
Distributed-Pair Programming Can Work Well
and Is Not Just Distributed Pair-Programming

Julia Schenk
Freie Universität Berlin
Institut für Informatik

14195 Berlin, Germany
Julia.Schenk@fu-

berlin.de

Lutz Prechelt
Freie Universität Berlin
Institut für Informatik

14195 Berlin, Germany
prechelt@inf.fu-berlin.de

Stephan Salinger
Freie Universität Berlin
Institut für Informatik

14195 Berlin, Germany
Stephan.Salinger@fu-

berlin.de

ABSTRACT
Background: Distributed Pair Programming can be per-
formed via screensharing or via a distributed IDE. The lat-
ter offers the freedom of concurrent editing (which may be
helpful or damaging) and has even more awareness deficits
than screen sharing. Objective: Characterize how competent
distributed pair programmers may handle this additional
freedom and these additional awareness deficits and charac-
terize the impacts on the pair programming process. Method:
A revelatory case study, based on direct observation of a sin-
gle, highly competent distributed pair of industrial software
developers during a 3-day collaboration. We use record-
ings of these sessions and conceptualize the phenomena seen.
Results: 1. Skilled pairs may bridge the awareness deficits
without visible obstruction of the overall process. 2. Skilled
pairs may use the additional editing freedom in a useful
limited fashion, resulting in potentially better fluency of the
process than local pair programming. Conclusion: When
applied skillfully in an appropriate context, distributed-pair
programming can (not will!) work at least as well as local
pair programming.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous

General Terms
Human Factors

Keywords
distributed software development, collaboration, pair pro-
gramming, distributed pair programming

1. INTRODUCTION
Kent Beck defines pair programming (PP) as follows“Write

all production programs with two people sitting at one ma-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2768-8/14/05 ...$15.00.

chine. [. . . ] Pair programming is a dialog between two people
simultaneously programming (and analyzing and designing
and testing) and trying to program better.” [3, p.26].

Pair programming has the obivious disadvantage of block-
ing two developers rather than just one, but has many po-
tential advantages as well: It can be useful to reduce elapsed
time, to reduce defect density, to improve program design, to
make sure more than one person is familiar with each part
of the code, to increase the amount of knowledge available
when solving a task, to increase focus and keep up discipline,
to accelerate learning, and to build within-team trust, among
other things; see for instance [14, 19, 33]. There is a substan-
tial empirical research literature about pair programming;
see Williams’ summary [31] for a good overview. The evi-
dence is mixed, but it appears that in the right circumstances
pair programming is a very helpful technique. Unfortunately,
research cannot yet characterize well which are these right
circumstances.

Kent Beck thinks that one of the factors is pair program-
ming skill: “Pair programming [...] [is] a subtle skill” [2,
p.100]. We agree and have set out since 2004 to decipher the
actual work process of pair programming in order to charac-
terize this skill. We have just completed the foundation [23]
and the first results are now starting to appear [24].

So let us assume there are two skilled pair programmers
who have decided the circumstances are such that they should
practice pair programming. But what if they are not at the
same site? A recent survey of 326 practitioners mostly from
North America and Europe [32] had 96% of them answer
that their project involved distributed development (49%
even trans-continentally) – and these were all practitioners
of agile methods!

A possible solution is to mediate the pair programming
collaboration by technological means. For synchronous col-
laboration, as it is the case for distributed pair programming,
computer-supported cooperative work research (CSCW) con-
siders two approaches of such technological support: sharing
a single-user application (screen sharing) or using a dedicated
collaboration tool (here: a distributed IDE) [13].

For verbal communication we assume a good hands-free
audio connection of the partners, but in either case the aware-
ness of the physical actions and reactions of the partner is far
lower than in local pair programming and the tool determines
the availability of workspace awareness information as well
as the participants’ interaction capabilities; the tool has a
major impact on the collaboration process and can get in
the way.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

ICSE Companion’14, May 31 – June 7, 2014, Hyderabad, India
ACM 978-1-4503-2768-8/14/05
http://dx.doi.org/10.1145/2591062.2591188

74



Synchronous remote collaboration is known to be difficult
in general (“Distance matters”, [20]), but for agile software
development with its strong emphasis on intense human
interaction it sounds like an almost paradoxical idea not
likely to succeed [17].

The research presented here originally set out to character-
ize the process differences between local pair programming
and distributed pair programming, but this has proven too
difficult: We study actual problem-solving of industrial soft-
ware developers and so no two observations are ever exactly
comparable. Therefore, it is hard to determine whether and
where any particular behavioral difference observed between
two sessions comes from characteristics of the pair, from
characteristics of the tasks, or from the fact that one pair is
working locally and the other distributedly. We will have to
set a less ambitious research goal.

1.1 Research Approach and Objective
We will follow a case study approach in the sense of Yin

[35], each case being one pair of developers, and ask the
following research question:

How do distributed pair programmers cope with
those technology-induced influences on their situ-
ation that threaten successful collaboration?

We will derive the set of these influences theoretically (there
are only two), formulate issues of interest regarding these,
use direct observation of distributed pair work (by means of
recordings), conceptualize the behaviors seen (by means of
Grounded-Theory-style open coding and constant compari-
son), interpret the behaviors to evaluate the issues, and then
draw conclusions.

We originally studied several pairs, but eventually decided
to focus on only the most competent and successful one
of them and so turn the study from a multiple-case study
delivering a complicated, mixed message into a revelatory1,
single-case study providing the existence proof for something
that has not been described before: Industrial distributed
pair programming that appears to be as effective as if it had
been local pair programming. Conventional wisdom in the
field of CSCW suggests such a thing does not happen [20].

We will now derive the above-mentioned influences in
Subsections 1.2 and 1.5 and underway discuss the differences
between the three basic types of tool support (RPP, DPP,
and eDPP; we will study eDPP only) in Subsections 1.3 and
1.4.

