data-
driven (i.e. uses hardly any prior assumptions nor pre-defined terminology) and
aims at producing a theory that describes interesting relationships between
things, situations, events, and activities (together called phenomena) reflected
in the data by means of abstract concepts. The term grounded indicates that
this theory will contain only statements derived from actual observations in a
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manner that can be traced back to these data — the theory is grounded in the
data.

We use the variant of GT described by Strauss and Corbin [5], who suggest
three (partially parallel) activities for a GT-based data analysis:

1. Open coding describes the data by means of conceptual (rather than merely
descriptive) codes, which are derived directly from the data.

2. Axial coding identifies relationships between the concepts described by these
codes. Strauss and Corbin suggest a concrete set of relationships to check for
(in particular: causal conditions lead to phenomena which exist in a context
featuring intervening conditions and leading to participant’s strategies which
create certain consequences). These relationships (plus the slightly fuzzy no-
tion of forming categories) they call paradigmatic model, a term we will use
a few times further below.

3. Selective coding extracts a subset of the concepts and relationships thus
found and formulates them into a coherent theory. Selective coding is not
relevant for the development of a coding scheme and will not be discussed
in the present article.

Strauss considered the following three aspects to be the core of the GT
method, saying “When you do all of these, then it is Grounded Theory, if you
do not, then it is something else” [7]:

– Theoretical coding: Codes are theoretical, not just descriptive; they reflect
concepts which have potential explanatory value for the phenomena de-
scribed.

– Theoretical sampling: The selection of the material to be analyzed is made
incrementally in the course of the analysis, based on what is expected to be
most relevant for the theory under development.

– Constant comparison: Observed phenomena (and their contexts) are com-
pared many times in order to create codes that are precise and consistent.

Theoretical sampling is of less interest in the present article, but theoretical
coding and constant comparison are of vital importance to understand the dis-
cussion.

3 Data used for the analysis of pair programming

In the following, we describe our observation context (programmers and task)
and the data capturing method used.

3.1 Observation context: The origin of our data

We observed (in the manner described below) seven pairs of graduate students
who all worked on the same task. Six of them had worked together as pairs previ-
ously. The average worktime (which was not limited) was 3.8 hours. The students
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were all participants of a highly technical course on enterprise information sys-
tems and the Java2 Enterprise Edition (J2EE) architecture and technologies.
The specific task called for an extension of an existing web shop application.
The task required broad passive J2EE knowledge for analyzing and understand-
ing the existing system and specific operational knowledge about JMS, JNDI,
and the JBoss application server for programming, configuring, and testing the
actual extension. The task was non-trivial so that only three of the pairs were
completely successful.

For the analysis described in the present article, we used the session of one
of the successful pairs only; it is 2 hours and 58 minutes long.

3.2 Observation method: Data capturing procedure

Since we do not know in advance what will be important and what will not, we
need to start from a rather rich data set. We use three different data sources:

– Audio recording captures verbal communication among the participants as
well as other noises, vocal or other, that may help with the interpretation of
the remaining data.

– Frontal-perspective video of the programmers (shot from above-behind the
screen and reaching down to about waist level) captures aspects of facial
expression, gestures, posture, direction of attention, and — most relevantly
— who is currently operating mouse and keyboard.

– Full-resolution screen recording captures almost all computer activities of
the programmers on a fairly fine-grained level.

All three recordings are made at once using Camtasia Studio [8] and unified
into a single, fully synchronized video file in which the camera video is superim-
posed semi-transparently onto a corner of the screen video so that all information
is visible at once (multi-dimensional video).

The session was recorded in an otherwise silent office. Combined with the
high audio quality of the Logitech 5000 webcam, this provides good acoustical
playback conditions.

