
1 PARTICIPANT COMMENTS 1

1 Participant comments

1.1 effort comparison

Platforms Comparison Comment
.NET–Java EE B very large On J2EE you have to use to many different libraries

in many different versions like jaxb, jaxp, apache-
commons, struts, This is very difficult to handle
in large projects

.NET–Java EE B large - implementing with Visual Studio is much more
comfortable (all-in-one) than with Eclipse or so -
Debugging is very simple - .NET Framework offers
more high-level constructs than Java (in my opinion)

.NET–Java EE B large DB Access features -ADO .net or linq vs. jdbc or
hibernate -... many core framework features.

.NET–Java EE A large better framework

.NET–Java EE B large Better component model

.NET–Perl B large heavy IDE and dependencies on the microsoft frame-
work.

.NET–Perl A small CPAN offers more ready built modules/business
functionality allowing less reinventing of wheels.
PERL has automated tools making continual testing
easier.
There is ample free help via newsgroups.
Deployment is easier.

.NET–PHP B large Better re-use

.NET–PHP B small available development tools and intellisense in visual
studio

.NET–PHP A modest static typing in .net easier hashes on php

.NET–PHP A large The inherent complexity of working with Microsoft
technologies

.NET–PHP A modest PHP allows for a shorter syntax; it also depends
on the requirements, my ASP.NET applications have
all been professionally developed with requirements.
PHP was used for crummy little content management
systems.

.NET–PHP B large ASP.NET encapulates a lot of functionality that has
to be coded by hand in PHP

.NET–PHP B large Actually, the reason for using .NET is because you
can do things you simply can’t do using PHP - like
n-Tier, distributed applications. With PHP you could
only do that via Web services, or by calling out to
J2EE components.

.NET–PHP B very large PHP code tangled in with HTML makes the web
pages bigger.

.NET–PHP B large clear separation of code and design full object orien-
tated

.NET–PHP A very large much, much more built in features and functionality

.NET–PHP B large Server side controls Breakpoints and debugging sep-
arated code and presentation

.NET–PHP A modest the asp.net event/object-oriented system / the pro-
gramming language

1 PARTICIPANT COMMENTS 2

.NET–Ruby A small MVC - dynamic languages vs. strongly typed,etc

.NET–Ruby B modest Tools

.NET–Python A large Less dynamic features, strictier OOP requirements.

.NET–Python A modest Honestly, it largely depends on how dynamic the ap-
plication is. Less dynamic apps tend to require less
effort with .NET, but dynamic apps require less effort
with Python. By dynamic I mean constantly chang-
ing.

Java EE–Perl A large Language is stricter.

Java EE–Perl A large complexity of dependencies and ”best practices” in
Java EE world

Java EE–PHP A modest The configuration overhead in J2EE for supporting
multiple servers

Java EE–PHP A very large configuration files beans overhead
Java EE–PHP A large - strict typing in Java - cumbersome strings in Java

- no way to simply INCLUDE a file in Java as can
be done in PHP -> this makes displaying data more
cumbersome

Java EE–PHP A large - Greater robutness.
- Greater complexity of requeriments.
- Integration with existing application/DBs.

Java EE–PHP B very large Quality of third party apps & libraries (lots of
Apache libs, in fact)

Java EE–PHP A modest stupid programmers
Java EE–PHP A large requirement to prototype needs less time, java: even

small / medium apps need a quite longish tech-
concept, php can often skip this part. the php co-
munity is more solution-aware, not problem-aware

Java EE–Ruby A very large Over bloated syntax Complex data strutures to solve
not so complex problems Few conventions

Java EE–Ruby A very large Java’s static typing Ruby’s DSL abilities Better envi-
ronment tools for Rails (Capistrano, etc.) Less con-
figuration with Rails Better practices associated with
Rails (test-first) Better deployment model for Rails

Java EE–Ruby B modest Mmh, this is a stupid question. Since Java runs on a
bigger infrastructure, I use it for large apps. Rails is
fine for small applications.

Java EE–Ruby A large Lack of ”one way of doing things” in JEE
Java EE–Python A large Inflexibility of language
Java EE–Python B large stupid question, because all language tend to be used

in differend requirements
Perl–.NET B large .NET is static typed. Perl allows me to be hard

things easily, like munge namespaces, call meth-
ods names on the fly via string interpolation, mock
namespaces/objects easier.

Perl–.NET B modest more flexibility better dealing with strings language
more powerful CPAN-Modules

1 PARTICIPANT COMMENTS 3

Perl–Java EE B large Perl is very expressive; so if you know Perls id-
iomatic functions you can write short code which
is readable. You should just know some best prac-
tices to avoid spaghetti code. Short code means typ-
ically less time (to program and to maintain). Also
the fact that Perl offers often more than one way you
can choose the one that fits best for your application.

Perl–Java EE B modest Question should really be split in two, depending on
project size. For small web applications perl yield
results much faster. For larger applications, espe-
cially if multiple developers are involved java EE
starts to work better. It’s the inherent simplicity
of a perl/apache setup compared to a jboss applica-
tion server or even a tomcat+servlets which improves
productivity.

Perl–Java EE B very large Extreme complexity of Java frameworks and general
Java tendency toward over abstraction

Perl–Java EE B very large jifty is really great and more modern
Perl–Java EE B small CPAN, and catalyst
Perl–Java EE B modest more fuss in Java, more exception handling, more

typing issues
Perl–Java EE B very large Less verbose language, easier manipulation of text

data (built-in regular expressions) and structured data
(literal object syntax, etc).

Perl–Java EE B very large verboseness of java
Perl–Java EE B very large Java’s strict typedness requires numerous copy-

from-this-object-to-that-object operations. It is
nearly impossible to hand a particular piece of data
(e.g. from a database) through the various applica-
tion layers out to the web frontend. With each layer
boundary, in Java there happens a re-packing and re-
formatting of the data.

Perl–Java EE B large Simpler coding (DWIM) Far less verbose/strict (in-
flexible) Central resource for modules (CPAN) Lan-
guage fits my brain

Perl–Java EE B modest the framework simply is better. You have to write
less code. And templating is simpler, too.

Perl–PHP B modest CPAN ... Offers a very rich set of functionalities with
a clear OO interface.

Perl–PHP about zero Use the right tool for the job
Perl–PHP B modest CPAN
Perl–PHP B large Perl has more modules that can be combined in any

way you want. You’re more flexible und your way of
programming can evolve from app to app.

Perl–PHP B large PHP is in my opinion a language not suitable for
larger applications. There’s too much functionality
built into the languge, the documentation is rather
often abysmal and PEAR isn’t comparable to CPAN
by a huge margin.

Perl–PHP B large hand coding everything - little to no reuse.
Perl–PHP B large Approach of languages
Perl–PHP B small large library of external modules from CPAN

1 PARTICIPANT COMMENTS 4

Perl–PHP B modest Roughly comparable time for small projects, but de-
velopment effort scales better with the project size.
Continuous refactoring is an integer part of the de-
velopment in our current team, and that’s where perl
has clear advantages, and speeds up the refactoring
and development time.