1.2 Influence 1: Reduced Awareness
In local pair programming a rich set of cues is available

from posture, gesture, touching the partner’s body, handling
other objects, gaze direction, facial expression, and all kinds
of vocal and sub-vocal noises. These cues provide lots of
information relevant to the interaction of the pair members
and contribute to the pair members’ awareness of their part-
ner and the joint work. In a distributed setting, the cues
are reduced immensely: the vocal noises are transmitted

1Yin discusses five situations in which a single-case study
will often be sufficient: critical case, extreme case, unique
case, revelatory case, and representative case [35, pp.39–42].
Our case can be viewed as critical, extreme, relevatory, or
several of these. We will use elements from the extreme and
relevatory perspectives but do not discuss the discrimination
further.

much less finely and the other cues are essentially no longer
available at all.2 This reduction of physical awareness is a
major reason why synchronous collaboration is considered
inferior when it has to be mediated by technological means
[12].

Another reduction in awareness concerns the state of and
the activity in the joint computerized workspace (workspace
awareness). To explain the workspace awareness situation
of our study, we need to delve into the differences of tools
for RPP-style collaboration (which we do not study) and
DPP-style collaboration (which we do study).

1.3 Remote Pair Programming (RPP)
The collaboration mode to which we refer as remote pair

programming (RPP) is usually implemented by screen shar-
ing.3 With respect to viewing, one pair member’s desktop
(the local side) is transfered to the partner’s computer (the re-
mote side) via software such as VNC, Adobe Connect, Skype,
or many others. This provides strict WYSIWIS (What You
See Is What I See), meaning every participant sees the same
editor contents and editing activities, and perhaps even the
other one’s pointer [27]. Therefore the awareness of the tech-
nical workspace is good: If the remote screen is at least as
large, both partners see the same screen content, just as in
local pair programming. Depending on the software used,
the mouse cursor may be an exception.

With respect to operating the computer, either all input
device streams are merged into a single input stream or, more
commonly, strict floor control is used which will allow input
only by one participant at any time [27].

RPP involves an asymmetric situation: The remote part-
ner is disadvantaged when operating the computer because
she suffers from twice the network latency, possibly from
bandwith limitations, and from having to cope with the part-
ner’s IDE configuration (e.g. colors, layout, key bindings,
and so on). The latter is true for local pair programming as
well but the former tends to make RPP less than ideal.

1.4 Distributed Pair Programming (DPP and
eDPP)

Distributed pair programming (DPP) removes the asym-
metry of RPP. DPP uses a dedicated collaboration tool: a
distributed IDE. Such a tool replicates the files to both par-
ticipants and makes all editing operations local, transfering
them to the other side to keep the files in sync. The tool
will also transfer the cursor position and all text editor view
changes (scrolling, jumping, file switching). This approach
makes network latency easily bearable, makes bandwith re-
quirements small, and each participant can use his own IDE
settings and configuration.

Some such tools (such as Sangam [15] or XPairtise [26])
enforce a strict pair programming mode: Only one part-
ner is allowed input at any time and the views are kept in
sync as far as viewport layout permits, resulting in approx-

2At the current state of technology, pairs tend to prefer
working without a video connection [13, 28]. This was also
true of our participants, who had a video connection available
but turned it off. They stated that (1) the value it added
was very low and (2) the movement in the video image (on
the screen rather than at the edge of one’s field of vision)
distracted from the actual work.
3There are also RPP pairs using a shared text terminal, see
http://www.pairprogramwith.me. We ignore these here.

75



imate WYSIWIS. This article’s title calls this work mode
distributed pair-programming.

Other tools4 allow editing freedom, that is, independent
and concurrent editing and viewing: There is a “follow mode”
(“Shared Browsing” in [26]) in which pair member A’s view
follows the activity of the partner B, just like in strict DPP,
but A can leave it and become active at any time to view other
files, other regions of the same file, or to make changes, even
in the exact same spot that B is currently working on. The
editing activities of all participants are merged and applied
in the correct order to the code base each participant sees.
This is realized via an operational transformation algorithm
[30] ensuring unique and consistent editing results despite
the race conditions. If this modality is used occasionally but
the pair can still be said to perform pair programming, then
we call the resulting work mode extended distributed pair
programming (eDPP) or, as the title calls it, distributed-pair
programming.

In terms of workspace awareness, DPP is much more prob-
lematic than RPP: (1) The number of lines and characters
in the editor window may be different, so that one partner
may see more source code content than the other, which
may occasionally lead to communication problems. Markup
color differences may create similar issues. (2) When using
other applications such as a web browser or when testing the
application, their views are not transmitted to the partner.
Switching to screen sharing is required to bridge these situa-
tions where needed. (3) Even within the IDE, not all views
may be synchronized, in particular the package explorer view
and the various pop-up dialogs; this is tool-dependent.

If the pair makes use of editing freedom in eDPP, the
awareness situation becomes worse: After leaving follow
mode, the former observer may no longer see all of what the
former driver is doing and the former driver may not even
become aware of this fact.

1.5 Influence 2: Editing Freedom
An eDPP tool supports the side-by-side programming

work mode [6, Section 3.T8]: The partners work mostly
separately on separate but related sub-tasks and collaborate
synchronously only when and where needed [21]; they may
switch between pair programming and solo programming
many times.

This is clearly no longer pair programming, so if pair
programming was intended, slipping into side-by-side pro-
gramming may be problematic. Unfortunately, once a pair
programming pair makes any use of editing freedom at all,
there is no clear line indicating where pair programming ends
and side-by-side programming begins, so the editing freedom
of eDPP may prove to be a slippery slope and may threaten
the original goals (such as broadening the pair’s common
ground [20]) of their pair programming session.

1.6 Structure of this Article
We will now sketch the method of our work (Section 2)

before we introduce the specifics of our study setup including
the case (Section 3.1), the eDPP tool used (Section 3.2), ex-
pectations suggested by related work (Section 3.3), and the

4in particular VSAnywhere (https://vsanywhere.com) and
Saros http://www.saros-project.org/ (see Section 3.2), as
well as a few server-based IDEs specialized for developing web
applications and used via a web browser, notably Codenvy
(http://codenvy.com).

refined research questions resulting from all this (Section 3.4).
We then present the results and discussion (Sections 4 to
6: roles, awareness-related phenomena, editing-related phe-
nomena). After a discussion of the limitations of our work
(Section 7), we draw conclusions (Section 8).