4 Problems of a plain Grounded Theory data analysis
approach

Attempting GT-style exploratory analysis of the rich data set described above1,
we quickly recognized that transcription was not practical. Too much relevant
information is found in the screen recording for which it is not obvious how to
transcribe it at all, not to speak of the effort for doing so: source code fragment
input, using features of the development environment (such as browsing across
different files or positions within files), pointing with the mouse during discussion
with the partner, etc.
1 Actually a precursor, but very similar in all respects.
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This is why we decided to work on the raw video directly and chose the
qualitative data analysis software ATLAS.ti [9] for doing so, which is one of the
few products that allows creating direct annotations to video.

One of us, Stephan Salinger, started open coding in the manner suggested
by Strauss and Corbin. The short-term goal was to characterize the activities
occuring during pair programming, the long-term goal was to identify recur-
ring behavioral patterns and classify them as helpful, hampering, ambivalent, or
neutral.

This approach generated no fewer than 194 different concepts and almost
complete confusion and despair in the course of a few days of analysis due to
the following problems:

– No predefined focus: We had no criteria for selecting which (kinds of) ob-
servations to code and which to ignore (code verbal interaction? factial ex-
pressions? gestures? posture? directions of gaze? sub-verbal vocal noises?
nervous tics? computer input? input methods? computer output? and so on)
and consequently were overwhelmed by the data.

– No predefined granularity: We had no prior decision on the level of detail
that would be worth coding. As a result, we produced codes on different
levels of detail (say, coarse ones such as handle problem and finer ones such
as test defect fix ), which where difficult to delineate against one another
subsequently.

– No predefined level of acceptable subjectivity: The nature of the codes chosen
in GT can be anywhere on the spectrum ranging from codes that stick closely
to observations that any observer would agree with to codes that interpret
the observation to a degree that they must be called wishful thinking. GT
as such does not provide a criterion for deciding where “grounded in data”
ends and wishful thinking begins. As a consequence, we mixed objective-
descriptive and subjective-evaluative attitudes for selecting codes. This led
to codes of different nature (say, descriptive ones such as uses documentation
and assumption-bearing ones such as gains knowledge of detail) existing side-
by-side, which made it harder to decide which one to use in a particular case.

– Too many topics: The codes described too many different topics of interest,
making it impossible to properly focus on anything. None of the various
resulting collections of information ever reached a useful degree of complete-
ness.

– Lack of concept grouping: The diversity of topics also distracted from form-
ing what GT calls categories: a few large groups of heavily interrelated con-
cepts (say, “Human-human interaction”, HHI, and “Human-computer inter-
action”, HCI)

– Importance misjudgments: The high attention to a broad set of concepts
overtaxed our ability to judge their importance so that because of the large
number of concepts we introduced, we completely overlooked a number of
important ones.

After we had noticed and gradually understood a number of these problems,
we stopped this mode of investigation completely. We started the whole analysis
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again from scratch (but very slowly and carefully, with a lot of backtracking)
and concurrently redesigned the coding procedure. The result of this redesign
were a number of heuristic practices described below that help using the GT
analysis process.

5 Practices supporting the analysis of complex video data

The methodological heuristics presented here form the heart of the present arti-
cle. These intertwined practices serve to reduce or solve the problems described
in the previous section. Section 6 will present an application of the practices that
also shows how they work together and mutually support one another.

5.1 Practice 1: Perspective on the data

Strauss and Corbin suggest that the start of selective coding (that is, after open
coding and axial coding have been going on for quite some time) is the time when
you should begin to decide what is important and what is less so. As described
above, we found that this is not a good idea when working with rich video data.
There are three reasons why a perspective used for the analysis should be defined
before starting:

– To avoid drowning in detail;
– to provide constancy in the criteria used for creating and assigning concepts;
– to focus attention on the most relevant aspects.

This perspective can be defined by formulating answers to the following ques-
tions. These answers should be reviewed (and perhaps revised) several times in
the course of the analysis:

1. In which respects do you expect the data to provide insight?
2. What kinds of phenomena do the researchers allow themselves to identify in

the data?
3. What type of result do you want the analysis to bring forth?

Question 1 does not ask what you expect to find, only in what respects
you expect to find something. The answer acts as a filter that tells you which
phenomena should receive more attention than others. Furthermore, constantly
re-checking and adjusting the answer to this question helps deciding when to
stop the analysis, when to modify (or throw overboard) your research question,
and when to obtain further or different raw data.

