
Observations on Knowledge Transfer of Professional
Software Developers during Pair Programming

Franz Zieris
Freie Universität Berlin
Institut für Informatik

14195 Berlin, Germany
zieris@inf.fu-berlin.de

Lutz Prechelt
Freie Universität Berlin
Institut für Informatik

14195 Berlin, Germany
prechelt@inf.fu-berlin.de

ABSTRACT
Context: Software development is knowledge-intense work,
and so is pair programming. However, the importance of
knowledge transfer in pair programming is usually only stressed
for expert-novice constellations. Goal: Understand how
knowledge transfer during pair programming works and even-
tually provide guidance for practitioners. Method: Detailed
qualitative data analysis of full-length recordings of indus-
trial pair programming sessions. Results: Expert software
developers need to transfer knowledge, too, in order to con-
duct productive pair programming sessions. There is a diver-
sity of beneficial and potentially problematic patterns, which
even good pairs do not steadily apply or avoid, respectively.
Conclusions: Pair programming is a versatile practice that
even experts can profit from. Knowledge transfer skills do
not automatically emerge from good software development
skills, but can probably be learned.

CCS Concepts
•Software and its engineering → Agile software de-
velopment; Pair programming; •General and refer-
ence → Empirical studies; •Human-centered comput-
ing → Ethnographic studies;

Keywords
Pair programming, knowledge transfer, grounded theory

1. INTRODUCTION
The general discussion on pair programming tends to dis-

tinguish two use cases. First, there is the productive use of
pair programming in the XP sense [2]: Two developers work
together to complete tasks with higher quality in less time.
This view has been subject to a decade-long discussion on
the overall efficiency (e.g. [5]). Second, there is the knowl-
edge transfer use, a more recent perspective which regards
pair programming as a mentoring technique to bring new
team members or novices up to speed (e.g. [11]).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 Companion, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889249

It seems to be common sense (at least tacitly) that these
two use cases are distinct, i.e. developers are either good
enough to perform a productive session (without any relevant
knowledge transfer) or their skill levels are too far apart to
be productive so they retreat to a knowledge transfer session.
We will discuss this strict dichotomy and prove it wrong.

Pair programming is a useful practice because both de-
velopers can add value to the process in multiple ways, e.g.
through complementary knowledge which enables pairs of
developers to work on tasks that would be much more chal-
lenging for each of them alone. But the combination of
the individuals’ knowledge does not simply occur. Instead,
knowledge transfer between the developers is part of the
pair programming session itself – especially between expert
developers.

In this article, we will discuss on the actual process of
knowledge transfer in pair programming. We will put an
entire pair programming session of over two hours length in
the limelight. That session serves as the infrastructure for
explaining and illustrating our main observations which are:

• NOTEACHER: There is usually no pair member who
is more knowledgeable in all relevant areas.

• INFERIOR: Occasionally, it is the knowledge-wise in-
ferior developer who has the bigger positive impact on
the session’s progress, either through solving a problem
(insight) or through avoiding a mistake (diligence).

• PUSH: Existing knowledge is not just pulled from the
knowledgeable developer through asking questions; it
will also be pushed, even if her partner did not specif-
ically ask for it.

• TALK: Producing new understanding by one single
pair member that is accompanied by uttering imme-
diate insights (rather than sinking into utter silence)
allows the partner to both help and learn, too.

• RESYNC: If one developer pulled ahead, the pair needs
to get close together again to fully use complementary
knowledge. This requires some additional effort, which
will pay off later on.

• PARALLEL: Even equally quick grasp does not guar-
antee common understanding. Producing new under-
standing as a pair requires additional synchronization.
Otherwise the pair risks being on “parallel tracks” and
taking avoidable detours in their process.

The remainder of this article is structured as follows. We
will discuss related work in Section 2 and describe our method-
ology in Section 3. Section 4 illustrates our findings. We

discuss the limitations of our work (Section 5) before we
conclude (Section 6).

2. RELATED WORK

2.1 Research on Work in Pairs
Pairs have been subject to cognitive research for decades.

The interaction of two persons – often referred to as “dyads”
– is usually studied under controlled conditions. Typically,
individuals’ and pairs’ performances are compared, showing
an effect of pair work, but providing no insight into the pair
members’ actual interaction (e.g. [1]). In other scenarios,
which specifically focus on the collaborative process, pairs
are tasked only with well-defined exercises with only few de-
grees of freedom, such as discovering a regulatory mechanism
of genes through choosing between only two types of exper-
iments [9], or understanding the mechanics of a sewing ma-
chine [7]. We are not aware of any research that considered
non-programming pair work on tasks that exhibit the typical
traits of software development with respect to task complex-
ity, dealing with uncertainty and volatility, freedom of action
and creativity, concreteness of outcome (source code).

From the viewpoint of organizational and social sciences
(e.g. embodied in the discipline of small group research),
pairs can be considered groups of two. However, most of the
investigated phenomena (such as conflict and negotiation,
decision making, coalition formation) are usually studied in
groups of three and more (e.g. see [8, p. 531] for a rationale).
Some other researchers argue that “dyads can be groups and
often are” [15], but, ultimately, social science literature that
could be used as a starting point for our research is scarce.

2.2 Research on Knowledge Transfer in Pair
Programming

To our knowledge, there has not been any study yet that
focused on the actual process of knowledge transfer between
expert software developers.