Perl–PHP B modest CPAN vs. PEAR
Perl–PHP B small Perl is more flexible.
Perl–PHP B very large consistency, RAD, OOP, TIMTOWTI
Perl–PHP B modest better libraries more established best practices
Perl–PHP B large huge CPAN library
Perl–PHP B modest When the application gets bigger, Perl has a lot of

features which gives support for good maintainable
code, and this reduces the over all effort. e.g. Names-
paces, naming conventions, better and more flexible
OO support. On the CPAN there are thousands of
high quality modules.
With mod perl you have full control over the Apache
web server and as an example you can implement
a mixture of mod rewrite, mod proxy, mod auth ...
and others with very few lines of code.

Perl–PHP B very large Perl is easier to write (if you know how to do it),
more modular, and there is CPAN.

Perl–PHP B very large Perl is a more capable and flexible language. The
Catalyst framework is extremely flexible and CPAN
cuts development time down to a fraction of what is
required with other languages.
PHP is somewhat hap-hazard in it’s language defini-
tion, and the sheer number of builtin functions begins
to be overwhelming. PHP requires you to have the
manual open most of the time. PEAR makes an at-
tempt at a CPAN type offering, but just doesn’t have
the depth of useful tools.

Perl–PHP B large - Perl lets you write tighter (albeit not always easier
to read) code. There’s a balance there, struck by de-
termining what the expertise level is of the people on
your team; higher expertise == tighter Perl code.
- CPAN. When working with PHP I found that we
were -regularly- having to go back and rebuild all
sorts of basic things all over again because they
didn’t exist (e.g. data validation, e-mail validation),
while in Perl we’d just pick a module off of CPAN.

Perl–PHP B very large excellent code library (cpan) full integration with
apache internals better syntax

Perl–PHP B modest experience
Perl–PHP B modest CPAN
Perl–PHP B modest If you now perl well, it’s just much more elegant

and straigt forward than calling hundreds of diffrent
functions with diffrent naming conventions.

Perl–PHP B large perl is less buggy perl changes less often easier to
build and use large and complicated datastructures
mod perl CPAN

Perl–PHP B large cpan modules experience

1 PARTICIPANT COMMENTS 5

Perl–PHP B modest Large availability of numerous libraries, and inherent
brevity of code due to the language.

Perl–PHP B small CPAN Careful framework design
Perl–PHP B large straight forward code design of perl php has so many

functions in its default namespace. some with under-
score, some without...

Perl–PHP B very large cpan
Perl–PHP B modest CPAN
Perl–PHP B small Package / Module / Namespacing System in Perl is

way better. OO is easier.
On the other hand, getting started in PHP is easier.
Don’t have to bother with HTTP, Session Handling
etc. Notation is easier for beginners.

Perl–PHP B modest CPAN
Perl–PHP B very large maintainability testability cpan modules
Perl–PHP B very large PHP makes testing and refactoring difficult, DB sup-

port is bad, no modules, etc.
Perl–PHP B large Perl is more flexible, but can be strict. Perl has

CPAN. Perl has a stronger, more mature community.
Perl is a general language, while PHP is specialised.
Although PHP is specialised to do web development,
it can be hard to get it out of the way on edge-cases
and most web applications aren’t just a web layer.

Perl–PHP B very large Avalability of modules, stupidity of php.
Perl–PHP B large cpan
Perl–PHP B modest Rich Perl Module Database
Perl–PHP B large way more flexibility
Perl–PHP B modest CPAN, more general purpose language
Perl–Ruby B large The CPAN. There is not a need to write much code

when using Perl. There are high quality solutions for
most problems available under open licenses.

Perl–Ruby A small The Catalyst solutions are more flexible out of the
box, so they still require more up-front investment
in project infrastructure than a corresponding Rails
application. But the Perl applications often are more
complex.

Perl–Ruby B large Perl is faster, direct to write (as in shorter code paths)
and more flexible then Ruby. Even if Ruby has a
few nice things built in - CPAN has more choice and
thus Perl is superior there too. Perl is preinstalled on
every sane operating system and available for others
and is tested and nearly guaranteed to work, Ruby
can’t stand that.

Perl–Ruby A small more expressivity
Perl–Ruby B modest * flexibility of Catalyst * Perls syntax * Me being

more skilled at Perl
Perl–Ruby B large a lot of inherited classes
Perl–Ruby A modest better doc for rails framework
Perl–Ruby A modest In ruby - especially in RoR much more works just

out-of-the-box.
Perl–Python B modest Perl is less rigid and, especially with Catalyst, allows

for very elegant ways to express code quickly.
Perl–Python A modest Cleaner syntax, better OO, better ORM libraries.

1 PARTICIPANT COMMENTS 6

Perl–Python B modest Catalyst framework for me
Perl–Python B modest Framework differences.
Perl–Python A modest I haven’t found a convincing framework for perl and

therefore tend to spend more time on techniques, that
are otherwise provided by a framework

Perl–Python B modest Perl’s maturity.
Perl–Python B modest Perl can be as concise as Python, but Perl has a much

larger library of modules available on CPAN.
Perl–Python B large my greater familiarity with Perl and the ease of

reusing other people’s code
Perl–Python B modest - The experience in developing web applications

- The design of Perl
PHP–.NET A modest .NET is a more strict language Better seperation of

code and html
PHP–.NET B large The opportunity for extending existing controls in

ASP.NET are fairly limited, I frequently hit a wall
were a control did not work as it was supposed to
and ended having to recode lot’s of stuff.

PHP–.NET A very large Didn’t use any frameworks for PHP development.
Visual Studio makes web development very easy.

PHP–.NET A modest The better integration of predefined patterns in Vi-
sual Studio.net it’s more clickable :)

PHP–.NET B modest There are many extra dlls and ”building” of solutions
for .net applications. Even in an all MS environment,
integrating with VSS is flaky.

PHP–.NET B modest Einfachheit, Typenfreie Variablen
PHP–.NET B modest more c++ style coding
PHP–.NET B large My own framework is well adapted to my own needs,

while .Net is a ”one size fits all” framework (which
never really fits in the end)

PHP–Java EE A large Java is very structured and I know the language very
well. I have never used a framework with PHP would
probably have made my life easier

PHP–Java EE B large I can express myself very naturally in PHP, while
Java demands a lot of detailed knowlegde to get the
same job done.

PHP–Java EE B large strictness of the type declaration, server environ-
ments, database connectivity

PHP–Java EE B modest php is just really easy
PHP–Java EE B modest Faster deployment.
PHP–Java EE B small language design and purpose
PHP–Java EE B large - less boilerplate code necessary to get stuff going

in PHP - Java’s static typing - often can start with
existing open source projects in PHP - much easier
deployment with PHP

PHP–Java EE B large PHP is an ”easy” language that requires less disci-
pline and structure. This might make the code ”ugly”
but that depends on the people writing it.