In our case, the expectation was that the data could help understand what
activities dominate the pair programming process and how they relate.

Answer 2 provides the mechanism for systematically bounding the nature
and amount of subjectivity to be found in the conceptualizations of the data.
The strongest restriction would be to allow only concepts that express directly
observable phenomena, resulting in a behaviorist (stimulus/response) research
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perspective. Weaker restrictions might also allow concepts refering to unobserv-
able processes (such as attitudes or thinking processes of actors), concepts that
involve predictions (such as “helpful for reaching goal X”), and/or concepts ex-
pressing moral judgement (good, bad).

We were convinced that in our case only the behaviorist perspective would
enable us to trust our own results.

Finally, the result type is the standard used for deciding how much attention
to invest in which kinds of phenomena when the analysis resources begin to get
scarce (which very quickly they will). It helps to stay on track. Do we want
to produce a full conceptual theory? Or just a conceptual structure (system of
categories) for the data? Or even just a coding scheme?

In our case, the goal was just to produce a coding scheme, because we felt
we knew so little about the internals of pair programming that we should not
yet decide on an actual engineering research question.

5.2 Practice 2: Concept name syntax rules

Choosing the names of concepts is another area where we found that giving up
some of the freedom postulated by plain GT is beneficial, because our freely
chosen concept names turned out to be highly variable and hence difficult to
understand, remember, and compare.

As a remedy, we developed a structured naming scheme as described below.
Within the confines we set ourselves by practice 1, that is, describing directly
observable activities of the pair programmers, the scheme does not predetermine
anything with respect to the meaning of a concept, it only prescribes the shape
of its name. When working with this scheme, we observed the following benefits:

– A concept will be better understood right at introduction time.
– It facilitates handling and overlooking a large set of concepts.
– Some relationships between concepts are implicitly recorded as well, which

much simplifies axial coding and the forming of categories.
– A concept name explicitly represents several aspects at once, which simplifies

the basic GT practice of “constant comparison”.
– It becomes easier to understand where difficulties in delineating one concept

against another come from and correspondingly easier to obtain insights as
to the weaknesses of the overall current conceptual description.

In our case, the concepts needed to describe individual activities by one or
both of the pair members2, so a concept name is structured like a complete
sentence:

code = <actor>.<description>
actor = P1 | P2 | P
description = <verb>_<object>[_<criterion>]

2 For other domains of analysis, other code naming structures might be preferable.
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for example “P1.ask knowledge” and “P2.explain knowledge”. The criterion part
can be used for additional specialization where needed. Given such codes, sub-
sequent analysis can very easily abstract for instance the verb part (to compare
contexts of objects) or the object part (to compare the variants of action types).
Without such complex codes, the same situation would probably be modeled by
a tuple of codes with relationships. So while in plain GT finding relationships
involves axial coding, in our case recording at least some relationships became
a fringe benefit of open coding.

5.3 Practice 3: Analysis results meta-model

When we started practicing GT, we found some of the terminology and concepts
confusing. First, where GT talks about phenomena, conceptualization, concepts,
properties, categories, and relationships, our analysis software ATLAS.ti talks
about quotations, annotation, concepts, concepts, families, and relationships,
respectively — and even relationships and relationships are not quite the same
thing.

Second, even after the initial learning phase some of the differences were sub-
tle enough that we misapplied them every once in a while and became confused
when we tried to reconstruct what we had meant to express.

Third, when decisions regarding the introduction or demarcation of codes
became difficult (which they often did), we realized we needed guidance for
systematically applying the ideas of GT to break out of the situation in an
appropriate way. (An example of this will be given in Section 6.)

Fourth, we extended the terminological framework by some additional ideas
owing to the nature of our data, in particular the notion of track for partitioning
data in order to support data visualization for a better overview of nested and
parallel activities.