Most studies are limited in so far as they only demon-
strate the mere fact that knowledge is transferred. This is
done either through questionnaires (e.g. [4, 10]), or through
inference from product quality and – in case the subjects
were students – test results at the end of the semester (e.g.
[6]). Either way, the actual process of knowledge transfer
cannot be understood by such approaches as they regard
the pair programming sessions as black boxes.

Other studies “open” that box, e.g. Chong and Hurlbutt
[3], who observed and partially recorded pair programming
sessions. They state that large differences in the pair mem-
ber’s knowledge levels seem to hinder the exchange of ideas
during the session. The work of Plonka et al. [11] focuses on
expert-novice constellations and explicitly speaks of “teach-
ing”. However, they also state that “a certain degree of
knowledge transfer would be expected within every PP con-
stellation” as “developers never have identical knowledge”.

Our work investigates knowledge transfer phenomena with-
out filtering out particular sessions or constellations at an
early stage. In [16], we reported our initial findings on what
we called “Knowledge Transfer Skill”: Good pairs manage
to (1) not pursue multiple knowledge needs at once, (2) rec-
ognize complex Topics and split them into separate Top-
ics, (3) recognize complicated Topics and deal with them in
stages, (4) not lose sight of Topics. The present study adds

many more concepts relevant for understanding knowledge
transfer behavior.

3. METHOD

3.1 Data and data collection
As mentioned above, our research is concerned with the

actual pair programming process. Over the last years, 48
professional developers from 11 different companies agreed
to have 49 pair programming sessions from their everyday
work recorded and analyzed. Such a recording consists of a
full-resolution screen capture, a webcam video, and an audio
recording of the developers’ conversation. The typical ses-
sion from our collection lasts between 1 and 2 hours. Where
no session identifier is mentioned below, the data is from
session AA1.

3.2 Data analysis
We employ the qualitative and highly systematic Ground-

ed Theory Methodology (GTM), in particular, Strauss and
Corbin’s approach [14]. We used the practices of open, axial,
and selective coding to identify and conceptualize relevant
phenomena, and to develop their relationships.

In this article, we will not present the details of the analy-
sis process, but only the resulting insights. Therefore, there
exist many more concepts that were necessary along the re-
search process, which do not appear in this article.

Since the recording of new sessions is tedious and the ef-
forts not well predictable, we applied theoretical sampling
only once, selecting session recordings from our repository,
but not iteratively. Consequently, our research has not yet
reached theoretical saturation.

3.3 Notation
When we refer to concepts resulting from the GT analysis,

we will use small caps, as in Some Concept. Since we
chose a storyline format for the main part of this article
(see below), we do not define the concepts in an isolated
section. Instead, we will inline the definitions, usually when
a concept is used for the first time, and we will highlight that
occurrence, as in �Some Concept, to facilitate looking it
up.

In verbatim quotes, we indicate program identifiers, pauses,
comments, and replacements as follows: “Huh? Remove-

Targets (. . .) <*sighs*>. We could ask <**chief archi-
tect**>.”

3.4 Format
We chose a story-format for the main part of this article,

which means we will follow the events of the session from the
beginning in chronological order. We do so because iterat-
ing the concepts and findings one by one would be arduous
to read. Furthermore, most of the examples are from the
same session. This is not because example episodes would
be scarce in our data – we analyzed over 400 – but because
in order to be comprehensible each episode needs a lengthy
preface explaining the context.

In Section 4.2, we will go through a pair programming ses-
sion of professional software developers with varying gran-
ularity. The session parts relevant for this article will be
presented with verbatim excerpts revealing the full depth of
the actual knowledge transfer process; for the sake of brevity
and continuity, the parts in between will by summarized but

not omitted. Each subsection adheres to the following struc-
ture:

• The heading provides an informal short name for the
episode along with the list of the identifiers of the cov-
ered observations.

• Situation: A short narrative of what happened be-
tween the close-up scenes. This is for understanding
the current task and not losing track of where the pair
currently stands in its session. Here, we also introduce
the domain and software concepts the pair is currently
dealing with. This is to understand the developer’s
technical jargon.

• What happens: The concrete description of what
the pair did in that episode, followed by the verbatim
excerpt.

• What it means: The application of our concepts to
the scene.

• Discussion: A discussion of the general observations
that the example illustrates along with a rough as-
sessment of how common similar situations are in our
data.

4. RESULTS

4.1 Context

4.1.1 The Company
The pair programming session in focus was recorded in

a German company that has been developing a web-based
content management system (CMS) for many years. The
system comprises two major components. First, the back-
end written in Objective-C, which deals with business rules
and SQL database interaction. Second, the Java GUI which
interacts with the backend through an XML API and ren-
ders HTML output to be displayed in a web browser.

4.1.2 The Developers
The pair members know their domain well, are experi-

enced developers, and pair-program regularly. Developer J
has very good structural knowledge of the Java frontend and
its individual classes, as well as practical knowledge of the
Eclipse IDE and the Java programming language. His col-
league developer C is more familiar with the backend and
the SQL database, the VIM editor and the UNIX shell, and
the Objective-C programming language. However, these dif-
ferences are small: Each of them would be able to find their
way around in the other’s system.

4.1.3 The Task
Their session, which lasts 2 hours and 19 minutes, can

be characterized as corrective maintenance. The CMS sup-
ports multiple entity types (such as task or unreachable link)
which can (among other things) be “active” or “inactive”.
The list displays of these entities should reflect their active-
ness through different icons and labels.

The starting point for this session were four lists that were
reported as inconsistent as to how they render the entries’
status: Sometimes the icons did not match, sometimes the
labels.