PHP–Java EE B very large PHP is more of a hack language; in Java you tend to
wrote more robust code but also more code.

PHP–Java EE B large Checked exceptions in Java Strong typing elsewhere
in Java Java’s architectural complexity PHPs ease of
use First class functions in PHP

1 PARTICIPANT COMMENTS 7

PHP–Java EE B very large PHP code ist very easy to write and to read. In PHP,
OO programming is a FEATURE, in Java EE its not.
In PHP I can develop in realtime, the interpreter
shows me results very fast. With Java I have to com-
pile the classes before I can see the results in Tomcat.

PHP–Java EE B very large PHP bietet exakt die Funktionalitten, die ich tglich
bentige. Java ist fr die meisten Webapplikationen
zu mchtig. Ich bentige beispielsweise fr die meisten
Anwendungen keine virtual machine, muss sie aber
bei Java EE immer bercksichtigen.

PHP–Java EE B large xml files
PHP–Java EE B large simple model in php too much architecture in Java
PHP–Perl B modest PHP requires less effort due to ease of language and

vast libraries available. Size may be larger due to
terseness of Perl syntax.

PHP–Perl A very large PHP is just an awful language which happens to be
widely supported, thus it is easy to launch a proto-
typical application with it. Lots of libraries, but still
not the power of CPAN.
Perl is more succinct, and better at working with text.
Better DB support, and way better documentation.

PHP–Perl A small PHP is less flexible than Perl. Sometimes, the PHP
language is a little inflated and intricately to handle.

PHP–Perl B small PHP is not as cryptic as Perl is, but if you’re com-
fortable with it, I’m sure Perl requires not less effort
for building web applications. But for me I’m much
more comfortable with PHP.

PHP–Perl B large Code Syntax Availabilty of Software Community
Feedback Online Examples & Tutorials Cost of De-
velopers

PHP–Perl B small i am more used to program with php
PHP–Perl B large understandability best practices
PHP–Perl A small CPAN Modularity Mixing code and HTML

PHP–Ruby A modest Less copied code
PHP–Ruby A large On the language level only: it’s less programmer-

friendly. It’s easier to make stupid mistakes in
PHP. For example, PHP requires explicit semicolons,
braces, and parens nearly everywhere. Ruby lets you
do what you want. Once you get used to that, it’s
easy to forget in PHP.

PHP–Ruby A large scaffolding in rails model-database-mapping in rails
PHP–Ruby A very large Lack of good language design leading to poor li-

braries. Bad library/plugin management means very
little code reuse.

PHP–Ruby B small PHP has a ton more documentation and support com-
pared to Ruby. It also has a lot more libraries.

PHP–Ruby B modest Code Generation of RoR & ActiveRecord
PHP–Ruby B about zero There is no reason
PHP–Ruby A small Short startup time for small to medium sized

projects. PHP fits better for large projects.
PHP–Python A modest Better language design, less ability to do quick-and-

dirty-and-wrong stuff in python.

1 PARTICIPANT COMMENTS 8

PHP–Python A very large Types, structures, name-spacing, default libraries
PHP–Python A very large frameworks
PHP–Python A large PHP has very poor OOP support and internally is

very inconsistent with the naming of functions.
PHP–Python A modest Python is more ”dynamic”, nicer parameter pass-

ing, better exception handling. Nice features such
as decorators, list comprehension, dictionaries etc.
Some things are just easier/simpler/more elegant
with Python.

PHP–Python A large PHP is much less consistent in various areas, has
many subtle and hard to debug performance and se-
curity issues, lacks a well defined standard for most
of the language, is poorly implemented in most ar-
eas and is missing many of the language features that
make development with Python so much easier.

PHP–Python B about zero More examples and documentation on PHP
PHP–Python A large (Almost) forced separation of presentation & logic.

Language constructs lend themselves to smaller,
cleaner code.

PHP–Python A large Python is better designed, more consistent, easier to
read, and more powerful.

PHP–Python A modest PHP has less readable syntax
PHP–Python A modest The broken concept of PHP
PHP–Python A large framework quality python itself quantity and quality

of python libraries
Ruby–Java EE B very large in ruby on rails: - extensive use of ”convention over

configuration” - high degree of declarativity thanks
to domain-specific languages - flexibility (no static
typing)

Ruby–Perl B modest nice syntax
Ruby–Perl B modest As much as I like Perl, its syntax seems awkward and

stabs me in the eyes. I still use Perl along with Bash
for system automation tasks. I just seem to get more
done with Ruby, particularly with Rails.

Ruby–PHP B large Ruby language and Rails conventions
Ruby–PHP B large Flexibility Syntax Testability Framework Quality
Ruby–PHP B very large Framework and language features.
Ruby–PHP B large The Rails Framework of course!
Ruby–Python A modest The integrated administration interface and user

management of Django.
Python–Java EE B very large Verbosity of java syntax.
Python–Java EE B very large The java frameworks that I have experience with tend

to require far too much xml configuration. The api’s
tend lead to verbose code.

Python–Java EE B large Python is dynamic, Java isn’t. Python is much less
verbose overall because you aren’t caught up with
using factories to generate objects or anything of the
”standard industry practice” sort.

Python–Java EE None that depends on the type of application. If there is
more logic than just delivering pages with prefabri-
cated contents with minor modifications, python is
preferable.

1 PARTICIPANT COMMENTS 9

Python–Java EE B modest The difficult server setup for Tomcat, Glassfish, etc
Python–Java EE B large Python!
Python–Java EE B very large TG is a rapid development enviroment
Python–Java EE B very large Python is a much cleaner language than Java
Python–Java EE B large The Python language and all of the modules that are

available.
Python–Perl B small Personal experience with Python – I really like

Pythons readability.
Python–Perl B large 1. my familiarity with python 2. nasty perl syntax,

clunky OO implementation
Python–PHP B large Python is clearer and more concise
Python–PHP B very large language differences quality of language itself qual-

ity of language implementation
Python–PHP B about zero every framework makes it easy to do the first 80 to

90% of your application. after that it gets compli-
cated and time-consuming.

Python–PHP B large A more naturally modular language
Use of a fully-fledged framework
Easier debugging and test environments
However we are not sure if using Django’s ORM is a
scalable as using stored procedures as we have done
in past. The ORM is quick but less powerful.

Python–PHP B large Language Expressivity Experienced developers de-
manding reasonable APIs

Python–PHP B large Own familiarity with python Better python syntax
Clearer code/view separation

Python–PHP B very large Python’s language design allowing for simpler,
cleaner code.

Python–PHP B modest Python is a more clearly-thought-out language. Its
libraries and built-in functions are better organised.

Python–PHP B large More advanced programming techniques which can
be used in Python than PHP. And, Python has less
bugs to work around.

Python–PHP B very large The python standard library is extremely useful, and
Django is simply awesome.

