Agile Offsharing: Using Pair Work to Overcome
Nearshoring Difficulties

Lutz Prechelt
Freie Universitidt Berlin
Institut fiir Informatik
Takustr. 9, 14195 Berlin, Germany
Email: prechelt@inf.fu-berlin.de

Abstract—A major problem in distributed development sit-
uations, in particular offshoring situations, is often creating a
proper understanding of the requirements at the remote site. It
is difficult even if such understanding is available at the local site.
This note argues why cross-site, synchronous, closely-coupled pair
work at an engineering level, such as pair programming, may
be a method for solving this problem and that corresponding
research should be carried out.

I. ON OFFSHORING

The limited supply of highly competent software develop-
ers has created a strong trend towards cross-site distributed
software development, be it within a company (insourcing)
or with external partners (outsourcing) and be it within a
single country (onshoring) or across borders (offshoring, either
within the same world-region, as nearshoring, or beyond, as
farshoring).

Software development is an extremely communication-
intensive activity. Site distribution makes communication
harder and therefore distributed software development is less
efficient and more risky than local development and becomes
more so with increasing distance. At least four types of
distance are relevant: Geographical (physical distance), tempo-
ral (time zones), cultural (national/regional culture, company
culture, language), and organisational (work processes).

Farshoring efforts frequently fail (and many companies are
giving up farshoring) while nearshoring may work better but
is still difficult, cumbersome, and risky. One might partition
the issues that create the offshoring-specific difficulty into
avoidable ones and essential ones.

The Avoidable Issues are problems for which effective and
practical solution approaches are known in principle (and
are more-or-less practiced by competent organizations). Key
categories of such problems are lack of trust between the
teams (e.g. due to lack of personal acquaintance), coordination
problems due to lack of a common technical infrastructure or
differences in work processes, a too-high language barrier, and
a few others.

Essential Issues, in contrast, are problems for which no
effective and practical solution is available today. There are
only two Essential Issues:

o The difficulty of achieving common ground between the
sites with respect to requirements understanding and

978-1-4673-6290-0/13 © 2013 IEEE

157

« the difficulty of achieving common ground between the
sites with respect to the understanding of a software
architecture while it still emerges.

The Essential Issues are known to be wicked problems even
in non-distributed software engineering. For producing the
understanding and then transporting it to all members of
the team, documents provide only little help. Rather, both
producing and transporting are normally facilitated primarily
by large amounts of high-bandwidth face-to-face communica-
tion (that is, communication using all verbal and non-verbal
communication channels and cues), but this is just what is not
available in a distributed development setting.

II. CURRENT ASSUMPTION UNDERLYING DISTRIBUTED
SOFTWARE DEVELOPMENT

Today, essentially all offshoring software development ap-
pears to be structured according to the following assumption:

Effective cross-site communication is very difficult.
Therefore, we should avoid relying on it. Therefore,
we should decouple development on one site from
that on the other as best we can.

Let us call this the current assumption.

A. Consequences

The natural approach when designing a distributed software
process from this assumption is a process based on document
hand-over: The “home” site (where the requirements knowl-
edge is located) writes up a careful specification, hands it over
to the remote site, and the remote site can then perform most
of the software development locally, with little need for cross-
site communication.

This may reduce the impact of the Avoidable Issues, but
will pronounce the impact of the Essential Issues: It can work
well if the specification is precise (unambiguous), consistent,
complete, and valid (i.e. reflects a correct understanding of the
requirements) and the remote team is sufficiently competent
(both technically and culturally) not to misread it; if only one
of these many conditions is even partially violated, the need
for communication rises steeply at many unforeseeable spots
and the process, unprepared for this need as it is, will likely
start going wrong.

CHASE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



In the past few years, more and more organizations have rec-
ognized that upfront requirements understanding (and specifi-
cation writing) is often impractical. In non-distributed develop-
ment, they have introduced agile team processes to overcome
this problem and found that the fine-grained iterative nature of
these processes helps a lot and brings many additional benefits
as well.

