
The Co-Evolution of a Hype and a Software Architecture:
Experience of Component-Producing Large-Scale EJB Early Adopters

Lutz Prechelt and Daniel J. Hutzel
abaXX Technology AG, Stuttgart

{lutz.prechelt|daniel.hutzel}@abaxx.com

Abstract

abaXX.components was one of the first API software
products fully based on Enterprise JavaBeans™ (EJB)
technology. We describe the evolution of its architecture
as it moved from simply taking the initial EJB hype for
the truth, through several intermediate stages, to using
EJB simply as one of several encapsulated
implementation techniques. So far, the public perception
of how to use EJB properly evolved along a similar path,
lagging 6 to 12 months behind.

1. Introduction

abaXX Technology was founded in April 1999 and
was possibly the first software company that based all of
its work on Enterprise JavaBeans (EJB) and other Java2
EnterpriseEdition (J2EE) Technology.

This report describes the architectural evolution of
abaXX’s main suite of software products, called
abaXX.components, a collection of components and
frameworks for building web-based e-business/eCRM
applications of all kinds (primarily process-based end-
customer portals). The authors are responsible for
devising and evolving this architecture and for explaining
it to abaXX customers.

2. The software: abaXX.components

abaXX.components is written entirely in Java and uses

many technologies of the J2EE and Web world such as
Servlets, Java ServerPages (JSP), Enterprise JavaBeans
(EJB), JNDI, JDBC, JMS, XML, XSL-T, and others.

abaXX.components comprises frameworks and small-
grained and large-grained application components in the
following functional areas: web-frontend programming
(including portlets), portal-process modeling and
programming (workflow), integration of content
providers (such as content management systems),
email/fax/sms messaging, document generation, user
tracking and automatic personalization, e-commerce, and
advice/configuration applications.

Most of the product has the form of APIs (separated
into client API and extension API), the rest is tools (e.g.
the graphical workflow modeler), source code examples,
and a complete Web-GUI application called
AdministrationCenter for business-view administrators.
An application using abaXX.components is always
custom software; the implementation project involves a
significant part of programming rather than just
configuration.

Despite its heavy use of many J2EE technologies
including EJB, the product directly supports various
application servers such as IBM WebSphere 4.0, BEA
Weblogic 5.1 and 6.1, and JBoss 2.6 and 3.0, which are
by far less compatible to one another than one might
expect.

Our goals for evolving abaXX.components can be
summarized as follows:

- continously improving the power, performance,
openness, extensibility, and ease-of-use of the
components;

- maximizing the flexibility and extensibility of the
resulting custom applications;

- exploiting improvements in the application server
infrastructure;

- continously adapting newly evolving standards
(such as Apache Struts for frontend programming)
and new technological trends (such as web
services) without breaking backwards
compatibility to earlier versions.

3. Enterprise JavaBeans (EJB) quick intro

While this report assumes some technical familiarity

with EJB, here is a quick quick overview for all other
interested readers.

Enterprise JavaBeans [3] is the name of a technology
specification featuring software components (think of
each as one logical class) that reside within an EJB
container. The EJB container is a major element of a
J2EE application server. There are two flavors of
enterprise beans: Entity beans represent business/domain
objects and session beans represent business services. The
EJB specification has seen versions 1.0, 1.1, and 2.0 (2.1

is under way) and starting with EJB 2.0, there is also an
extension of session beans not discussed here called
MessageDrivenBeans.

Clients access an enterprise bean through a remote
proxy interface. The EJB container intercepts each call
and transparently inserts additional functionality that
provides added value to the caller. This additional
functionality comprises life-cycle management, automatic
transaction control, automatic persistence management
(for entity beans), resource management, access control,
remoting, load balancing, and fail-over management (with
replication).

The central idea behind EJB and the whole point in
using it is the added value from these implicit functions.

4. Enterprise JavaBeans™ (EJB) quick
history

The initial hype around EJB claimed that EJB solved

essentially all of the problems around all of the above
aspects and did so with essentially no disadvantages.
Which, of course, is just not true at all.

Rather, the main drawbacks of EJB are:
- The programmer no longer has full control over

the above-mentioned characteristics, which
sometimes leads to inefficiencies and/or awkward
designs.

- Client calls to an EnterpriseBean are always
remote calls and hence quite run-time expensive.

- The development of an EnterpriseBean is
inconvenient, as it involves many files (home
interface, remote interface, implementation class,
standard deployment descriptor, application-
server-specific deployment descriptor).

- The configuration and use of an EJB container is
complex and full of pitfalls.

- Exposing EJB interfaces to application
programmers through a Client API can impose
dangerous impacts on system performance and
robustness. This is because application
programmers would then be bothered with the
complexity of dealing with remote objects.