Python–PHP B very large language design and user base
Python–PHP B large python is more compact the python web guys know

more about the web pythons frameworks have a
cleaner api (phps api is horrible)

Python–PHP B very large php is ugly
Python–PHP B modest Python is a very structured programming language
Python–PHP B very large The python language object orientation and it’s huge

library
Python–PHP B very large better language better libraries better frameworks
Python–PHP B very large cleaner language design
Python–PHP B large syntax, available and stable modules, OO
Python–PHP B small Generally better libraries with a focus on API sim-

plicity and clarity. Extra dynamic features makes this
a bit easier.

Python–PHP B very large PHP is poor and Python is the best.

1 PARTICIPANT COMMENTS 10

Python–PHP B large Python actively encourages re-usable code - if a
function is saved in a .py file, it’s wrapped up safely
in its own namespace and ready to be imported. PHP
on the other hand dumps everything in a single global
namespace making it much harder to write code that
other people can reuse.

Python–Ruby B modest Python is subjective more intuitive and straight.
You get to learn it fast and produce clean, self-
documenting code.

Python–Ruby B small Python is more accurate and straight.
Python–Ruby B small my familiarity with Python and the cleaner language

design of Python
Python–Ruby B small Django is: * easier to customize and to adapt to exist-

ing resources like e.g. database tables * more modu-
lar, so things can be easier plugged in or be partially
replaced

Python–Ruby A modest reasonable defaults everywhere on the rails side

1.2 Framework dependence comparison

Platforms Comparison Comment
.NET–Java EE A modest Both depent on their frameworks. But at asp.net it is

only one framework. in j2ee there are many
.NET–Java EE A about zero - well design is everything in my opinion, so there

should be no real framework dependency
.NET–Perl A very large simply put if the client doens’t have the framework

then they can’t visit the page.
.NET–Perl A modest Most reasonable development benefits from a good

framework. .Net has the disadvantage of difficult and
disparate configuration files as well as many often
cryptic configuration entries in the application itself.
Perl with Catalyst has a good modular framework
where configurable options can be in almost any sup-
ported human readable format; it is very feasible
to change or remove the framework or parts of the
framework and equally easy to incorporate or tran-
sition a new framework when required. Perl makes
interoperability easy.

.NET–PHP B large .net ist an sich schon sehr modular. ein passendes
framework kann man sich leicht selber schreiben,
dank der vielen msdn-artikel. eingekaufte frame-
works erfllen idr nicht meine qualittsansprche.

.NET–PHP A very large .NET *IS* a framework, you can’t really get away
from that. PHP lets you choose the framework you
want to work with.

.NET–PHP A very large Without the .NET framework, web application de-
velopment on Windows de-evolves to classic ASP
which is truly scary

1 PARTICIPANT COMMENTS 11

.NET–PHP A large The .NET framework provides an amazing amount
of classes for all sorts of uses whereas the PHP li-
braries tend to be mostly usable for database connec-
tivity.

.NET–PHP A about zero Languages don’t create good programs. It’s pro-
grammers that do that. It doesn’t matter what frame-
work you use; you still have to write good code.

.NET–PHP B modest I dont get the whole ”framework” thing in this sur-
vey. .NET web apps are built on the .NET frame-
work.

.NET–PHP A very large as ASP.NET is a framework, it is dependent on it,
isn’t it? silly question in this context... ;-)

.NET–PHP B modest I am assuming you are talking about 3rd party con-
trols and such. PHP has a great community that has
a lot more frameworks out there than .NET

.NET–Ruby A small ruby can be used outside of rails, but vb and c# are
strongly tied to the .net framework in today’s world

.NET–Ruby about zero Ruby is almost always rails, .net is always ...well,
.net

.NET–Python B modest .NET’s builtin capabilities are good enough. Python
doesn’t include web frameworks, for example, so,
one has to choose a framework. Choosing a sucky
framework will lead to sucky software :)

Java EE–Perl A about zero This is impossible to measure.
Java EE–Perl A large choice of framework influences architecture by great

measure and therefore impacts product quality too
Java EE–PHP A very large Definitely, you don’t really want to start a web server

from skratch, do you? Ok, with php you actually do
sometimes... :-)

Java EE–PHP A large The few use of frameworks in php.
Java EE–PHP B large JavaEE is already quite structured, a framework over

JavaEE cannot change the base
Java EE–PHP A very large fucking struts-spring-vignette-hibernate-jsf-

allthatcrap
Java EE–Ruby A large Not so many frameworks in Ruby yet.
Java EE–Ruby A modest With Ruby, there’s hardly a choice for frameworks.

It’s Rails. The other choices (Camping, Merb) have
very obvious uses, and they are developed people
people familiar with Rails, so there’s no real differ-
ence in quality.

Java EE–Ruby B modest Java has sooo many different frameworks that will do
the same thing at the end just in a different way.

Java EE–Python A modest Mostly it has more impact on developer productivity.
Most Python frameworks are very similar in terms of
productivity.

Perl–Java EE about zero Of course, bad frameworks produce bad quality, but
there are both good and bad frameworks in both lan-
guages, I guess.

Perl–Java EE None I can’t answer this question as I have not yet used
any perl web frameworks. However, I do believe that
the quality of the end product depends greatly on the
choice of the framework in the JEE case.

Perl–Java EE A about zero there’s too much different and unfinished java frame-
works

1 PARTICIPANT COMMENTS 12

Perl–Java EE B small CPAN
Perl–Java EE B modest I’m not too familiar with Java web frameworks so

a comparison here isn’t well informed on my part,
but Perl frameworks tend to use a lot of the same
modules like Template Toolkit, Data::FormValidator,
CGI, Class::DBI/DBIx::Class, etc. So it’s more the
wrapping of those underlying things that changes be-
tween frameworks.

Perl–Java EE B very large Perl apps usually are framework-free, so completely
framework-independent.

Perl–Java EE B small Both offer good frameworks, usually perl frame-
works are less complex and easier to grasp.

Perl–PHP A modest Horses for courses.
Perl–PHP B modest modularity of the frameworks
Perl–PHP B modest It always depends on the skill level of the program-

mers. Everyone can write bad apps with a good
framework and good apps without a framework (and
vice versa).

Perl–PHP A large because i think perl webapps tend to use frameworks
more than php webapps.

Perl–PHP B modest I see many people using PHP back-ends and front-
ends for things, but I rarely see that with Perl.

Perl–PHP A very large e.g. CGI::Application spares out hours of work pro-
gramming the same basic features. Plugins provide
the rest. There is less what isn’t implemented yet. If
there is no plugin for it, then there is a cookbook for
it.

Perl–PHP A about zero This depends on the coding style of each developer:
Some like big MVC frameworks, others not. Some
doesn’t like to write SQL, others want to write their
SQL by hand.

Perl–PHP B very large The variation is massive in PHP when you switch
from using a ’code in page’ option vs. a framework.
And each framework varies somewhat wildly.
Perl’s variation can be wide also (think plain old CGI
vs. Mod perl web application). I think in general,
due to developer experience, perl applications tend to
be more robust and solid across the board... so there
is still variation from no framework to frameworks,
and from one framework to the next, the variation
tends to be less.