2. METHOD
Here we describe how we collected the data of our study

(Subsection 2.1), how we analyzed the data (2.2), and in
what format we present the analysis results (2.3).

2.1 Data Collection Method
We have been collecting recordings of local pair program-

ming sessions since 2004 and of distributed pair programming
sessions (most of them eDPP, but also some RPP) since 2010;
some of them come from lab settings with student program-
mers, but most of them (37 sessions of 25 different pairs
involving 38 persons from 8 different companies from various
industries) involve professional software developers doing
their normal development work. The sessions have a typical
length of one to three hours.

For recording an eDPP session, we invite each of the two
partners into a separate(!) Adobe Connect web conferencing
session with us as the other end, have them each share their
screen (including webcam and audio), place the two web
browsers showing these web conference sessions on a single
large portrait-view monitor and record its screen with Cam-
tasia Studio. The recording contains for each pair member
all desktop activity, audio, and a small webcam view as seen
from atop that member’s monitor.

Note that the pair itself lacks such comprehensive overview:
Each of the two hears the partner’s audio (via Skype, using
headsets) but sees only his own desktop and IDE; they chose
not to use video because they found it more distracting than
useful, which is in line with claims elsewhere [13, 28]. The
pair volunteered to be recorded for research purposes after
they had received support in setting up Saros and general
advice on DPP from us when they had become interested in
using Saros.

2.2 Data Analysis Method
Our data analysis primarily uses elements of the Grounded

Theory Methodology (GTM, [29]) but does not aim at pro-
ducing an actual Grounded Theory and does not claim to
use GTM in full. We mainly use open coding [29, Sec-
tion II.5] and constant comparison [29, Section II.1], with
the theoretical sensitivity [29, Section I.3] oriented as de-
scribed in Section 3.4 and an overall workflow as described
in Section 1.1.

2.3 Notation
We will report our results narratively and join it with the

discussion and interpretation in order to avoid redundancy.
Our results are primarily individual concepts arising from
open coding and so may become hard to identify within the
narrative. Therefore, whenever we report one of the resulting
concepts, we typeset its name in small caps to make it visible.

Furthermore, the concepts have been elaborated to differ-
ent levels of precision and accuracy. Since there is not enough
space to present the concepts in full detail, we discriminate
three rough levels of elaboratedness as follows. “V” (as in
Some ConceptV) represents vague, informal concepts that
appeal to intuition and for which we have produced hardly

76



more definition than their name. “S” (Some ConceptS)
marks semi-complete concepts for which a concrete defini-
tion is available but where we expect that definition to be
incomplete and/or unstable (from the point of view of con-
tinued research on the topic). “C” (Some ConceptC) marks
completely elaborated concepts that we consider stable.

3. CONTEXT AND REFINED QUESTIONS
This section describes the specific context of our case study:

The pair and what they did (Subsection 3.1) and the specific
eDPP tool they used (Saros, Subsection 3.2). From these, we
then derive finer-grained research questions (Subsection 3.4).

3.1 The Case
Our pair consists of two male German software developers,

J1 working at a software development service company’s
home site and J2 working at its customer in a different city.
J2 is an intermediate-level software developer and has been
working on the customer’s information systems and workflow
automation software in the radio broadcasting domain for a
long time. We will call him“Dev” in this article. J1 is a senior
developer and software architect who is now assigned the
task to perform an overall review and design optimization of
J2’s workflow automation software together with J2. We will
call him “Arch” in this article. The two work together on this
for several days; they had other stretches of collaboration
previously and so are well-familiar with each other. The
recordings we made of this and have used for this article
cover three days of this collaboration; there are 7 recordings
(JA25 to JA8) between 0:42 hours and 2:01 hours length and
one (JA9) of 5:26 hours.

The first sessions focus on transfering domain knowledge
from Dev to Arch, performing a joint design review and
discussion, and transfering design knowledge from Arch to
Dev. They also involve refactorings. Later sessions revolve
around the re-design and re-implementation of one complete
module and most of the observations conceptualized below
stem from these.

3.2 The Tool: Saros
Saros [22]6 is an open source Eclipse plugin for eDPP that

realizes a distributed editor within the Eclipse IDE which
supports up to five users. We have been developing Saros
since 2006, initially focussing on functionality and recently
doing mostly architecture consolidation and usability work.
Saros has now reached industrial strength and marks the
state of the art in its area, on par with VSanywhere and
clearly superior to all other DPP and eDPP tools we are
aware of. In particular in terms of the workspace awareness
framework of Gutwin and Greenberg [12], Saros provides
all workspace awareness information relevant for real-time
collaboration.

For describing Saros, we will make use of the patterns for
computer-mediated interaction by Lukosch and Schümer [17,
26] and Capitalize The Respective Terms.

In Saros, one participant sends an Invitation for a Collabo-
rative Session to another participant who will automatically
receive a local copy of the files of one or more shared Eclipse
projects. Saros lets them concurrently view or edit the same

5We use global IDs for all our recordings; JA1 was a Saros
trial two weeks before.
6http://www.saros-project.org

or different files in the Shared Editor. It uses social rather
than technical Floor Control (alongside with Operational
Transformation to keep all copies in sync) and Conflict De-
tection to safeguard against external modifications. There is
also a simple Shared Graphical Editor for sketching. Activ-
ities in other views such as the package explorer or popup
dialogs are not transfered to the partner. A combined User
List and User Gallery shows all available users with their
Availability Status as well as the current session participants,
their markup color and the current usage of follow mode.
The file annotations and editor annotations shown in Figure 1
provide awareness of the partner’s actions and location in
the shared files:
1 The main Saros view shows the users, their colors, and the
follow mode indicator (not shown).
2 A session-independent Embedded Chat can be used for
coordination before and written communication during the
session.
3 A double arrow marks the files shared in a session.
4 A green dot marks files currently being viewed.
5 A yellow dot marks files currently open.
6 A Remote Field of Vision annotation indicates the line
range seen by the partner if viewports overlap.
7 A Remote Field of Vision annotation (pseudo-scrollbar)
indicates the line range seen by the partner even if viewports
do not overlap.
8 A Remote Selection shows the partner’s current selection;
the partner’s most recent edits are highlighted in a similar
color.
9 A Remote Cursor shows the partner’s cursor position.