They start their session in the frontend to find out:

1. how the icon selection and the label decoration is im-
plemented;

2. that the four lists are implemented similarly but with
important (and necessary) differences;

3. that “activeness” means different things, depending on
the entity type;

4. that they need to amend the backend (and the commu-
nication interface) because one entity type is lacking
the required status information; and

5. that there is another boolean property for all these
entity types, called “isMirror”, that is handled incon-
sistently across the types as well.

They end up with changes in both front- and backend, and
with a consistent rendering behavior for all four types for
the isActive property.

4.2 The Session

4.2.1 Understanding Status Quo (RESYNC PUSH TALK)

Situation
In the beginning, developers J and C read the bug tracker
entry and reproduced the faulty behavior in the running
application: Four list displays have four different ways to
represent the inactiveness of their entries. Since the bug
tracker entry stated no specific requirements, the pair dis-
cussed the intended graphical appearance of inactive entries.
They tried to phone the product management, but could
not reach anyone. Developer J was close to canceling the
session in the fifth minute, but C came up with a software
design that would allow to defer the actual graphic decision;
J agreed. This is the first example of INFERIOR.

On the technical level, the first of the four lists is the
FinishTasksPage, of which the entries have correctly ren-
dered labels, but the same icon for both ‘active’ and ‘inac-
tive’ states. Internally, these entries are TaskNode objects,
a subclass of Node, which in turn defines two methods for
rendering the icons: First, the parameterless getIconName

which only depends on the Node object itself. Second, get-
IconPrefix which should encapsulate configurable behavior
and is therefore provided with a ViewConfig parameter.

The getIconName method is already implemented in Task-

Node; the prefix method is missing, so the empty default im-
plementation is inherited. TaskNode’s getIconName method
calls a static method of another Node subclass, called Object-

Node. This delegation can be considered a form of horizontal
inheritance, which will cause the pair some trouble.

The pair is yet unaware of all of these technicalities.

What happens
The pair needs to find the source code responsible for cre-
ating the false output. After about two minutes of going
through the source code in a top-down fashion, they arrive
at a point where J has gathered enough understanding to
make a concrete design proposal, which C does not yet un-
derstand. As J notices that his partner is still puzzled by
the currently visible source code, he starts to explain it. C
then understands the delegation and accepts the existence
of the two-part icon name, but is perplexed about the ra-
tionale behind it, as he does not know about the ViewCon-

fig yet. He starts to read the surrounding source code and
keeps uttering his insights, allowing J to follow him and
hook in with further explanations. A few moments later,

C understands both the current code and J ’s design pro-
posal, and they can start with the implementation of Task-
Node.getIconPrefix().

In the developers’ own words, it sounded like this:

J : “Sure, we need to override getIconPrefix in Task-

Node . . . it’s missing.” – C: “Uh? Is it reasonable to . . . ”
– J : “See, the icon name is plugged together . . . and the
TaskNode simply delegates this to the ObjectNode, that’s
why these are all static methods there, in order to not
duplicate the code.” – C: “Ah! But why is it built so cum-
bersome?” – J : “Who knows . . . ” – C: “Well, I want
to know. <*opens call-hierarchy of current method*>
See, it’s called from Html.renderIcon() <*opens that
method*> and here it’s done through the ViewConfig” –
J : “Sure, it’s done the same way now, and it’s right that
way. We only need to overwrite that method.” – C: “Ah,
it’s because of the on/off, the showing and hiding and
stuff.” – J : “Exactly.”

What it means
The excerpt presented above actually contains three instances
of what we call a Knowledge Transfer Episode or just
�Episode: An interaction sequence that pertains to a single
Topic that is pursued in a constant Mode (details follow).

First, neither of the two developers was in possession of
the required information, the �Target Content (i.e. “The
responsible method is TaskNode.getIconPrefix()”). But
both of them understand the �Topic (the focus of inter-
est, i.e. “Which is the responsible method?”), so they could
start to generate the Target Content in a �Co-Produce
Episode: Both developers are engaged in generating a shared
understanding of the system’s status quo.

Second, J perceived an �External Knowledge Need
as C was lagging behind (“Uh”), and then explained parts
of the current design. He started a �Push Episode, i.e.
he explained without waiting for C to formulate an actual
question.

Third, C still had an �Internal Knowledge Need which
he dealt with through the “solo variant” of Co-Produce:
He gained a better understanding as a �Talking Pioneer.
Since C kept uttering his insights, J could provide him with
relevant and timely information.

To summarize the concepts so far: Episodes revolve around
Topics which arise from perceived Knowledge Needs (in-
ternal or external) which can be satisfied by the Target
Content. Depending on whether any of the two develop-
ers already possesses the Target Content, the Episode
can run in the �Modes Push and Pull (see below); other-
wise it will be created in Co-Production or Pioneering
Production.

Discussion
Had J worked alone at this point, he could have started the
implementation about one minute earlier – the time it took C
to catch up. This is an example of RESYNC: The developers
invested some time to be able to work as a unit, and we will
see the benefits of their pair work in Sections 4.2.2, 4.2.8
and 4.2.9.

Furthermore, this is an example of PUSH. C did not need
to formulate a question for J to start with explanations. It
was J who deemed it useful to keep his partner close by.

Finally, this is an example of TALK. After J ’s explana-
tions, C developed a new Need that his partner would not

clarify. But instead of silently reading source code – as some
other developers in our session recordings do in such situa-
tions – he kept uttering his insights, thus making it easier
for J to help him.