Perl–PHP B small I’m of the belief that it doesn’t matter what language
you’re developing in, the choice of framework makes
a -HUGE- impact on the product quality. You can
write equally crappy code in either language, and
there are equally crappy frameworks for either lan-
guage too.

Perl–PHP B modest choice of framework certainly makes a difference,
but all perl frameworks are good

Perl–PHP A about zero The right framework will simply safe you alot time
in both languages.

Perl–PHP None framework matters more than language in this re-
spect ... this is a poor question

1 PARTICIPANT COMMENTS 13

Perl–PHP B large PHP frameworks generally use a subclassing API,
and sometimes very specific config files. With Perl
(Catalyst at least), one can truly modularize their
code to make it considerably simpler to switch to an-
other framework.

Perl–PHP B modest Coding PHP without a good framework results often
in bad quality

Perl–PHP A None I don’t think anyone’s using the PHP framework s
heavily yet. With Perl, you can use plain mod perl
or use Catalyst or CGI::App. The second two
make apps easier to write than mod perl, so the
tool/framework you choose can make a difference.

Perl–PHP A very large yes, absolutly.. writing a huge app from the scratch
in perl would take you more time than the same in
php (from the scratch) .. so php frameworks are
more like ”a bunch of code”.. while perl frameworks
really are ”dependent”

Perl–Ruby B small Perl offers multiple solid frameworks for web devel-
opment, and ruby really only offers Rails.

Perl–Ruby B large For Perl exist way more frameworks that are already
in production, a prove for quality. Ruby has Rails
and less than a few other frameworks and they all
abstract things into a levels where you go crazy.

Perl–Ruby B large Greater choice of frameworks in Perl
Perl–Ruby B large most ruby-webapps depends on rails
Perl–Python A about zero ?
Perl–Python A about zero Frameworks make web development easier for every

language imho.
Perl–Python B large Django is tons better than the alternative Python

frameworks
Perl–Python A modest Using or not using Catalyst and a decent ORM li-

brary can make the whole difference in Perl world.
PHP–.NET B modest I’ve never used any PHP frameworks, but I can code

a simple PHP app in a text editor.
PHP–.NET B large .NET is proprietary and is almost completely depen-

dent on Microsoft products.
PHP–.NET B very large At least you have a choice of frameworks...
PHP–Java EE B about zero I don’t use frameworks, so don’t ask me. ;-)
PHP–Java EE A modest With Java, you use servlets and JSPs, or other high-

level framework, that force you into a certain way of
structuring your code. PHP itself provides very little
guidance, you can do things in any number of ways,
most of which are wrong.

PHP–Java EE B modest PHP doesn’t need a framework, but there are lots of
them available. I make my own framework to avoid
bloated code overhead. Again, more control over
things is the way I like it.

PHP–Java EE B large Already indicated; same as with Tool Dependence.
PHP–Java EE A None Actually I think the question is badly conceived.
PHP–Java EE B modest take a look at struts
PHP–Java EE A large PHP-Programmierer neigen zu Spaghetti-Code. Erst

durch den Einsatz von Tools wird PHP richtig gut.

1 PARTICIPANT COMMENTS 14

PHP–Java EE A modest in java there are standard frameworks that everyone
uses. in php the frameworks have very different qual-
ity and there are a lot of different ones

PHP–Perl None no opinion
PHP–Perl A large Programming Language Design
PHP–Perl B about zero i am not conveinced in using (much) frameworks. too

many vulnerabilities in their functions.
PHP–Ruby B modest You have to have Rails
PHP–Ruby B modest I think most Rails developers wouldn’t know how to

write a pure Ruby web app using the CGI package.
PHP–Ruby B large Using Rails is a huge boost to quality. PHP frame-

works are all of low utility.
PHP–Ruby A about zero There is no difference
PHP–Ruby B modest Number of builtin functionality of the languae
PHP–Python A small Too many PHP developers don’t even know what a

framework is and even fewer know what PEAR is.
They often re-invent the wheel far too often. That
being said, starting from a framework improves the
quality of a PHP application greatly because it forces
the developer to be consistent and to avoid common
pitfalls.

PHP–Python B modest python frameworks way better, in php there are al-
most none

PHP–Python B about zero Don’t know.
PHP–Python B large PHP doesn’t have many framework choices. Thus

the end result is often fairly uniform. Python has
many frameworks, most of which are crap.

PHP–Python A large PHP has a lot of crap frameworks and it a harder lan-
guage to create frameworks in. Python frameworks
can be simple and powerful at the same time, and are
usually created by better programmers.

PHP–Python A large practically impossible to develop a web application
without using *some* PHP framework

Ruby–Java EE A about zero don’t know
Ruby–Perl A small I think it is possible to write a DSL framework for

Perl.
Ruby–PHP A modest mod php vs mod ruby

Ruby–PHP B about zero Multiple framework choices in both languages
Python–Java EE B about zero again, a question that doesn’t make sense to me.
Python–Perl A modest Using python frameworks, which there are a lot of,

makes a huge difference.
Python–Perl A about zero framework choice is critical to either language.
Python–PHP A modest PHP code is generally just written as-is and frame-

works are optional. Some sort of framework (even if
only the cgi module) is needed in Python.

Python–PHP B very large python is better language for larger projects in gen-
eral.

Python–PHP A large having a framework is the reason to use python in the
first place.

1 PARTICIPANT COMMENTS 15

Python–PHP B very large Most Python frameworks are quite robust, whereas
many PHP frameworks seem quite fragile and
spaghetti-like under the hood.

Python–PHP A very large There are only four to five frameworks for PHP
which are inferior, if usable at all!

Python–PHP A modest PHP is more web oriented from the start so Python
development are more framework dependent.

Python–PHP B small with php its almost impossible to write something
without a good framework.

Python–PHP A large There are many great frameworks for python with
very different approches to Web-development.

Python–PHP B very large PHP a PITA without a good framework; Python can
perfectly go without framework.

Python–PHP A modest Python doesn’t have a good built-in web program-
ming model, so the entire environment is framework-
dependent. PHP frameworks build on-top of the
lower-level PHP model, and are more flexible for
mix-and-matching models within a single project.

Python–PHP A small Python and PHP both needs a good framework to do
a good work. PHP can also make little pages with a
minimun effort, but this need is very rare.

Python–PHP A modest PHP is its own framework out of the box; with
Python you absolutely have to pick one to stay sane
(since it’s a general purpose language, unlike PHP
which is designed for the Web).