Together, these issues prompted us to formulate an explicit analysis results
meta-model, that is, a model of the concepts that describe the structure of an
analysis result. We formulated this meta-model as a UML class model [10], which
is shown in Figure 1.

Here is a very short description of the most important elements of the model:
Quotations define fragments of the data (scenes in the video) that the analy-
sis refers to. Annotations connect Quotations with Concepts. Concepts can
be grouped into ConceptClasses; a single Concept can be a member of many
ConceptClasses. ConceptRelations are used to describe relationships between
Concepts, for instance according to the paradigmatic model. In many cases, such
a relationship is not valid for all pairs of Annotations that use these Concepts;
it can then be expressed individually by using AnnotationRelation.

The other elements of the meta-model are not relevant for the present article.
Besides describing the structure of analysis results (to avoid terminological

confusion), the meta-model also acts as a repository of ideas for the analysis
process. For instance, when unsure whether a certain ConceptRelation will
always hold, the meta-model suggests to initially annotate the currently known
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Fig. 1. Meta-model of analysis results

instances only (AnnotationRelation) and defer the creation of the more general
ConceptRelation until sufficient evidence is available.

5.4 Practice 4: Pair coding

The central and most important practice is pair coding. Pair coding means
that all coding work is done by two people working together at one computer
(much like pair programming, but that is just a coincidence). The key idea of
pair coding is to require a consensus of two people for all important decisions:
Which phenomena found in the data to single out for coding; where in time such
a phenomenon starts and ends; which existing concept to use for coding this
phenomenon; when to create a new concept; how to name that concept.

We found a number of benefits of a pair compared to a single researcher,
some of them very important for successful GT work:

– Concept definitions become more exact, because they are scrutinized more
closely right upon their introduction. This effect is further supported by the
structured naming scheme (practice 2).

– The differentiation between similar concepts also becomes more precise, not
just due to better definitions but also because a pair is less likely to let a
concept slip in that is on a much different level of granularity than the others
and that hence much more often has big overlaps with one or more existing
concepts.

– Remaining concept differentiation problems will not be ignored but rather
discussed. If they can be resolved, this will happen at an earlier time leading
to fewer incorrect concept assignments and/or less rework. If it is inherently
impossible to fully resolve them (which is not uncommon at all), the reason
for this will be understood much more thoroughly by the discussion, leading
to a better understanding of the concepts involved.

– The perspective on the data (practice 1) is maintained more consistently.
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– The perspective on the data is refined more regularly and more thoroughly.
– A larger number of relevant phenomena are detected and encoded.

Together, these four practices provided a quantum leap in the usefulness
of our analysis results. The next section will illustrate this with a number of
examples which will also show how the practices complement one another.

6 Application of the practices and some results

This section will present a few fragments from the analysis process that used the
practices described above and that led to our coding scheme for pair program-
ming. We present these examples to make the practices clearer, to explain how
they interact, and to make it more credible that they really help vitally.

We first introduce four concepts from our coding scheme and then present
some episodes from the process in which we created them. As an add-on (and
slightly off-topic for this article) we state a few hypotheses about pair program-
ming that we have derived based on our coding scheme.

6.1 An extract from the coding scheme

Our current version of the coding scheme (which ignores the subject part of the
concept names) contains about 50 different concepts, clustered into about 20
overlapping ConceptClasses — most concepts being members of either two or
three of them.

As an illustrative example, we present the four concepts of the think aloud
ConceptClass. They are shown in Table 1; the descriptions are heavily abbre-
viated.

Table 1. The concepts of the think aloud ConceptClass

Concept name Description

thinkaloud activity Explains a current computer-operating activity

thinkaloud finding States a newly won insight
(e.g., that some prior action was a mistake)

thinkaloud state Reflects on the current state of work
w.r.t. to the current strategy and goal

thinkaloud completion States that a simple work step has been completed
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6.2 Use of the practices: a few examples

We will now explain how we arrived at these four concepts in order to show the
practices in action and illustrate their interaction.