In comparison with our other sessions, this is a not too
common beginning. Usually, one of the developers has al-
ready worked on the task, making him the “Task Expert”
(see [12]). In such constellations, the Task Expert will at
least try to start Pushing the recent changes. Depending on
the partner and her knowledge level, this might be sufficient
to actually start the session – in other cases, the partner
favors to engage in a Pioneering Episode and take a look
himself. �Silent Pioneering, i.e. not letting the partner
know anything about one’s progress, is something that some
developers do, but it can also lead to hard-to-detect misun-
derstandings.

4.2.2 Effortless Pull and Push I (PUSH RESYNC)

Situation
The pair has decided to overwrite the method getIconPre-

fix in the TaskNode class and has written down the method
signature; the method body is still empty.

Technically, TaskNodes do not have a field for holding
their ‘active’ state. Instead, there is only a so-called Object-

Handle to access the underlying business object called CM-

MiniObject. The ObjectHandle offers two fetchMiniOb-

ject methods to retrieve that business object: One without
arguments, and another with a boolean argument allowMi-
croObject. If set to true, that method will return a fallback
MicroObject in case the actual MiniObject is not available.1

What happens
C sees both ‘fetch’ methods offered by Eclipse’s auto-comple-
tion, remembers a pending API change, and asks J about
it. J answers promptly, understands why C is asking, and
votes for the method with the boolean argument, which C
then chooses.

C: “Do the MicroObjects still exist?” – J : “Yes, they do.
They do here, on your machine. On the working branch,
however . . .true.”

They decide on storing the return value of fetchMiniOb-
ject(true) in a local variable, and C expects the type to
be MiniObject, but such class cannot be found by the IDE.
J sees this and corrects two things at once (the missing
CM-prefix and the wrong class) just by saying:

J : “CM . . .MicroObject.”

What it means
C’s question (and J ’s answer) form a very short �Pull
Episode, i.e. actively triggering explanations, e.g. by ask-
ing questions. J then inferred an External Knowledge
Need from C’s actions and Pushed information about the
actual method return type (PUSH).

Discussion
Both Episodes are about as short as they could be. Staying
close together throughout the session is what enables this
pair to achieve this (RESYNC).

Again, it may seem as if J would be better off alone: He
knows the answers to all the questions that arise along the
1In our work, technical details like these frequently need to
be understood (even without suitable discussion of the pair)
in order to make sense of the pair’s behavior.

way. But on the one hand, C’s great moments are yet to
come, and this is the necessary groundwork. One the other
hand, without C’s design proposal at the very beginning of
the session, J would probably have deferred working on that
task until the product management was available again.

In other sessions, neither Push nor Pull Episode are reg-
ularly that short. The first may require short check-backs,
latter may require multiple attempts from different angles
until the knowledgeable partner eventually understands the
question. We already reported on much longer and more
structured Pull Episodes, in particular the Clarification
Cascade [16].

4.2.3 Push to clear-up Misconceptions (PUSH)

Situation
The first version of TaskNode.getIconPrefix() was com-
pilation error free. However, J noticed that the current
implementation did not take its ViewConfig parameter into
account. They decided to search for further reusable meth-
ods, found one, inspected its code, and decided to change
their implementation to reuse that method.

Technically, the implementation of TaskNode.getIcon-

Prefix() consists of two steps. First, the object’s activeness
is determined. Second, the activeness information is used to
determine the icon prefix.

The first version implemented by the pair did the first step
locally and delegated the second step to a static method of
the sibling class ObjectNode. The newly found method is
another static member of ObjectNode and is able to take
over the first step, too, and can even consider the given
ViewConfig. That method can handle both MicroObjects

(the superclass, in case of an error) and MiniObjects (the
subclass, the actual business object). It performs only super-
ficial checks on the first, but in-depth checks on the latter.

What happens
After delegating the activeness-determination to the newly
found method, C has recalled that it does only general checks
on MicroObjects. C confuses super- and subclass, and starts
to change the implementation so it uses the first fetch-

MiniObject() variant which returns actual MiniObjects in-
stead. As this would bypass the error-handling of the second
fetch method, J objects and constructs an easy-to-grasp ex-
ample for the error handling. C understands, remembers the
correct class hierarchy, and undoes his source code changes.

C: <*changes the called method*> – J : “No!” – C: “Yes!
We saw that it [ObjectNode] only asks isActive() and
disregards the editedContent [part of the in-depth check]”
– J :“But what happens if the Task belongs a non-readable
object?” – C:“Uh, then I’ll see an Exception.” – J :“Yup.”
– C: “Ah, sure, it’s fall-back <*undoes his changes*>,
right, right.”

What it means
J did not hesitate to Push the rationale behind using the
superclass as he saw that C was about to make a mistake
from which he inferred C’s Knowledge Need.

Discussion
J helps C avoid an expensive mistake he would probably
have made alone. This is an example of PUSH.

Across our analyzed sessions, there were very few instances
of Push Episodes which were not adequate, so behavior as
that seen above is typical. The Pushed information may not

always be correct (as in Section 4.2.6) or crucial for the ses-
sion. But we did not encounter Push Episodes that caused
actual harm.

4.2.4 Doing the Right Thing (TALK INFERIOR)

Situation
The pair already worked on two of the overall four lists.
This first list (containing TaskNodes, see excerpts above) was
simple because they could use an existing ObjectHandle to
fetch a MiniObject for which the ObjectNode class already
encapsulated the activeness-determining logic.