3.3 Related Work
There is a wide spectrum of related work that is relevant

for our study but little of it is directly connected to our
research question. We will cluster the relevant literature and
shortly discuss the relevance of each cluster for our research
question.

There is substantial empirical literature on pair program-
ming [31], but almost all of it is quantitative and has little
to offer in terms of detailed process characterization. Of the
few more qualitative works, many use student programmers
in lab or homework situations and so not only reflect low
skill levels but also contexts not realistic for industrial use.

Regarding global software development (GSD, [1]), most
of today’s research concerns the team, project, or organiza-
tional level and so far focuses on the problems of GSD [11],
rather than on solutions for them. Topics are for instance
communication [16, 18], coordination [8], and trust [7, 9, 25].
Little is said about real-time collaboration of individuals and
the immediate programming process we are concerned with
here.

The substantial literature on distributed work from the
fields of organizational psychology and CSCW suggests that
the awareness issues in eDPP may be extremely detrimental.
For instance, Olson and Olson’s summary article “Distance
matters” [20] describes the notions of technology readiness,
collaboration readiness, and common ground as important
preconditions for successful collaboration. In our setting,
only collaboration readiness can (for our particular pair!) be
assumed. Whether current eDPP technology can provide
sufficient awareness and whether it will allow to create and
maintain sufficient common ground (on a task-specific micro-
level), in particular during uses of editing freedom, is unclear.

77



+

1 2

3

4

5

6

7

9

8

Figure 1: Screenshot of an ongoing Saros eDPP pair programming session. The awareness markup is high-
lighted; see the text for explanation.

From this point of view, we may expect the collaboration
to be hampered by many difficulties and to be much more
difficult than in local pair programming.

Finally, there is the notion of a driver role and an observer
(or navigator) role in pair programming; they are relevant for
the use of editing freedom. These roles are not mentioned
by Beck at all; their most popular source appears to be a
definition of pair programming by Williams et al. that in-
cludes the following: “One partner, the driver, controls the
pencil, mouse, or keyboard and writes the code. The other
partner continuously and actively observes the driver’s work,
watching for defects, thinking of alternatives, looking up re-
sources, and considering strategic implications. The partners
deliberately switch roles periodically.” [34] (a different version
of this definition is found in [33, p.3]).

Of the very few qualitative studies done so far of pair pro-
gramming, two conclude that this driver/observer distinction
is misleading and inappropriate.

First, Bryant et al., after systematic, quantitative, and
very focused verbal protocol analysis of on-site, everyday,
industrial pair programming, conclude “in contradiction to
what has previously been suggested [...] the pair programmers
in the sessions observed did not show a general difference in
the level of abstraction of their discussions according to role.”
and in particular find that the detection of minor mistakes
is done as much by the driver as by the observer [4].

Second, Chong and Hurlbutt [5], after informal data anal-
ysis of on-site, everyday, industrial pair programming, formu-
late even more strongly “Aside from the task of typing, we
found no consistent division of labor between the ’driver’ and
the ’navigator’.”. They also note that “control of the machine
input had a consistent, albeit subtle, influence on pair inter-

actions: the programmer that controlled machine input had
a distinct advantage with respect to decision-making.”. They
assume this to be a disadvantage of local pair programming
and recommend the use of dual keyboards and dual mice to
make driver changes maximally fluent in the local case. For
the distributed case, they advise against tools of the RPP
and strict DPP kind that enforce and hence emphasize the
driver/non-driver distinction. Their article does not discuss
the problems that may result from having and using editing
freedom in a reduced-awareness situation, however.

Both of these sources suggest that eDPP may be quite
different from standard pair programming and it remains
unclear whether this will be an advantage, a disadvantage,
or can be both.

3.4 Refined Research Questions
Based on the general discussion of the influences in Subsec-

tions 1.2 to 1.5, the more specific description of our particular
research setup in Subsections 3.1 and 3.2, and the expec-
tations that can be derived from related work as discussed
just above, we now formulate several finer-grained research
questions in order to focus our attention during the data
analysis. Two of these concern the effects of the awareness
issues, the other four concern the use and effects of editing
freedom:
APhys (which mnemonically stands for “awareness physi-
cal”): When and how does the reduced physical awareness
influence eDPP?
AWorksp (“awareness workspace”): When and how do the
limitations of Saros’ workspace awareness influence eDPP?
FView (“freedom viewing”): When and how does the pair
make use of concurrent independent viewing?

78



FEdit (“freedom editing”): When and how does the pair
make use of concurrent independent editing?
FPos (“freedom positive effects”): When and how does mak-
ing use of editing freedom appear to help the process?
FNeg (“freedom negative effects”): When and how does
making use of editing freedom appear to hurt the process?

4. RESULTS: ROLES
To provide a context for what we have observed concerning

roles in DPP we first introduce the role definitions in PP.
For PP in general, we fully agree with the results of Chong

and Hurlbutt and of Bryant et al. that the driver/observer
roles contribute little to understanding PP properly; we have
in fact started work to generate a more meaningful set of
roles [24]. For understanding the differences between PP and
DPP, however, driver and observer are helpful notions.

In first approximation, we define DriverS to mean a person
operating the computer to solve the overall task and Ob-
serverS to mean a person in a supporting role influencing the
driver in doing this. Even this supposedly trivial definition
can be surprisingly ambiguous due to keyboard/mouse splits,
enforced typing, or in dual-keyboard/dual-mouse settings. In
an eDPP setting, this gets worse: There is not just a second
keyboard, but also a second cursor and screen.

What we have observed is that the ObserverS in eDPP
gradually gets active and performs activities that he could not
carry out in local PP, so we introduce the additional role of
Active ObserverS for someone who mainly “observes” but
also occasionally operates the computer to provide support.

If the pair symmetrically pursues two subtasks in parallel,
both participants are DriverS. In a discussion-only phase
where computer operation is neither required nor imminent,
both participants become DiscussantS and there is neither
a DriverS nor an ObserverS.

We shortly come back to DiscussantS in Section 5 on
awareness; Active ObserverS is the main topic in Section 6
on concurrent editing.