In younger times, partial countermeasures against
many of these disadvantages have been introduced by the
J2EE community:

- The J2EE BluePrints design patterns [4] describe
how best to cope with the first, second, and last,

- The notion of local interface, introduced in EJB
2.0 solves the second for the case when the client
is another EJB in the same container,

- Modern IDEs and CASE tools cope reasonably
well with most of the third.

Since we were early adopters, however, we were
usually too early for these developments and had to find

our own solutions. The resulting archtectural evolution is
described in the following sections.

5. Evolution phase 1: Naïveté

“Is it important? Then it’s an EJB.”

When EJB appeared, the hype and public perception

essentially said “Just do it. EJB will solve your
problems.” When we started developing with EJB
technology, we decided to follow just this approach, in
order to see where it would work and where not.

Roughly speaking, in the first version of
abaXX.components, each business service was a session
bean and each business object – even any persistent
object – was an entity bean.

The resulting software worked, but the runtime
performance was rather poor, due to EJB-born brute-force
remoting, transaction management, and locking overhead.

6. Evolution phase 2: Repair

“If we don’t fix this, we’re dead.”

It turned out that in our typical web applications, say,

for e-commerce, most of the operations were read-only
accesses to many different entity beans during catalog
browsing. But for retrieving, say, 20 entity beans with an
EJB finder method, the early application servers would
execute as many as 21 SQL queries in the database: one
for obtaining the keys and for each bean. And
instantiating and returning an entity bean is also a costly
operation.

So we had to invent a remedy. It consisted of two
pieces:

For every entity bean Mybean, we would introduce a
corresponding normal (i.e. non-remote) Java class
MybeanData with the same set of attributes. We called
these objects Lightweights. The J2EE design patterns
today call this idea Value Objects or Transfer Objects.
Each EntityBean Mybean would have a method
getByValue() for obtaining a MybeanData instance and a
method updateByValue(MybeanData) for setting all its
attributes from a single MybeanData with just one remote
call.

For reading multiple records from the database in a
single step for browsing (read-only) purposes, we created
a simple and very efficient object-relational mapping
framework called Retrieve. Based on a SQL select clause
declared in each Lightweight class, Retrieve can obtain
large sets of MybeanData objects from the database
quickly. Selection and ordering criteria are encapsulated
in Filter and Sorter classes, respectively, so that the
business logic is kept completely free from SQL code.

Retrieve is similar to what the J2EE design patterns today
call a Fast Lane Reader.

Entity
BeanLightweight

EJB
persistence

Retrieve

getByValue/
updateByValue

RMI/IIOP

remote interfaceLightweight (copy)

pass by value pass by reference

Client

ServerEntity
BeanLightweight

EJB
persistence

Retrieve

getByValue/
updateByValue

RMI/IIOP

remote interfaceLightweight (copy)

pass by value pass by reference

Client

Server

With these additions, it was possible to create
reasonably efficient applications.

Meanwhile the hype around EJB split into two groups
of people: Those who had not yet tried out the technology
were still mesmerized. The others were somewhat
sobered, invented Value Objects themselves or dropped
using EntityBeans altogether.

With our two additions (and a few extensions such as a
Service Locator, called IContext), we were sufficiently
satisfied for a while and just took EJB for granted: There
were plenty of EJBs in our software and it worked.

7. Evolution phase 3: Emancipation

“EJBs shouldn’t be central at all.”

However after a while it became more and more clear

that the Value Objects were much more important for
most of the application programmers most of the time
compared to the EntityBeans themselves. So we turned
the previous view of EJB use upside down and made the
following changes to our architecture and APIs:

- We now considered the Lightweight to be the
business object, rather than the EntityBean.

- Consequently, we now named the Lightweight
Mybean (rather than MybeanData) and the
EntityBean MybeanEJB (rather than Mybean) and
stowed the EntityBeans away out of sight in
separate subpackages.

- All business logic used Lightweight objects only,
never EntityBeans.

- Access to EntityBeans was restricted to Manager
classes. A Manager class provides explicit create-
read-update-delete (CRUD) functionality for one
or a few types of closely related business objects.
Its implementation uses a SessionBean; for
representing the business objects, its API reflects
the respective Lightweight classes only; its
implementation uses EntityBeans.

- The Manager class is not a SessionBean itself, it
only uses a SessionBean for its core functionality.

This kind of Manager services and their
implementation is a combination of both, Session Facade
and Business Delegate patterns in the J2EE patterns
catalog: a mechanism that decouples the EJB tier from its
clients. The architecture has now effectively downgraded
enterprise beans from the heart and soul of the
architecture to a mere implementation mechanism.

By this time, the EJB hype had largely worn off. Some
people now viewed EJB as an unnecessary and expensive
luxury, others understood that it is well-suited for
situations where strong scalability and availability is
required and where transaction security is critical, such as
in financial services. The latter group had begun to search
for ways of using EJB in a selective manner.

8. Evolution phase 4: Independence

“Use EJB only if you really want to.”