The second list displayed TaskOverviewNodes and like the
first one, the labels were rendered correctly and the icons
were not. But unlike the first node type, it used a low-level
mechanism to call the XML-API of the backend for retriev-
ing the data. After a Co-Produce Episode the pair under-
stood that they need to amend both the XML query placed
by the Java frontend and the database interaction in the
Objective-C backend to retrieve the objects’ activeness in-
formation. They decided to skip the second list to be able
to finish the Java frontend first, before switching to the Ob-
jective-C backend.

They just looked at the third list in the web browser:
Here, the icons appeared to be rendered correctly (indeed,
the pair will find an existing getIconPrefix implementation
here). The entries’ labels, however, did not yet reflect their
activeness. The pair already found out which Node subclass
the third list uses and opened its source code.

On a technical level, the third list uses VersionEntry-

Nodes, which represent previous revisions of contents or “ar-
chived contents”. The activeness of such entries only de-
pends on the ‘valid until’ timestamp, which leads to a much
simpler logic than ObjectNode’s activeness-determining logic.

What happens here
As they are about to start looking for the (faulty) label-ren-
dering logic, C is puzzled as he discovers that the correct-
ly-behaving icon-rendering uses a simple local method to de-
termine the activeness, instead of delegating it. J wants to
continue with the label-rendering, but C is unsure whether
the underlying logic for both renderings is correct. After a
short Pioneering code-inspection, he comes to the conclu-
sion that he does not trust the logic and that he would like
to have that functionality in the backend instead. J dis-
agrees and points out that there is nothing wrong with the
logic as it is.

C: “Uh, why does it have its own isInactive()?” –
J : “Don’t know. And I don’t want to . . . ” – C: “No, I
want to fix this. In the end, this one does it different than
the other, and it’s crappy again. <*inspects code, makes
design proposal*> I mean, the backend knows whether
the contents are active or inactive anyway. And I don’t
want to have a duplicated calculation here in the GUI
that is probably broken anyway.” – J : “. . . Why should
it be broken?” – C: “Because it depends on more than
just . . . ” – J : “Nope, this <*points at current imple-
mentation*> is all that counts for archived contents” –
C: “<*reads again*> hm, yeah, guess you’re right. Yes,
you are right.”

What it means
J did not enter C’s Pull Episode. As C’s doubts about the
local method are not resolved and the Internal Knowl-

edge Need still exists, he starts a Talking Pioneering
Episode to understand the code better. This way, J could
follow C’s thoughts and eventually comprehend his misun-
derstanding: C was not aware that the activeness of Version-
EntryNodes is, in fact, easy to determine. Consequently, he
expected a complex logic but found a simple one, which, to
him, was suspicious.

Discussion
C was diligent here for a good reason: He noticed an anomaly
in the code which the frontend expert next to him could not
explain away. In the end, J was right about this method
being unproblematic, but he certainly did not know this
from the start in the sense of justified true belief. Arguably,
C’s diligence might have just as well led to the discovery of
an actual problem, making this an example of INFERIOR.

And yet again, C’s utterances while he Pioneered made
it easier for J to help him (TALK).

TALK INFERIOR behavior like this is common in our record-
ings.

4.2.5 Lack of Synchronization (PARALLEL)

Situation
After having understood that VersionEntryNode has a local
implementation of isInactive for a good reason, the pair
shortly discussed the pros and cons of moving such logic to
the backend. They agreed on deferring this until the actual
task is done. At this point C lost track of the latest open
Topic – which was: understanding the label-rendering logic
of the third list – and needed to be reminded by J .

What happens here
They open the source code of the third list again, and start
reading. They both come up with different ideas about
where to look next, do not explicitly decide against one of
them, but simply follow C’s idea. After one minute, C even
halfheartedly brings up J ’s idea again but it goes unheard.
After three more minutes, they arrive at the same conclusion
that J suspected from the beginning.

<simultaneously> J : “Ah, the Nodes themselves should
have such rendering stuff, right?” || C: “The problem is,
this is a List.”
J :“Ah, this is a leftover old-style list page!” – C:“Exactly
[. . .] and those render themselves here <*navigates to a
method of the superclass*>” – <one minute of scrolling
through classes> – C:“Maybe it’s really the Nodes . . . no.”
– <three minutes of scrolling through classes> – C: “Ha,
it says node.getRenderingClass. So it turns out the
Nodes need to do this.”

What it means
This is no Co-Production because the developers did not
fully synchronize their insights. Instead, they performed a
�Parallel Production.

Discussion
That mode is risky. It might save the synchronization effort
and the pair might still end up with a similar understanding
just like after a successful Co-Production. But they might
just as well overlook relevant aspects and waste time on
non-optimal paths (PARALLEL).

In the example above the pair lost about four minutes. In
another session – KA6, with two developers who are in the
process of learning a new JavaScript framework – the pair

did not notice it was not synchronized for a much longer pe-
riod. Developers Si and Sa were reading in the online docu-
mentation about how to programmatically trigger an event,
which they needed for writing an integration test – but the
only utterances they made were Sa: “Ah” and Si: “Ah-ha!”.
They closed the documentation, kept on working, and after
40 minutes, Sa is puzzled by a code statement Si produced
a few minutes ago. It was an idiom Si memorized from
the documentation while saying “Ah-ha!”. He understood
it, used it, and Sa was probably not on the same page for
40 minutes.

PARALLEL behavior is common, but differs greatly in the
amount of time that is lost.

4.2.6 Complementary Knowledge
(INFERIOR NOTEACHER)

Situation
The pair fixed the third list, such that the labels of inactive
entries are rendered correctly. The fourth list rendered the
icons correctly, but not the labels. The pair found out the
node type of the fourth list, and started to take a look at
its icon-rendering implementation before planning to correct
the label-rendering.