Python–Ruby B about zero both languages run on many platforms quite equal
Python–Ruby B large For Ruby there is really only Rails - which admit-

tedly is superb. For Python there is a plethora of ex-
cellent mature frameworks to choose from, and even
within a framework different tools to choose

1.3 memory comparison

Platforms Comparison Comment
.NET–Java EE A modest I don’t know if there is a difference
.NET–Java EE A large - the IIS for example needs a lot of memory - .net

itself is memory consuming
.NET–Java EE B modest depends on frameworks you are using. ado .net, linq,

nhibernate, ... or jdbc, hibernate, ...
.NET–Perl A modest again I think it’s because of the heavier framework

and extra processing
.NET–Perl B small Microsoft have optimised their applications. PERL

appears to take more memory per application.
.NET–PHP A large With PHP it’s possible to create a much leaner pro-

gram than it is when using the .NET framework
.NET–PHP A modest The framework itself can consume a lot of memory

and if you put the web application on top of that......

1 PARTICIPANT COMMENTS 16

.NET–PHP A large Holding all of the .NET framework in memory and
IIS is a bit more consuming then PHP. But I make use
of a LOT of .NET functionality whereas PHP was
mainly for MySQL.

.NET–PHP A large ASP.NET application have a bigger footprint than an
equivalent php application

.NET–PHP A modest My impression is that PHP uses memory very effi-
ciently. But it is only an impression.

.NET–PHP A modest All of the functionality afforded in the .NET frame-
work comes at a cost in some sense. .NET applica-
tions tend to use slightly more memory than scripted
web page languages.

.NET–PHP A large large framework - large amount of memory

.NET–PHP A small There is more to a .NET page, so my guess is the
server is hit a bit harder.

.NET–Ruby A modest .net has a huge amount of overhead compared to
ruby, this can be nice but in the case of memory it
does eat more

.NET–Ruby about zero actually, I’m not sure

.NET–Python A modest Windows itself requires more memory, so... (I don’t
care about Mono, at least not Mono’s ASP.NET)

Java EE–Perl A large The JVM
Java EE–Perl A large size of JVM is much larger

not very much ”lightweight” solutions/servers avail-
able for Java

Java EE–PHP None php < 5 doesn’t have garbage collection, so it de-
pends on developer. php > 5 don’t know.

Java EE–PHP A modest - The posibility of using global memory.
Java EE–PHP A large Because JavaEE, by design, leads to apps with more

transcient objects (cleaner design, but more memory
used)

Java EE–PHP B large no session in php
Java EE–Ruby A about zero Not sure about this either.
Java EE–Ruby A small Most Java apps have been around longer and are

larger.
Java EE–Ruby A modest Bloated Application Servers with distributed trans-

action functionality.
Java EE–Python A large Java consumes lots of memory in objects.
Perl–.NET A modest Depends. mod perl is a hog, but so is .NET.
Perl–.NET B about zero using shared memory
Perl–Java EE B modest I don’t know. I don’t know much about the underly-

ing implementations of Java and perl.
Perl–Java EE B very large a sensible apache setup uses much less memory than

a full blown JEE application server like jboss.
Perl–Java EE B small jvm use a lot of memory but it can be locked, perl

(mod perl, fastcgi, ...) use memory by request
Perl–Java EE A small I’m not completely sure about this because I haven’t

done much memory tuning on Java applications, but
mod perl (not necessarily Perl itself) does make a lot
of memory sacrifices for speed improvements.

Perl–Java EE B large Java tends to have bigger classes pulled into memory
Perl–Java EE B large Perl’s intrinsic garbace collection mechanism, less

and smaller objects, less need for helper objects.

1 PARTICIPANT COMMENTS 17

Perl–Java EE B very large Ever run java on an embedded appliance with less
than 64MB of RAM?

Perl–PHP A about zero I’ve tested this one, it comes out to be a wash.
Perl–PHP A modest Can really answer this one. Depends greatly on

server setup.
However, Perl sometimes makes it easy to solve tasks
at the expense of more memory use. But that is a
programmers decission to make.

Perl–PHP None I don’t have compared the memory usage.
Perl–PHP A small I’ve never had an issue where I needed to compare

the two.
Perl–PHP A large Many abstraction/indirection layers, extensive

caching.
Perl–PHP A about zero In my experience, the PHP interpreter is somewhat

more clumsy than the Perl interpreter. That said,
ModPerl can eat a lot of memory, too.

Perl–PHP B modest modules are loaded only if nessecary.
Perl–PHP A about zero This depends heavily on the application. In my expe-

rience, small applications need more memory in Perl
when using mod perl or fastcgi then with PHP.
For bigger applications and with caching also PHP
needs a lot of memory.

Perl–PHP B modest Deployment style. Catalyst apps tend to be a hand-
ful of processes operating independent from the web
server. The normal way of deploying PHP is as a
web-server module - and therefore every web-server
process has the entire PHP application’s memory re-
quirements added to it.

Perl–PHP A about zero I haven’t seen any significant difference in the mem-
ory usage between PHP and Perl apps.

Perl–PHP A large code and template caching
Perl–PHP A large Same problem again. 10 calls to a cgi based perl pro-

gram result in 10 parallel Webserver processes wich
called a perl interpreter. In case of mod perl this is
again not the case. you only have on interpreter per
child which can handle as many requests as the child
lives.

Perl–PHP B large language does not matter as much,though mod perl
and preloading modules in memory saves a lot of
memory when used; still, implementation is more
important than language

Perl–PHP B modest Again, language flaws.
Perl–PHP B about zero Depends on your environment. As PHP has so many

functions in its mainspace it might use more than a
simple perl script

Perl–PHP A large because I’ve seen mod perl enabled apache pro-
cesses consuming very large amounts of memory (40
MB is common on freebsd 6.x).

Perl–PHP A small Lazy Garbage Collection
Perl–PHP B very large Scoping variables in perl is much easier and you can

use namespaces.

1 PARTICIPANT COMMENTS 18

Perl–PHP A large perl’s advantage (cpan) is also its curse (cpan de-
pendencies) .. php, you just can ”download and
put”, but your perl app will base on a couple of mod-
ules, depending on a couple of modules, depending
on even more modules ..

Perl–Ruby B large Typical mongrel deployments are a fleet of stand-
alone threaded servers, with 0 copy-on-write bene-
fits from forking. Typical Catalyst deployments uti-
lize FastCGI or mod perl, both of which can provide
much greater CoW.

Perl–Ruby B large Because Perl allows optimization into more direc-
tions than Ruby. The lack of documentation for
Rubys innards makes it hard to understand where
to optimize besides the normal application flow and
other usual patterns.

Perl–Ruby A small More modules loaded Framework dependent
Perl–Ruby B modest perl is more stable/better in the memory management

area
Perl–Python A small Python has a strong, dynamic typing system and can

thus optimize the internal data structures in a better
way than Perl which has weak typing.

Perl–Python A modest Perl ;-)
Perl–Python B small As I don’t use frameworks in perl, the amount of in-

cluded code tends to be less.
Perl–Python B modest Maturity of Perl itself and mod perl
Perl–Python B modest Should be about the same, though.
Perl–Python A small - mod perl
PHP–.NET B modest I can’t say, have never tested. I assume Apache &

PHP would consume less memory than IIS & the
.NET framwork

PHP–.NET None No idea. Don’t care.
PHP–Java EE B small I actually never profiled this, so no serious opinion.