5. RESULTS: AWARENESS
We cover the awareness issues by working through a num-

ber of contexts in which they are dominated by different
needs and constraints.

5.1 Awareness in Interactive Testing
In local PP and RPP, the awareness difference between

editing text files on the one hand and running programs for
testing7 on the other hand is minor.

For DPP, Lukosch and Schümer [17] suggest the Dis-
tributed Commands pattern as a technical solution to support
the testing activity in DPP, meaning that if one partner runs
a test command this is executed on the other’s side, too.
However, Saros provides no support for this, resulting in a
Blind PeriodS for the partner. Interestingly, our pair indeed
emulated the Distributed Commands functionality manually:
They performed Parallel TestingC, where each of the two
started the test locally and they used VerbalizationC to
perform identical input actions.8

7or other non-editing actions such as consulting a web
browser or email client; we do not elaborate these here.
8We have seen the use of Screen SharingC in another
pair and a third conceivable strategy (which we have not
yet seen) would be one-sided testing supported with only

This behavior pertains to AWorksp. It appears cumber-
some but we saw no indications that it (or the nature of
the resulting testing process, which for our pair used to
be straightforward) inhibited the process beyond the few
seconds of additional time required.

5.2 Awareness of Eclipse Dialog Windows
When the DriverS opens an IDE dialog (such as a wizard,

search dialog, or refactoring dialog) and the partner is in
follow mode, from the awareness point of view an ideal eDPP
tool would automatically transmit all relevant information
to the remote side (e.g. via a small window-screen sharing
view). Saros does not do that yet and we expected this would
be a substantial disadvantage.

It turned out, however, that it is actually almost no prob-
lem at all. Again, the pair used two different strategies:
(1) Awareness BridgingS: While operating the dialog the
DriverS does think aloud concerning relevant dialog options
and his inputs. Note this is more than mere VerbalizationC

of actions. It occured for simple dialogs such as the “rename”
refactoring dialog as well as for more complex ones, e.g. the
create class wizard or the search dialog.
(2) Technology-triggered SoloC: For complex dialogs
we often observed that the unilateral operation of a dialog
was preceded by an explicit negotiation and agreement re-
garding the intended work step. The DriverS would then
accomplish this step alone while the partner simply waits for
the result, for example the new class, to appear. We have
never seen Screen SharingC for dialog windows.

Example for Technology-triggered SoloC combined
with Awareness BridgingS using the “new package” dialog:
Dev [selects method ‘getLatestRemoteRawFile]: “OK, now
we should write a test case.”
Arch: “Yes.”
Dev: “That tests just this function”
Arch: “Yes.”
Dev: “You are with me, right?”
Arch: “Yes.”
Dev: “Then we create a test.” [goes to package explorer]

“Oh, that’s missing.” [opens “New Source Folder” dialog
and mumbles:] “source folder” [types: “test” in input field
for folder name and mumbles:] “test” [hits enter to create
the folder, then opens new package dialog and mumbles:]

“package” [mumbles as he types into the “Name” input field:]
“Transcoder was how we wanted to call it or how did we want
to call it? So I create the test package right.”
Arch: “Eeeer, we wrote it up somehwhere.”
Dev: “Oh yes, got it, the TODO down here: newstranscod-
ing”
Dev [verbalizes typing]: “news-trans-co-ding”

These behaviors pertain to AWorksp and the finding is
again pleasant: The pair appeared to be sufficiently familiar
with all dialogs it used that it was never a problem for the
remote partner to not be able to see the actual dialog. Even
better, we observed that Technology-triggered SoloC

allows the ObserverS to relax for a moment, apparently
without much risk of overtaxing the DriverS.

One might think the loss of the review effect during the
Technology-triggered SoloC will be problematic, but
we never found this to be the case for our pair: After the
Technology-triggered SoloC, the relevant result is vis-

VerbalizationC.

79



ible and the ObserverS inspects it. For example, we saw
the ObserverS instantly recognize a misspelled class name
when the class newly created by the partner appeared.

5.3 Awareness During General Editing
When editing and viewing files in normal pair programming

manner, our pair regularly enabled Saros’ follow mode. Com-
bined with the Remote Field of Vision annotation (marked
6 in Figure 1), this apparently served its purpose well: We
did not notice any detours or misunderstandings that ap-
peared to arise due to a lack of workspace awareness; another
pleasant AWorksp result.

As for APhys, the same holds for the lack of cues from
facial expression, gesture (nodding, shake of the head) and
posture: The pair used VerbalizationC with no apparent
effort, and used Remote Selection or the Remote Cursor as an
extended index finger. This worked well: the pair routinely
used deictic references (such as pronouns) in their verbal
communication and we observed no misunderstandings or
non-understandings that appeared to be technically induced.
For instance in the previous example, Dev talks about “this
method” while the referred-to method is selected.

5.4 Awareness During Pure Discussion
When the pair needs to decide on a design approach or

a work strategy, there are often periods during which the
computer is not operated at all, not even viewed; the pair
performs dialog only and both are in the DiscussantS role.
This pertains to APhys.

One might expect that physical awareness would play a
pronounced role during such times. For the pair we observed,
however, this does not appear to be the case. Dev and Arch
both appear to be happy with reclining in their chair, staring
into nothingness (the ceiling, out the window, etc.) and
focussing on their sense of hearing only. We conjecture that
at least for pairs such as ours, who are well familiar with
each other, proximity and visual contact play only a minor
role, if any, for discussion phases.

6. RESULTS: CONCURRENT AND INTER-
LEAVED EDITING

The phenomena around the fact that eDPP provides edit-
ing freedom, that is, capabilities for concurrent-independent
viewing and editing appear to be governed by two main
factors: (1) The Activity LevelS of each participant and
(2) the Mental CouplingV between the participants.

Activity LevelS means physical activity insofar as it con-
tributes to the PP process (speaking, pointing, typing, etc.).
Mental CouplingV means the degree to which the partici-
pants follow only one single, joint Train of ThoughtV as
opposed to two separate strands. It is difficult to observe,
but conceptually clear enough for our purposes.

The classical driver/observer role description implies that
the observer’s Activity LevelS is usually low.