We searched, too, and found that given the previous

changes, the rest of the way was not very long.
So far, we already had provided an EJB-free client

API. Only those few programmers who needed to modify
or extend one of our components would still see the EJBs
(in the separate extension API).

The remaining step was to introduce what we now call
EJB-on-demand1: Simply by setting a load-time
configuration option, programmers can (at least for many
of our components) decide on a service-by-service basis
where EJBs are to be used and where a plain Java
solution should be used instead. The latter does not have
the added value gained from the management features of
the EJB container, but also requires fewer resources and,
if no EJB services are used at all, simplifies the
infrastructure and its operation enormously.

In terms of the product implementation, this is
relatively easy to achieve for the services: In EJB mode,
the client API Myservice is implemented by a simple
wrapper RemoteMyservice that delegates to the
SessionBean MyserviceEJB, which in turn delegates to
the core plain Java solution LocalMyservice (which does
the actual work). In non-EJB mode, Myservice is directly
implemented by LocalMyservice.

Which of these two options is active is hidden by the
Service Locator IContext, which is called to instantiate a
Myservice object and will return either a LocalMyservice
or a RemoteMyservice. Obviously, this scheme can be

1 This is a generalization of a notion introduced by
Gartner Group as dual topology [1]: Application Servers
should be offered in a variant for lightweight applications
not using EJB as well as one for full-blown J2EE
applications including EJBs. EJB-on-demand extends this
idea to application components.

extended to cover still other possibilities than just an EJB
versus a non-EJB implementation, as is exemplified by
the figure shown below about our User Management
Service (UMS) that implements the UserRegistry
interface.

UserRegistry

+getInstance()
lookupAccount (uid)
store (anAccount)
remove (anAccount)

UserRegistry

+getInstance()
lookupAccount (uid)
store (anAccount)
remove (anAccount)

uses

LocalUMSLocalUMS

RemoteUMSRemoteUMS RemoteUMSEJBRemoteUMSEJB

Configured in
core.xml

JDBCbasedUMSJDBCbasedUMS

LDAPbasedUMSLDAPbasedUMS

Custom defined…Custom defined…

delegates to

UserAccount

uid, name,
contact
roles

UserAccount

uid, name,
contact
roles

manages

For Manager services, that is, if EntityBeans are

involved, the EJB-less implementation requires a little
more work: MyserviceEJB will then directly implement
the service using EntityBeans, whereas LocalMyservice is
a separate implementation using JDBC or whatever other
persistence mechanism is to be used.

And the EJB hype? As of today, where the pros and
cons of EJB are much better understood, many projects
think quite hard about whether they should employ EJB
or rather try to get by without it.

EJB-on-demand is a nice way out of this dilemma:
One can build an application in such a way that it can
start without EJB and be upgraded later, but largely
without rework of any client code. And the external
application components (if it’s abaXX.components) can
just be switched to EJB mode without any additional
implementation work at all.

9. Conclusion

Here is a summary of the lessons we learned from the
above during over 3 years of developing
abaXX.components.

About following a hype: Following a technological
hype (either with the masses or even ahead of the masses)

may be viable, but not necessarily efficient. If we had
taken the time to evaluate EJB more thoroughly before
building the large number of components that we did, we
could have gotten to where we are with less effort.

About developing an API-based software product: The
most dangerous aspect of starting with a less-than-perfect
architecture for a high-level API-based software product
is backwards compatibility. There were 8 releases of
abaXX.components so far, two of them not being
backwards compatible to the one before. The first of these
steps was relatively easy; we made it after just half a year,
with only two customers involved. The recent second one
was quite difficult, as our customers now have systems in
operation that represent over 80 Million US$ of
investments. We have managed to contain incompatible
changes to a small number of places in the API and are
providing a backwards compatibility add-on package, but
we don’t yet know how costly the migration of a large
project solution really will be and whether our customers
will do it.

About the EJB technology: After all we have done, we
are still unsure whether we love or hate EJB technology.
Some of the promises hold true: EJB and J2EE
application servers are now a rock-solid foundation for
business-critical, large-scale, transaction-intensive
systems. On the other hand there are so many design
flaws, omissions, oddities, and pitfalls in EJB that it is
really hard to be enthusiastic about it [2]. One thing,
however, we are sure about: If one is to build a suite of
reusable application components based on EJB, it is a
good idea to hide the EJB aspects of the implementation
behind simple, non-EJB interfaces.

References

 [1] Yefim Natis: Application Server Scenarios: From
Stovepipes to Services, Gartner Research AV-14-5983,
October 2001.

[2] Robin Sharp and Dinu Fancellu: 101 Damnations
of EJB,
http://www.softwarereality.com/programming/ejb,
February 2002.

[3] Sun Microsystems: Enterprise JavaBeans 2.0 Final
Specification, September 2001.

[4] Sun Microsystems: J2EE BluePrints Design
Patterns, http://java.sun.com/blueprints/patterns.

	References