;-)
PHP–Java EE B large In PHP, nothing is shared between processes. All

memory allocated for generating a single response
is freed after the response has been sent. The Java
VM also seems to cause a lot of memory overhead.

PHP–Java EE B very large Java memory management is the worst thing in com-
puter science today. And no; memory getting cheap-
ing doesn’t matter. Example; a BEA Weblogic Portal
8.1 developer needed 1.5 gb of memory to do any-
thing, a BEA Weblogic Portal 9.x needs 2.5 to do
anything! It is a complete disaster.

PHP–Java EE B large leaner architecture, less processes involved
PHP–Perl None No opinion.
PHP–Perl A None mod perl?
PHP–Perl B modest mod perl applications will be loaded at the startup of

the server daemon.
PHP–Perl A modest Don’t know, just believe
PHP–Perl B small Code caching
PHP–Ruby B modest I have more control of memory usage in PHP and i

like tight code. Ruby just takes more ram to compen-
sate for the ease of config and coding

1 PARTICIPANT COMMENTS 19

PHP–Ruby B large The rails stack consumes CPU and RAM as it scales;
the PHP stack is more likely to consume CPU in par-
ticular. A lot of Rails-only hosts sell their virtual
servers by how much RAM you get.

PHP–Ruby B very large Ruby is served by resident processes that start at
about 30Mb and can easily leak. PHP starts out
vastly lower and kills processes between requests,
freeing memory.

PHP–Ruby B about zero There is no difference
PHP–Ruby A modest Architecture Process/Threads
PHP–Python B modest More man-hours gone into optimizing mod php than

mod python
PHP–Python B modest The python interpreter requires more memory over-

head than PHP per-process.
However, development on mod python and
mod wsgi is continually reducing that over-head.
It’s possible that they may one day be comparable in
memory usage or that Python could over-take PHP
in this arena.
Does that necessarily make PHP better? Hardly.
There are other factors to consider (like caching,
load-balancing, etc).

PHP–Python B modest largeamount of objects kept long time in memory
PHP–Python B small I’ve got no number to compare here. But Python

seems(!) more hungry :)
PHP–Python B modest PHP doesn’t seem to need to keep as much in mem-

ory, perhaps due to it’s web-only nature. These mem-
ory differences can be muted with a well-planned
web server set-up, however.

PHP–Python B small PHP code tends to be simpler more low level and less
dynamic than Python.

PHP–Python A large memory management memory leaks python apps
don’t reload whole at every request

Ruby–Java EE B small not sure
Ruby–Perl A modest This depends on how things are setup. To speed

things up for Ruby, I might be using more caching
than an equivalent Perl project, given the same ca-
pabilities in the framework (Say, the equivalent of
ActiveRecord for Perl).
On the other hand, when Perl start leaking memory,
it can leak bad. But I say this with the assumption
that memory leaks are plugged before deploying to
production.

Ruby–PHP A small mod php Ruby interpreter footprint
Python–Java EE B large In the applications I’ve worked with, the Python ver-

sions were designed to be easier on memory.
Python–Java EE B small I’m just guessing here, but Java is known to be a

memory hog.
Python–Perl A about zero because I have no experience with worrying about

memory consumption.
Python–PHP A small mod python is a hog compared to mod php; fcgi is a

bit better; cgi is slow but respectable
Python–PHP A modest it depends on application.

1 PARTICIPANT COMMENTS 20

Python–PHP A modest see last question.
Python–PHP A small Python is more complex, and programers tend to load

useful external libraries
Python–PHP A large This too is silly, but in general most PHP applica-

tions do not require long-running instances of servers
and many in Python do. Zope is a big one of these.
But again it depends on the framework and its needs
and capabilities and architecture. You can build very
lightweight Python apps and very heavy PHP apps if
you are so inclined, or vice versa.

Python–PHP B modest PHP is typically used with Apache and the latter in-
vokes the more instances of PHP the more threads
are serving. With Python you don’t really need an-
other application for serving.

Python–PHP A modest Especially with mod python when it’s not configured
right, with FastCGI this can be a little lower.

Python–PHP A small PHP doesn’t have a very good garbage collector, but
memory is cleared per-request, which nearly elimi-
nates potential memory leak issues.

Python–PHP B small Python have a better memory management and a
smaller footprint.

Python–PHP A modest It depends on how you deploy the application. If
using mod python, you get a full copy of your ap-
plication for every Apache child and these can grow
quite large as Python doesn’t often free memory that
it takes from the OS.

Python–Ruby B small don’t know
Python–Ruby B large webRick eats memory...

1.4 modifiability comparison

Platforms Comparison Comment
.NET–Java EE B modest Depends on the web framework used for the java ap-

plikation
.NET–Java EE B large - Visual Studio.NET !!!
.NET–Java EE B modest less code easer to read better testing solutions etc
.NET–Perl B large intelisence and the abilty to easily create pages

speeds up pages.
.NET–Perl A modest PERL has good automated testing. There are more

ways to accomplish similar things with PERL. With
CPAN there is likely to be a reliable solution already
available and with many maintainers willing to offer
guidance in how to perform modifications and exten-
sions any changes are likely to be more robust.

.NET–PHP A large viewstate random insertion of javascript to make the
whole thing appear like a desktop app to programmer

.NET–PHP A modest Over-engineering

1 PARTICIPANT COMMENTS 21

.NET–PHP A modest PHP is more dynamic; I’m speaking now of
Database changes. My ASP.NET apps are imple-
mented using SPROCs, my PHP had all the SQL
thrown into the code directly.

.NET–PHP A modest .NET requires application to be compiled, which a
single file can be modified in PHP

.NET–PHP B about zero The differences are in the way you code, not in the
language. Well architected systems are easier to
change than badly thought-out ones, whatever the
language.

.NET–PHP B very large Having robust base class pages mskes the application
much easier to maintain and agile.

.NET–PHP B very large good development tool (VS)

.NET–PHP B very large VS.NET debugging capabilites

.NET–PHP B large breakpoints

.NET–Ruby A large the most work i do is CRUD stuff and thus a lot of
extra work in .net

.NET–Ruby A small Testing is usually better with the rails framework,
and generally things take less code.

.NET–Python A very large I believe there is a *huge* difference. Unexpected
changes that involve more than simple tasks like
adding a new field to a form are easier with .NET,
but complex tasks like ”check the server Y for an en-
try in the database Z and save it to the server W” are
much easier to do with Python.

Java EE–Perl B large Perl is too easy to write in a way that can’t be easily
refactored.

Java EE–Perl A modest because one has to adapt to java’s ways of doing
things, and these ways are sometimes quite complex
(e.g. EJB)

Java EE–PHP B large php applications tend to be less structured, due to the
ease of mixing logic and presentation

Java EE–PHP B large It’s easier to find what must be changed. There are
better tools for refactoring and testing.