The nodes in question are UnreachableLinkNodes which
represent internal or external links that are used somewhere
without having a valid target. Similar to VersionEntryN-

ode, the UnreachableLinkNode class implements the active-
ness-determination logic locally, which is rather simple: Dead
internal links are considered to be “inactive”.

What happens here
The pair does not understand the logic behind the imple-
mentation they are looking at. The frontend expert J no-
tices this oddity in the code, but it is the backend developer
C who – after understanding the pieces – can make the con-
nection between something being ‘resolved’ and something
being ‘inactive’.

J : “Ha! Ha! <*points at screen*> It uses isResolved-

Internal? . . . How does it relate to being inactive?” –
C: “Eh, what does isResolvedInternal even mean?” –
J : “Well, if it’s an internal link and it’s resolved.”2 –
C: “Well, it’s resolved. But it’s also not reachable, be-
cause it’s on the ‘Not reachable’ page. Either because the
external page is not available, OR because the internal
link target is not active anymore. <*smirks at J *> So
they used this circumstance and say: ‘Okay, if it isRe-

solvedInternal, but it should be displayed here, then it’s
obviously inactive.’ ” – J : “Ok, yeah.”

Although we cannot know how long J would have needed
to come to the same conclusion, another episode one minute
later indicates that J ’s understanding is not as solid as C’s.

J : “No-no-no, if it’s resolved then everything’s fine.” –
C: “Nope, then it’s inactive.” – J : “Huh? No way!” –
C: “isResolvedInternal means ‘this link is a resolved

internal link.’ ” – J : “Sure <*facepalms*> and it’s un-

reachable, we already know that. Yes, ok. T’was non-
sense, you’re right.”

2J ’s original German answer was not as trivial. Both de-
velopers spoke German throughout the session, except for
when they referred to the English identifiers from the source
code. In a sense, the developers could actually “hear” the
monospaced font used in this article.

What it means
The first part is another Co-Production Episode in which
both developers are actively engaged.

In the second part, both developers perceive an External
Knowledge Need in their respective partner at the same
time and both try to Push what they think should be the
correct Target Content.

Discussion
This time, C was faster than J , even though it was J ’s area
of expertise (INFERIOR). But without J ’s reassuring expla-
nation of what the called method actually does, it would
have been much harder for C, too (NOTEACHER).

The frequency of INFERIOR NOTEACHER behavior is in-
duced by how often knowledge possessed by only one pair
member is relevant for the task at hand. In some sessions
you will never see such behavior, in others they occur all the
time.

4.2.7 Investing in Common Ground I (TALK RESYNC)

Situation
The pair looked at all four lists and solved all problems they
could tackle without leaving the frontend source code. The
remaining changes for the session’s task required to extend
the backend API. They continued their work at the second
list, which they skipped in the first pass (see Section 4.2.4).

The second list retrieves data from the backend through
named commands which are wrapped in Java classes called
Accessors. They do not contain an explicit list of fields to
fetch; instead, the frontend sends the command to the back-
end, which creates an XML response with a certain struc-
ture, which the frontend simply expects to be well-formed
when it creates Java objects from it.

What happens
J proposes to implement the frontend part first (pretending
the backend would already send all necessary data), and
then turn to the backend to actually include the new data
in the response. C, however, expects the frontend to ask for
the data specifically – like a qualified SQL SELECT query
– which is why he does not understand J ’s proposal.

Instead of following J ’s proposal, C wants to know how
the backend extracts the fields-to-fetch from the command
(not knowing that this is not how this list’s command works).
J eventually understands C’s misconception and clarifies the
issue.

J : “We just need to add a new key to the map. Every-
thing it gets from the backend is put into this map.” –
C: “Everything?” – J : “Yep. So, in that Node, we can
pretend we already got something back.” – C: “And this
TaskAccessor is only used for the TaskOverviewPage?”
– J : “Yep.” – C: “But who does it ask?” – J : “It’s a
special thingy.” – C: “Ah, indeed . . .CMD_LIST_OVERVIEW
<*minimizes Eclipse and switches to the backend source
code*>” – J : “That’s really a special . . . huh, why do
jump away now?” – C: “I want to see how it’s imple-
mented.” – J : “But why? You simply define a new key,
say you want that one too, and then we are done in the
GUI – just that we only don’t get the key yet. And in the
end, we add it to the backend. <*waits and watches C
scroll*>” – C: “<*navigates through the backend*> See,
it doesn’t care . . . ” – J : “Sure, you don’t say what you
want, but . . . ” – C: “. . . here are no keys!” – J : “No, of

course not. It simply returns a set, but you don’t ask for
something specific. <*points at Java code*> These are
the keys as they’re returned.” – C: “Huh? But it needs
to ask it somewhere?” – J : “No, there is this command
and it sends back a fixed set. In the frontend we only say
how they’re called so we can pull them out correctly.” –
C: “Ah! Now I got it.”

What it means
Not only does C not understand J ’s initial design proposal.
Moreover, he does not even recognize that he does not un-
derstand it: There is no Internal Knowledge Need.

Instead, C follows a different Need as a Talking Pi-
oneer. J starts to perceive an External Knowledge
Need as he begins to understand C’s misconception, and
eventually starts to Push.