Soon during the coding process we recognized that the so-called Driver [11]
frequently verbalized what he was doing on the computer. Based on this obser-
vation, we made two decisions:

First, we started developing two ConceptClasses (see practice 3) called HCI
(human-computer interaction) and HHI (human-human interaction) for sepa-
rating the computer-operating aspect from the verbalization aspect. These were
ConceptClasses rather than individual concepts because the same separation
would obviously be relevant in many other cases as well.

Second, we postulated a new concept, thinkaloud activity. By virtue of the
concept naming syntax structure (practice 2), this one concept immediately gen-
erated a whole ConceptClass (so far having only one member) based on the verb
“to think aloud”. This effect leads to extended differentiation of concepts where
needed but incurs only little additional complexity for the coding scheme.

As the second member of this class we introduced thinkaloud finding when
we found a phenomenon that was obviously thinking aloud, but that also obvi-
ously did not explain computer activity. The demarcation appeared to be rel-
atively clear. In the discussion of the pair coders (practice 4) we agreed that
thinkaloud activity can be used only for the Driver and that is has priority where
thinkaloud finding might also be applicable.

Soon thereafter we encountered a programmer’s explanation of the state of
affairs and recognized it could be annotated as thinkaloud state, thus creating the
third member of this set of concepts. But we soon found thinkaloud state to ex-
hibit two problems. First, we had a case where it collided with thinkaloud finding,
because the finding concerned the state of work. Second, it designated statements
on rather different levels of abstraction and granularity.

We solved both problems by using the meta-model (practice 3), specifi-
cally by introducing the ConceptRelation “is-precondition-of” from the ex-
isting concepts propose step (suggesting the next step) and propose strategy
(suggesting an approach for choosing many future steps). We postulated that
thinkaloud state had to refer to a previous propose strategy and introduced a
new concept thinkaloud completion that would refer to a previous propose step.
This solved both problems at once: We could now discriminate large and small
granularity (strategic and tactical) and gained a criterion for when not to use
thinkaloud finding, which provided the demarcation to the other two.

This illustrates how open coding naturally leads into axial coding and how
the combination of the paradigmatic model with the concept naming syntax
(practice 2) can show a way back into open coding, thus keeping the complexity
of the resulting annotations down.

We are convinced that this route worked only because of the pair coding
constellation (practice 4), as both coders initially suggested encodings based on
the existing codes and only the non-acceptance of these suggestions (and their
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supporting arguments) by the other lead to the discovery of the “is-precondition-
of” relationship and the fourth code thinkaloud completion.

6.3 Some hypotheses based on the coding scheme

Although we have not yet started the analysis of the actual pair programming
process as such, a number of phenomena recurred so consistently that we already
call them hypotheses:

– We have found no clues that Driver and Observer do indeed work on different
levels of abstraction, as claimed in the pair programming literature [11].

– We have observed what we call pair phases, characterized by a high den-
sity of communication acts refering to just one narrow issue. They look a
lot like what descriptions of pair programming suggest as the normal pair
programming process, but we realized they are all short (usually under three
minutes).

– We believe that pair programming is not driven by strategic planning and
monitoring. Rather, the plan is quite often only one step long: A single
step is suggested, possibly discussed, decided (or revised), and immediately
executed.

– Besides the unavoidable roles of Driver and Observer, pair programming
sessions apparrently tend to implicitly produce a Leader role as well. The
Leader is the person more skilled for the given task and influences speed and
direction of the process much more strongly than the pair partner.

We expect that valuable insight about pair programming can be gained by
investigating the reasons, consequences, and typical context conditions of the
above trends. For instance, we expect to find that pair phases are episodes of
super-high productivity so that it would be helpful to understand when and why
they occur.

7 Related work

7.1 Qualitative analysis of pair programming

We know of no other work analyzing the process of pair programming that uses
a GT approach (they all work with at least partially pre-defined coding schemes)
and also none that works directly with video data (multi-dimensional or other).

Wake [12] presents a list of typical pair programmer activities, but provides
little information on how it was derived.