In that view, concurrent editing is an additional mode
the ObserverS can use to increase his Activity LevelS,
becoming either an Active ObserverS (with high Men-
tal CouplingV) or a second DriverS (with low Mental
CouplingV). A second DriverS means the work mode is
side-by-side programming, no longer pair programming, al-
though there is obviously a gray area in between. Our pair
has not used two DriverSs; we hence only describe the
Active ObserverS case.

All concurrent and interleaved activities run the risk of
reduced Mental CouplingV as well as a Loss of Review
EffectS and Loss of Knowledge TransferS. Depend-
ing on the session’s goal, these risks may be more or less
problematic.

6.1 Dimensions of Concurrent Editing Activ-
ity

Besides Activity LevelS and Mental CouplingV, we
will use five more dimensions for discussing concurrent editing
phenomena:

• Announcement StyleC describes whether the Ac-
tive ObserverS explicitly announces his subsequent
activity (explicitS, e.g. “Oh, wait, may I just. . . ”
), makes some utterance that hints at the activity
(implicitS, e.g. “Parens are missing”), or simply starts
acting rightaway (silentC). The latter avoids inter-
rupting the DriverS’s thinking, but could also make
the actual activity even more disturbing due to a higher
subjective loss of control for the DriverS.

• Visual CouplingC describes whether all of the Active
ObserverS’s editing happens on the Same LineC, in
the Same BlockV (or same small method), in the
Same ViewportC, in a Different ViewportS, or
in a Different ArtifactC. It determines the likely
amount of the DriverS’s awareness.

• Effect on WhatS describes whether the DriverS

appears to change his plans due to the intervention
(Change TriggeredS) or not (StableS).

• Effect on WhenC: Whether the DriverS slows down
(or stops completely) during the Active ObserverS’s
activity (TemporizingS) or not (UnperturbedS).
Slowing is common and fully or partially turns con-
current activity into merely interleaved activity.

• TypeAOAC (type of the Active ObserverS’s activ-
ity): One of Direct FixC, ContributionS, Addi-
tionS, Local SolutionS. We will structure the re-
maining discusssion along this dimension and handle
each type in a separate subsection.

6.2 Type “Direct Fix”
We observed the Active ObserverS to make small im-

provements in the code just on his own instead of asking the
DriverS to do it: A Direct FixC. When the ObserverS

noticed a small issue in the code, he often decided to sim-
ply fix the problem himself (his Activity LevelS goes up)
without saying anything (Announcement StyleC SilentC)
or with just saying or mumbling something about the issue
(Announcement StyleC ImplicitS) but never explicitly
announcing the correction action.

Despite the close Visual CouplingC (usually Same
BlockV, sometimes even Same LineC), the DriverS some-
times continues his work (Effect on WhenS is Unper-
turbedS). He almost never changes his plans due to the
intervention (Effect on WhatS is usually StableS).

Example: The DriverS writes return x+y*z<t. Without
saying anything (Announcement StyleC SilentC), the
ObserverS selects the y*z in this line (Visual CouplingC

is Same LineC) and uses the “Extract Local Variable” dialog
to refactor the multiplication into a local variable, naming

80



it according to its semantics. The DriverS recognizes this,
just lets it happen (TemporizingS), and then continues with
his work (StableS).

Direct FixC is an FEdit phenomenon with pleasant prop-
erties (FPos). Its main feature is that it does not disturb
the DriverS’s Train of ThoughtV. It also saves (a minor
amount of) time. The activity is short, so the reduction
in Mental CouplingV appeared to be unproblematic in
our pair. It requires trust. If TemporizingS occured, it ap-
peared to provide recreation and to not interrupt the Train
of ThoughtV. Overall, Direct FixC appeared to lead to
higher process FluencyV.

6.3 Type “Contribution”
The ObserverS will sometimes think of an action that

is not (or not yet) strictly required to proceed but may
be helpful when further pursuing the current Train of
ThoughtV.

He will often decide to act alone (with or without an-
nouncement) and similar behavior applies as for Direct
FixC.

For example, we have seen the Active ObserverS visit a
requirements document and copy a few pertinent lines from
it into the source code, thus greatly enhancing the ease of
the next few work steps for the DriverS.

Another example is a ContributionS by looking some-
thing up and telling the DriverS about it: The ObserverS

realized that the DriverS was not sure about the methods he
needed to implement for an interface of the Observer design
pattern [10]. While the DriverS stayed in the artifact, the
Active ObserverS visited Wikipedia 9 and initiated a short
dialog during which the DriverS integrated the information
provided by the Active ObserverS into the artifact.

This is a behavior that can be of FView or of FEdit type.
A local pair could emulate it with a quick succession of two
driver changes. Obviously, however, executing such episodes
is cumbersome unless there are two keyboards and two mice.
We have not observed any negative effects, so we count
ContributionS under FPos.

6.4 Type “Addition”
Alternatively, the ObserverS will sometimes think of an

action that is still related to but beyond the current Train
of ThoughtV. We call such an action an AdditionS. For
instance, the DriverS just wrote a call to a not-yet-existing
method and then created the method by calling the respective
IDE function. The ObserverS recognizes a property this
method will need to have, tells the DriverS he would like to
make a note about something, and then promptly proceeds
to make his AdditionS by adding an appropriate comment
to the method.

Like Direct FixC, AdditionS, if done well, appears to
lead to higher process FluencyV by avoiding the negotiation
required for a driver change. If done in an inappropriate man-
ner, it could interrupt the DriverS’s Train of ThoughtV,
but we have not seen indications this ever happened in our
pair, so this is another FEdit behavior to be counted as FPos.

6.5 Type “Local Solution”
Sometimes the next step in a solution process is a

moderately-sized, somewhat self-contained piece of work for
which the motivation or expertise of the ObserverS is better

9http://en.wikipedia.org/wiki/Observer_pattern

than the DriverS’s. In local PP and DPP alike, the DriverS

will then often hand off this piece of work to the partner.
This behavior, which we call Local SolutionS is a form of
DelegationS. It works much like a subroutine call: Once
the piece of work is finished, the previous work continues
where it left off and typically with the previous DriverS. For
instance our pair was at a point where they needed so sort a
list of files, so they needed a file comparator object. Without
any discussion, the former ObserverS took the DriverS

role and searched the web for an example implementation
of a file comparator, pasted it into the source code, adapted
it it for the current needs, and gave back the control to the
previous DriverS who continues his work.