Discussion
The Talking Pioneering Episode of C was necessary to
clear up his misconception: C himself did not become aware
of it until he saw the actual source code which did not fit his
expectations; J needed to see C struggle – and he let him –
before he could understand the misconception of his partner
(TALK, RESYNC).

4.2.8 Effortless Push II (RESYNC PUSH)

Situation
After a few minutes with very little progress C realized that
J ’s initial idea for how to retrieve additional data from the
backend was not expedient. Together they found a better
approach, and amended the Node class of the second list to
include a new field isActive. They just started implement-
ing the icon-rendering method.

Yet again, the pair fixed the icon-rendering by overwriting
the getIconPrefix method with a delegation call to Object-

Node. That methods takes two boolean parameters: The
already known isActive parameter and another parame-
ter called isMirror, which indicates whether the underlying
business object is mirrored on another server.

What happens
While implementing, C notices that he has no idea what to
use for the isMirror parameter in the call he just wrote.
He stops typing and J immediately provides him with the
domain knowledge needed.

C: “<*stops typing*> Ah . . . ” – J : “There are no tasks

on mirrors.” – C: “Really?” – J : “Yup.” – C: “Right.
<*types false*>”

What it means
Even before C can formulate a question to articulate his
Internal Need, J already has perceived an External
Need and starts to Push.

Discussion
If the pair constantly invests in staying closely together
throughout the session, such short Episodes are normal. The
whole scene lasted about five seconds.

4.2.9 Investing in Common Ground II
(TALK RESYNC PUSH)

Situation
The frontend part of the second list was already prepared
to receive the entries’ activeness information from the back-

end. Since that boolean value is not stored in the database
as a distinct field, it needs to be computed by the back-
end logic. The pair already found the responsible Objec-
tive-C file which receives the frontend command, issues the
database query, and prepares the result to be sent back.
They also found a static method that performs the neces-
sary time and date comparison.

The underlying database table offers the fields valid-

From and validUntil, which are both already fetched and
stored as local variables in the Objective-C code. The static
method for date and time comparison is called CMContent.

isActive: It takes the two parameters called validUntil

and from, and returns true if the latter is chronologically
before the first.

In addition to the static isActive method, there is also
an instance method with the same name, which takes no pa-
rameters and internally calls the static method with [self

validUntil] and the current timestamp “now”, i.e. disre-
garding the instance’s validFrom field. In other words: CM-

Content objects are active as long as the validUntil field
is not in the past.

In the excerpt below, “from” refers to the static method’s
parameter name, and “validFrom” to the field fetched from
the database.

What happens
As they read up on the methods implementations, C is faster
than J and formulates a design proposal: He wants to reuse
the static method and mimic the behavior of the instance
method. J does not react. C therefore explains the logic
behind it; J understands.

C: “Ah, we need from, too. <*reads on*> But from is
always now. So we don’t need to fetch validFrom.” –
J : “. . . ” – C: “You know? Because, if it’s in the future,
it’s already valid . . . ” – J : “That’s stupid, but . . . ” –
C: “It’s already active.” – J : “Really? Is it?” – C: “It
basically means that it’s not deactivated.” – J : “Ah, ok.”

What it means
C’s utterances did not suffice to fully engage J in the Pro-
duction of the Target Content, qualifying this Episode
as Talking Pioneering rather than Co-Production. How-
ever, as soon as C noticed his partner was not as fast, he
started to Push.

Discussion
The Objective-C backend is C’s home ground, and this is
only one example of him being more dexterous. But again,
if the pair invests in staying closely together throughout the
session, complicated issues can be discussed with minimum
effort. That scene was a little more than 20 seconds.

In general, investing in common ground is a fundamen-
tally important behavior in pair programming sessions and
is hence frequent at least with skilled pairs.

4.3 Additional remarks on
NOTEACHER & INFERIOR

A typical reaction of pair programming critics on the sce-
nario of the above session – two sub-systems, one expert
for each – would be to suggest the pair should clarify what
needs to be changed in each sub-subsystem and split up as
soon as possible to work separately. This reflects the afore-
mentioned tacit assumptions that those experts (1) will not

learn anything relevant and (2) the knowledge-wise inferior
pair member will not be of much help anyway.

Regarding the second assumption, C may not have looked
like much of a help while the pair was still working on the
frontend, but this impression would be misled:

• He forced J to think about things that J would have
ignored (Sections 4.2.1 and 4.2.4 where J just said “Who
knows . . . ” and “I don’t want to [know now]”), and which
actually could have been problematic for their session.

• Many of the good design decisions along the way (which
were not explicitly in the scope of this article) came from
C: It started with the design proposal without which J
would not have worked on this task until the product
management made a decision (see Section 4.2.1).

When they were waiting for their frontend changes to
be compiled and deployed, he made another frontend-re-
lated design proposal that J considered “a great idea”
and jotted down immediately.

Along the way, C also noticed and fixed several minor
code smells, such as repeated Strings, which J proba-
bly already had a blinkered attitude to, but nevertheless
found worthy to be dealt with.

• Finally, C solved the conundrum in Section 4.2.6.

And even though it is not explicitly shown in the excerpts
above, J did do similar things while they were working on
the backend.

Regarding the first assumption, we cannot quantify the ef-
fect of the transferred knowledge. It is difficult to pinpoint
even the in-session effects of successful or bumpy knowl-
edge transfer episodes. We cannot see how C’s new frontend
knowledge influenced his work and the work of his team be-
yond this session (in this sense, the “pair” is indeed a “prob-
lematic unit of analysis”[13]). But there certainly are effects,
such as the developers becoming more versatile.