Bryant [13] studies the difference of interaction type and frequency in novice
versus expert pair programmers. In a pilot study, she first refined Wake’s list
into a table of 11 behavior and interaction types. In the real study, she then
recorded the sequence of events in real time according to this schema.

Such real time categorization is obviously a good precondition for analyzing
a large number of sessions, which is positive. On the other hand, the simplicity
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of the categorization that is needed to make it possible also restricts the results
to talking in terms of the rather plain concepts already present in the pre-
defined list. Neither subtle discriminations nor surprising new insights appear
likely from this approach; it is applicable only to narrowly-scoped investigations
using predefined hypotheses.

Cao and Xu [14] investigate the activity patterns of pair programming. Pair
working sessions were videotaped and then transcribed. The analysis used a
coding scheme that started out from a combination of the schemes from [15]
and [16]. Then, during the analysis of the data, a new schema was developed in
a manner not described. This work shares our behaviorist observation attitude:
Unlike us, it ignores all information contained in the computer interaction, but
for the rest it still grounds on objectively observable communication acts only.

In contrast, Xu and Rajlich [17] use the dialog-based protocol3 in order to
analyze the cognitive activities in pair programming, which involves a far greater
amount of either subjectivity or generalized assumption. The coding scheme
involves classification heuristics derived from a theory on self-directed learning
[18]. Xu and Rajlich proposed to do the coding assignment by two or more coders.
In contrast to our approach, the coders work separately and compare the results
afterwards. This approach is sensible only with a fixed coding scheme, because
a GT-like generation of concepts would be very inefficient in this manner —
immediate discussion as in pair coding (practice 4) is much more efficient.

It is obvious that all three studies use rather more predefined concepts dur-
ing the analysis than concepts grounded only in the data. We fear that such
approaches will be much more likely to fall prey to unwarranted assumptions
according to conventional wisdom such as presumed Driver/Observer role differ-
ences etc.

7.2 Grounded Theory work using rich video data

Even in the broader GT-related literature, examples of studies using video dur-
ing the analysis (rather than transcripts of videos only) are rare. We found one
such example in medicine that studied medical team leadership behavior [19].
The video was recorded with four cameras from different angles. The analysis
involved four analysts and three steps. (1) One analyst identified video segments
with interesting verbal or non-verbal team interactions. (2) Two analysts created
conceptual descriptions of the segments by consensus. (3) Taxonomies for lead-
ership actions from the conceptual descriptions were developed. This approach
resembles our pair coding practice, at least in step 2. If different people per-
formed steps 1, 2, 3 (the article is very unclear in this respect), we consider this
a problematic procedure: it is almost antithetical to the GT philosophy, because
it partially prohibits constant comparison and fully prohibits the intertwining of
open coding (steps 1+2) and axial coding (step 3).

3 By the way, [17] suggests to use screen-capture and voice recording only rather
than videotaping to avoid influences due to camera-consciousness — we have never
observed this to be an issue at all.
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8 Conclusion and further work

We have described why a straightforward application of the standard Grounded
Theory method to multi-dimensional video data of pair programming sessions
is not likely to be successful and have presented and illustrated a set of four
analysis practices that provide a systematic way to hold the analysis problems
at bay.

We have used these practices to generate a general-purpose coding scheme
of pair programming activities, of which we presented a small excerpt. In the
future, we will proceed with the following steps:

– Validation of the coding scheme. We will encode sessions that have very
different properties with respect to participants, task, and setting.

– Qualitative and quantitative evaluation of the coding process itself, based
on its results, intermediate results, and process monitoring information (in
particular timestamps) recorded by ATLAS.ti.

– Refinement of the coding scheme with respect to particular research appli-
cations, in particular by adding properties according to the meta-model.

– Application of the coding scheme to produce actual grounded theories of
several aspects of the pair programming process. This will require selective
coding which we expect to exercise even those parts of the meta-model not
discussed in the present article.

Just like the four practices mutually support one another, these tasks will also
exhibit synergy and so will be performed partially in parallel.
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