The crucial point about this FEdit (or possibly sometimes
FView?) behavior appears to be not so much the execution
of the driver change – the episode is long enough to amor-
tize its effort. The point appears to be that the motivated
ObserverS can jump right into action, without any need
to negotiate about it. A Local SolutionS episode allows
the original DriverS to Implicitly Step BackS from his
role after the partner has taken it (and is apparently doing
something sensible) rather than making an explicit decision
to do so.

Conflicts about Local SolutionS behavior or negative
consequences resulting from it are easily conceivable, but we
found none for our pair, so this is another behavior pattern
that can be FPos without carrying FNeg along and again
higher process FluencyV is the right way to describe the
result.

6.6 Type “Co-Driving”
When both partners intensely and equally contribute to

the solution process, the difference between DriverS and Ac-
tive ObserverS disappears; the two are Co-DrivingS, thus
introducing another variant of the classical driver/observer
roles. Such collaboration can be described as a having maxi-
mum Mental CouplingV: Both partners have an identical
and very good grasp of what needs to be achieved and work
together intensely and closely on finding out how and doing
it. Their actions are interleaved on a fine grain and there is
no discrimination of the Activity LevelS or the types of
the actions any more between the two.

We observed Co-DrivingS for instance during the difficult
creation of a complex boolean expression and when coding the
production of an expressive error message involving multiple
method calls.

Co-DrivingS is an FEdit behavior for which eDPP really
excels and obviously beats even double-keyboard local PP;
it is again about FluencyV and clearly belongs to FPos.

6.7 Type “Parallelization”
The pair explicitely splits off to work in parallel on different

aspects of the same Train of ThoughtV in the Same
ViewportC. This can be considered a two-sided Local
SolutionS: Each partner delegates something to the other
and both work concurrently.

As in 5.2, the split-off in our pair was preceded by an
explicit agreement regarding the concrete sub-task each one
has to do, e.g.:
Dev: “Could you just adapt the thing above, the regex?”
Arch: “Sure.”
Dev: “And meanwhile I’ll write the calendar here.”
Arch: “Yeah, do that.”

81



This strong FEdit behavior can be seen as switching to side-
by-side programming, but on a very fine-grained level that
allows both partners to stick with the same overall Train
of ThoughtV. The partners split off with well-defined and
hardly demanding sub-tasks. This mode might allow to
escape the possible inefficiency of PP for some combinations
of simple sub-tasks and would then belong into FPos, but
it obviously also runs the risk of inadvertantly leaving pair
programming so may also count as FNeg. We have not seen
enough cases of ParallelizationS to judge the pros and
cons even for our one pair.

7. LIMITATIONS AND THREATS TO VA-
LIDITY

The pair we observed were strong software developers
with good communication skills and were very familiar with
each other. We conjecture these are necessary conditions
for the degree of eDPP success described above. We do not
know what might be sufficient conditions nor do we now how
common the above conditions are, so we can say very little
about the generalizability of our results. (This is not a big
problem, because the existence proof is interesting enough.)

The amount of material (in terms of the number of hours
as well as variety of pairs) we have studied is still small, so
the list of phenomena we report is likely incomplete.

The conceptualization is so far fairly local; the episodes
described are short and do not yet represent substantial
solution processes completely. This means the overall role
that the phenomena described play in the pair process as a
whole is hardly understood so far.

At least for editing, our report emphasizes phenomena
that together cover only a small fraction of the time of the
overall pair programming session; one should not overrate
their overall importance. (This is also not a big problem,
because the absence of problems is benefit enough.)

It is conceivable that differences exist between local PP and
eDPP outside the realms of awareness and editing freedom.
Our study was not designed to detect such differences.

Note that the limitations of the Saros tool do not add to
the limitations of the study, because if an imperfect tool can
still produce eDPP success, that is all the better.

8. CONCLUSIONS

8.1 Regarding Awareness
Conventional wisdom suggests the reduced physical aware-

ness and limited workspace awareness of a Saros-based eDPP
situation will be a big obstacle against successful collabora-
tion, so we expected to find many resulting problems, but
we have in fact seen almost none.

We conjecture that somehow program code is a great
basis for focused and successful communication and skilled
programmers (at least if they are familiar with each other)
have much lower needs for physical awareness than previously
assumed. As a result, eDPP can work well.

8.2 Regarding Editing Freedom
Our pair had the strong and clear intention of performing

pair programming, because besides the practical work results
knowledge transfer was an important goal.

Nevertheless, and although the resulting work process
clearly was pair programming overall in terms of the closeness

of collaboration, the pair did make use of the concurrent
editing capabilities of eDPP.

We conclude that eDPP (or, as the title calls it“distributed-
pair programming”) should not be confused with simply
distributed PP (or, as the title calls it, “distributed pair-
programming”).

Furthermore, and most importantly, we found that our
pair used concurrent editing wisely, in a very limited fash-
ion, resulting in several interesting behaviors we call Direct
Fix, Contribution, Addition, Local Solution, Co-Driving, and
Parallelization. These behaviors created no observable dis-
advantage but a number of small advantages that can be
summarized as leading to a (slightly) improved fluency of
the work process.

We conjecture that the previous joint work experience and
resulting familiarity and trust of our pair as well as good
communication skills are important preconditions for such
eDPP success. Given the preconditions (whatever they really
are), Saros appears to be a strong-enough tool to support
industrial eDPP successfully.

Acknowledgments
This work was partially supported by a DFG grant. We
thank J1 and J2 for allowing us to record and scrutinize their
sessions.

9. REFERENCES
[1] ICGSE ’12: Proceedings of the 2012 IEEE Seventh

International Conference on Global Software
Engineering, Washington, DC, USA, 2012. IEEE
Computer Society.

[2] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 1999.

[3] K. Beck and C. Andres. Extreme Programming
Explained: Embrace Change, Second Edition.
Addison-Wesley Professional, 2004.