5. LIMITATIONS AND FURTHER WORK
We will discuss the limitations of our work along with its

possible extensions.

• Our analysis so far involved only German software de-
velopers. The pair’s language and culture certainly
plays a role in what does and what does not happen
in their programming sessions.

A small idiosyncrasy was already remarked above: Ger-
man software developers who use English identifiers in
their source code can use both natural languages to
easily distinguish (intentionally) blurry real-world con-
cepts from sharp technological concepts (e.g. by saying
something like “Es ist aktiv, aber nicht active” mean-
ing “It’s active, but not active”).

• We can make only very rough statements about the fre-
quency of the described phenomena, because so far we
are concerned with the existence of phenomena only.
A qualitative-quantitative approach could later be use-
ful to gain more objective characteristics of session
types, pair constellations, or pair programming skill
level. Also, our catalog of conceptualized phenomena
is certainly incomplete.

• The goal of our research is to provide practical guid-
ance to pair programmers. Some core elements of this
were presented in this article, yet the didactics, i.e.

how to teach it to developers who do not behave this
way yet, is unclear.

Due to the strict application of the Grounded Theory Method-
ology, especially through the practice of constant compari-
son (see Section 3), the concepts we report ought to be fully
consistent and reasonably adequate.

6. CONCLUSIONS
We have shown that pair programming is not either pro-

ductive or a knowledge transfer technique, but both at once.
We qualitatively analyzed several in-vivo pair programming
session recordings of professional software developers. We il-
lustrated our findings using one full-length session of a pro-
ductive expert-expert pair with many knowledge transfer
episodes.

The main take-aways are:

• Pair programming is a practice that is useful in more
cases than one might have thought. Even if you have a
highly skilled developer who could tackle tasks on her
own, collaborating closely with another expert can be
beneficial.

• Knowledge transfer is an important element even of
pair programming sessions with two expert partici-
pants.

• Do not focus on wall-clock time alone. Even though
they are hard to pinpoint, arguably, the effects of suc-
cessful knowledge transfer reach far beyond a single
session.

• Even in expert-expert constellations, not every knowl-
edge transfer episode goes frictionless. There is a clear
potential for training software developers to become
better pair programmers and we are working on a cur-
riculum.

Acknowledgments
This work was supported by a DFG grant and a PhD schol-
arship of the German Academic Exchange Service (DAAD).
We thank our pairs for allowing us to record and scrutinize
their sessions.

7. REFERENCES
[1] B. Bahrami, K. Olsen, P. E. Latham, A. Roepstorff,

G. Rees, and C. D. Frith. Optimally interacting
minds. Science, 329(5995):1081–1085, 2010.

[2] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 1999.

[3] J. Chong and T. Hurlbutt. The social dynamics of
pair programming. In Proc. 29th Int’l. Conf. on
Software Engineering, ICSE ’07, pages 354–363,
Washington, DC, USA, 2007. IEEE Computer Society.

[4] A. Cockburn and L. Williams. The costs and benefits
of pair programming. In Extreme programming
examined, pages 223–243. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[5] J. E. Hannay, T. Dyb̊a, E. Arisholm, and D. I.
Sjøberg. The effectiveness of pair programming: A
meta-analysis. Information and Software Technology,
51(7):1110–1122, 2009.

[6] C. McDowell, L. Werner, H. E. Bullock, and
J. Fernald. The impact of pair programming on
student performance, perception, and persistence. In
Proc. 25th Int’l. Conf. on Software Engineering, ICSE
’03, pages 602–607, Washington, DC, USA, 2003.
IEEE Computer Society.

[7] N. Miyake. Constructive interaction and the iterative
process of understanding. Cognitive Science,
10(2):151–177, 1986.

[8] R. L. Moreland, M. A. Hogg, and S. C. Hains. Back to
the future: Social psychological research on groups. J.
of Experimental Social Psychology, 30(6):527–555,
1994.

[9] T. Okada and H. A. Simon. Collaborative discovery in
a scientific domain. Cognitive Science, 21(2):109–146,
1997.

[10] D. W. Palmieri. Knowledge management through pair
programming. Master’s thesis, North Carolina State
University, 2002.

[11] L. Plonka, H. Sharp, J. van der Linden, and
Y. Dittrich. Knowledge transfer in pair programming:
An in-depth analysis. Int’l. J. of Human-Computer
Studies, 73:66–78, 2015.

[12] S. Salinger, F. Zieris, and L. Prechelt. Liberating pair
programming research from the oppressive
driver/observer regime. In Proc. 2013 Int’l. Conf. on
Software Engineering, ICSE ’13, pages 1201–1204,
Piscataway, NJ, USA, 2013. IEEE Press.

[13] D. Socha and K. Sutanto. The “pair” as a problematic
unit of analysis for pair programming. In Proc. Eighth
Int’l. Workshop on Cooperative and Human Aspects of
Software Engineering, CHASE ’15, pages 64–70,
Piscataway, NJ, USA, 2015. IEEE Press.

[14] A. L. Strauss and J. M. Corbin. Basics of Qualitative
Research: Grounded Theory Procedures and
Techniques. SAGE, 1990.

[15] K. D. Williams. Dyads can be groups (and often are).
Small Group Research, 41(2):268–274, 2010.

[16] F. Zieris and L. Prechelt. On knowledge transfer skill
in pair programming. In Proc. 8th ACM/IEEE Int’l.
Symposium on Empirical Software Engineering and
Measurement, ESEM ’14, pages 11:1–11:10, New York,
NY, USA, 2014. ACM.