In a distributed setting, corresponding practices such as
distributed joint iteration planning, distributed joint daily
stand-up meetings, distributed joint retrospectives, and the like
are a step in the right direction, but the bandwidth of the
communication thus provided is far too low: Non-distributed
agile development relies on huge quantities of one-to-one com-
munication (both formal and, in particular, informal) outside
the above-mentioned team steps. Too much of this one-to-one
communication tends to disappear in a distributed team, in
particular in an offshoring setting.

III. SUGGESTED NEW ASSUMPTION

Considering the amount of communication needed to over-
come the Essential Issues in local development, we conclude
that distributed development is stuck in the current assumption
and needs to be released from it.

We propose to replace the current assumption with a fun-
damentally different one as follows:

Effective cross-site communication is very diffi-
cult, but is crucial for solving the Essential Issues.
Therefore, we should structure the development pro-
cess such as to maximize cross-site communication.
Therefore, we should proactively couple develop-
ment on one site to that on the other in all those
ways where we expect successful communication
that involves the Essential issues and do it even
where this coupling could be avoided.

Let us call this the new assumption and the resulting work
style Agile Offsharing.

A. Consequences

The core idea for how to realize this proactive coupling
is voluntary, close, cross-site, synchronous, pair-wise engi-
neering collaboration on narrowly focused technical tasks,
realized by a set of practices that include distributed pair
programming, distributed walkthroughs, distributed side-by-
side programming, distributed interactive pair reviews, and
distributed pair debugging. This idea is based on the following
research hypotheses:

1. Such practices provide high-bandwidth communication
because each participant within a pair will be very active and
engaged and multiple pairs can work at the same time.

2. They provide enough such communication because they
are performed as much as needed: Even where we could
decouple and modularize development to avoid crossing the
site boundary, we often intentionally and purposefully do not
do this and share development instead; hence the name Agile
Offsharing.

3. They provide effective communication because they work
mostly on the code level where communication content is so
concrete that understanding can often be validated immedi-
ately.

4. They solve the Essential Issues because requirements
understanding and architectural understanding will be part of
the communication in small, easily digestible doses and each
of these doses will be so relevant to the task-at-hand that
the recipient will be eager to learn. Over time, a sufficiently
complete requirements understanding will trickle over to the
remote side and a joint architecture understanding will emerge.

IV. RESEARCH REQUIRED

If using the above techniques was straightforward, organi-
zations would have picked them up already. But their use is
in fact ridden with a broad set of difficulties that need to be
solved, for instance:

o Technical: Which of the existing tools that support syn-
chronous code-level collaboration are suitable? What new
difficulties do they create? How to overcome those?

o Social: Pair work requires trust. How much prior acquain-
tance between pair members is necessary before pairs
function properly? How to arrange it efficiently?

o Social: Successful pair work must be peer-to-peer. How
to identify actual or perceived power imbalances? How to
neutralize them effectively for the individual pair session?
This involves issues of national culture, company culture,
and provider/customer relationships.

« Language: How to identify which engineers are capable
of crossing the language barrier reliably? In borderline
cases: How to identify which pairs involving such people
will work best? How to lift engineers from just be-
low the barrier enough so they can cross it? How to
train engineers to spot language-related misunderstand-
ings quickly?

« Essential Issues: How to train engineers to recognize gaps
in requirements understanding or architecture understand-
ing in order to purposefully fill them? Ditto for non-gaps
in order to avoid inefficient redundancy?

e Overall process: How to balance cross-site and within-
site collaboration properly to maximize the spread of
requirements understanding and architecture understand-
ing? How to spot the best opportunities for productive
cross-site collaboration? How to align local development
processes such as to make the pairing sessions fit in
smoothly? How to coordinate individual pairing sessions?
How to match pair members?

At Freie Universitit Berlin, we formulated the idea of Agile
Offsharing in February 2011 and believe it is too ambitious for
farshoring but very promising for nearshoring. Our research
in this direction is slowly picking up speed and we encourage
other groups to join.

158