[4] S. Bryant, P. Romero, and B. du Boulay. Pair
programming and the mysterious role of the navigator.
International Journal of Human-Computer Studies,
2008.

[5] J. Chong and T. Hurlbutt. The social dynamics of pair
programming. In ICSE07: Proceedings of the 29th Int’l
Conf. on Software Engineering, pages 354–363,
Washington, DC, USA, 2007. IEEE Computer Society.

[6] A. Cockburn. Crystal Clear: A Human-Powered
Methodology for Small Teams. Addison-Wesley
Longman, 2004.

[7] J. Eckstein. Agile Software Development with
Distributed Teams. Dorset House Publishing Co., Inc.,
New York, NY, USA, 2010.

[8] J. Espinosa, S. Slaughter, R. Kraut, and J. Herbsleb.
Team Knowledge and Coordination in Geographically
Distributed Software Development. Journal of
Management Information Systems, 24(1):135–169, July
2007.

[9] J. A. Espinosa, S. A. Slaughter, R. E. Kraut, and J. D.
Herbsleb. Familiarity, Complexity, and Team
Performance in Geographically Distributed Software
Development. Organization Science, 18(4):613–630,
July 2007.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented

82



software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[11] V. Gomes and S. Marczak. Problems? We all know we
have them. Do we have solutions too? A Literature
review on problems and their solutions in global
software development. In Proc. IEEE 7th International
Conference on Global Software Engineering, pages
154–158. IEEE CS Press, 2012.

[12] C. Gutwin, S. Greenberg, and M. Roseman. Workspace
awareness in real-time distributed groupware:
framework, widgets, and evaluation. In Proceedings of
HCI on People and Computers XI, HCI ’96, pages
281–298, London, UK, UK, 1996. Springer-Verlag.

[13] B. F. Hanks. Tool support for distributed pair
programming. In 4th International Workshop on
Learning Software Organizations (LSO, 2002.

[14] J. Hannay, T. Dyb̊a, E. Arisholm, and D. Sjøberg. The
effectiveness of pair programming: A meta-analysis.
Information and Software Technology, 51(7):1110–1122,
2009.

[15] C.-W. Ho, S. Raha, E. Gehringer, and L. Williams.
Sangam: a distributed pair programming plug-in for
Eclipse. In Proceedings of the 2004 OOPSLA workshop
on eclipse technology eXchange, eclipse ’04, pages
73–77, New York, NY, USA, 2004. ACM.

[16] L. Layman, D. Damian, H. Bures, and L. Williams.
Essential communication practices for Extreme
Programming in a global software development team.
Information and Software Technology, 48(9):781–794,
Sept. 2006.

[17] S. G. Lukosch and T. Schümmer. Enabling Distributed
Pair Programming in Eclipse. In 10th European
Conference on Computer-Supported Cooperative Work,
2007.

[18] T. Nguyen, T. Wolf, and D. Damian. Global software
development and delay: Does distance still matter?
Global Software Engineering, 2008.

[19] J. T. Nosek. The case for collaborative programming.
Communications of the ACM, 41(3):105–108, 1998.

[20] G. M. Olson and J. S. Olson. Distance matters.
Human-Computer Interaction, 15(2):139–178, Sept.
2000.

[21] L. Prechelt, U. Stärk, and S. Salinger. Types of
cooperation episodes in Side-by-Side programming. In
J. B. Chris Exton, editor, Proc. 21st Annual Meeting of
the Psychology of Programming Interest Group (PPIG
’09), Limerick, Ireland, June 24-26, 2009, pages
148–161, Limerick, Ireland, June 2009. ppig.org,
University of Limerick.

[22] S. Salinger, C. Oezbek, K. Beecher, and J. Schenk.
Saros: An Eclipse plug-in for Distributed Party
Programming. In Proceedings of the 2010 ICSE
Workshop on Cooperative and Human Aspects on
Software Engineering. ACM, 2010.

[23] S. Salinger and L. Prechelt. Understanding Pair
Programming: The Base Layer. BoD, Norderstedt,
Germany, 2013. 978-3-7322-8193-0.

[24] S. Salinger, F. Zieris, and L. Prechelt. Liberating pair
programming research from the oppressive
driver/observer regime. In Proc. 35th Intl. Conf. on
Software Engineering (ICSE), pages 1201–1204. IEEE
Press, 2013.

[25] S. Sarker, M. Ahuja, S. Sarker, and S. Kirkeby. The
role of communication and trust in global virtual teams:
a social network perspective. Journal of Management
Information Systems, 28(1), July 2011.

[26] T. Schümmer and S. Lukosch. Understanding tools and
practices for distributed pair programming. Journal of
Universal Computer Science, 15(16):3101–3125, oct
2009.

[27] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and
D. Tatar. WYSIWIS revised: early experiences with
multiuser interfaces. ACM Transactions on Information
Systems (TOIS), 5(2):147–167, Apr. 1987.

[28] D. Stotts and L. Williams. A video-enhanced
environment for distributed extreme programming.
Internal Report, 2002:02–009, 2002.

[29] A. L. Strauss and J. M. Corbin. Basics of Qualitative
Research: Grounded Theory Procedures and Techniques.
SAGE, 1990.

[30] C. Sun and C. Ellis. Operational transformation in
real-time group editors: issues, algorithms, and
achievements. In CSCW ’98: Proceedings of the 1998
ACM conference on Computer supported cooperative
work, pages 59–68, New York, NY, USA, 1998. ACM.

[31] L. Williams. Pair programming. In A. Oram and
G. Wilson, editors, Making Software, chapter 17, pages
311–328. O’Reilly, 2011.

[32] L. Williams. What agile teams think of agile principles.
Communications of the ACM, 55(4):71–76, Apr. 2012.

[33] L. Williams and R. Kessler. Pair Programming
Illuminated. Addison-Wesley Professional, 2002.

[34] L. Williams, R. R. Kessler, W. Cunningham, and
R. Jeffries. Strengthening the case for pair
programming. IEEE Software, 17(4):19–25, 2000.

[35] R. K. Yin. Case Study Research: Design and Methods.
Sage, 2003.

83