Java EE–PHP B modest - Usuallly a more modular design.
Java EE–PHP A modest More low-level stuff in JavaEE to care about, and

JavaEE more structured (beans, etc etc)
Java EE–PHP A about zero obvious
Java EE–Ruby A very large Without strong design Java EE applications tends to

become a mess.
Java EE–Ruby A very large Rails projects tend to have better test coverage Stan-

dardized project layout in Rails No need for the re-
compile in Rails

Java EE–Ruby B modest With Java you will find 30% errors at compile time.
These errors need no testing.

Java EE–Ruby A large Rubys concise language
Java EE–Python A large More bloated code makes finding bugs harder.
Perl–.NET B modest Testing ASP.NET sites is much harder than testing

with the various perl test suites.

1 PARTICIPANT COMMENTS 22

Perl–Java EE B modest Writing tests is very easy in Perl, also because almost
every CPAN module comes with a set of tests, so it’s
encouraged to learn writing tests. Also design is easy
because in Java you have restrictions you don’t have
in Perl, so when doing the design you usually don’t
have to care.

Perl–Java EE None I don’t think this can be answered in general. Perl
projects tend to have more hacky quick&dirty parts
in their codebase which might make certain changes
expensive. On the other hand a wrongly choosen
architecture or modularization in java can be much
harder to mold in order to adapt to new requirements
then a perl application.

Perl–Java EE B large Less code needed to make changes, general produc-
tivity from dynamic language

Perl–Java EE B large unitary tests are rarelly used in java web application
Perl–Java EE B small Perl is a more flexible language and CPAN reflects

this.
Perl–Java EE B modest Less code means less things to change. It also means

less to test. Most Perl frameworks already give you a
good MVC design for web applications. This doesn’t
mean you can’t shoot yourself in the foot with regard
to architecture design, but at that’s true with any lan-
guage.

Perl–Java EE B modest Abstraction Layers
Perl–Java EE B very large E.g. to add a column to a database table: in Perl just

another attribute of the resulting entity which may be
handled or not; Java requires modifications in many
places due to the mentioned copy burden.

Perl–Java EE B modest The extra compile cycle always required with java
makes repeated building and runing tests slower, on
the other hand usually Java IDE integration is supe-
rior making coding easier (still not faster)

Perl–PHP B large PHP too tightly couples presentation with operations
Perl–PHP about zero Doesn depend on language, depends on skill of de-

signer and programmer
Perl–PHP B modest If it is written in a standard way of programming, it

is very easy to change the code.
The average PHP application is mixed within HTML
and that makes it hard to react on change requests.

Perl–PHP B large the artifact of a large hand coded code bases because
of little to no reuse.

Perl–PHP B large Module style and roots of perl
Perl–PHP B large Typical perl applications tend to have a more sophis-

ticated architecture, which contains more abstraction
layers, and are therefore in most of the cases easy
to extend. Sometimes it may be easy to refactor the
code, and perl provides many means to refactor code
to fit one’s needs, without using any IDE features (as
there is more than one way to do something in perl)

Perl–PHP A small Again, Perl is more flexible than PHP, so the design
process for a Perl application must incorporate more
variables than for a PHP application.

1 PARTICIPANT COMMENTS 23

Perl–PHP B modest Good frameworks, but i don’t know php frameworks
very well. The bigger the app, the more i tend to use
perl.

Perl–PHP B modest perl has several very good mechanisms for auto-
mated testing. We use perl to automatically test sev-
eral applications developed in different languges and
platforms

Perl–PHP B modest This depends a lot on the used framework, not only
the language itself.
Testing is a big strength of Perl, there are a lot of very
excellent testing modules for each purpose.

Perl–PHP B very large Lots of testing modules (from CPAN), much less
known bugs in the language.

Perl–PHP B very large Again, structure, clarity and robustness. Each piece
of a Catalyst application tends to do one particular
thing well. Adding a new feature doesn’t require the
normal ’Hmm, where can I fit this into the existing
code’ process that you get in most other systems.

Perl–PHP B large If you’re using the right CPAN modules, many of
the changes that you run into can be done via -data-
transformations and require a minimal amount of ac-
tual code to be written.
For example, if you’re building WWW applications
then using something like Data::FormValidator to
help validate all of your incoming data makes life
-MUCH- simpler than having to do it repeatedly
throughout your app.
Combine that with using Class::DBI for a database
layer, and you’ve now got access to a somewhere to
keep a base set of validation profiles for all of your
data (your DB objects). When you’re validating in-
coming data, start by grabbing the validation profile
for the DB table that you’re going to stick the results
in when you’re done and then amend that profile as
necessary for the particular fields you’re expecting
(or not expecting).
When I’ve worked with PHP, I ended having to do
quite a bit of this type of work manually, as modules
didn’t exist to help do that type of validation for me.
Rather than simply adding a new entry to my valida-
tion profile I ended up having to write code to do it
for me.
Perl also comes out of the box with a whole Test har-
ness and framework; if you’re not using it, you’re
missing out.

Perl–PHP B large Same as before; fewer script kiddies
Perl–PHP B modest experience
Perl–PHP B very large automated testing capabilities of the frameworks

(catalyst). CPAN
Perl–PHP B very large With perl you just tend to program much more mod-

ule based than with php. And a more module based
application is always easier to change.

Perl–PHP B large perl changes much less often than php better OOP

1 PARTICIPANT COMMENTS 24

Perl–PHP B large experience
Perl–PHP B large More modularity, and more testing tools available.
Perl–PHP B large Approach, TDD
Perl–PHP B small Both languages can be maintained with small effort.

But Perl has great modules for testing purposes
Perl–PHP B about zero Code which may need some new features in the fu-

ture should be strictly object oriented. If you create
fe. a framework it would be the best if programmers
which use it won’t need to call any function of your
api. You have to able the programmer to write *plug-
ins*, so you can alway modify things in your frame-
work code without bother others.

Perl–PHP B large Testing is simple, and tests are the key to a stable web
app.

Perl–PHP B modest Expressiveness. Ease of use and availability of ”ad-
vanced” language constructs (first class closures, list
transformations borrowed from functional program-
ming). This makes designs semantically clearer and
allows easier planning of extension. Easy prototyp-
ing in Perl. Extendable test-suites are easy with the
Perl toolchain.

Perl–PHP B large Easier to write unit tests with
Test::WWW::Mechanize, Perl has a debugger.

Perl–PHP B large php is far less scalable
Perl–PHP B modest Use of generic libraries from CPAN, use of frame-

works
Perl–Ruby A about zero With Catalyst, it’s up to you to decide many of the

parts of the application. With rails, the decisions
have already been made. Once you’re working with
Catalyst, the difference drops to zero.

Perl–Ruby B large Perl is easy to design and gives everything from the
prototype up to a running application and allows evo-
lutional development. Ruby is too overloaded to un-
derstand. That has changed a bit in the near past but
it’s still to much to remember what the right name
for an accessor or method is.
Perl has CPAN and many different modules to write
tests so unexpected changes are not expected. Ruby
also has testing modules but not as half as good and
many as for Perl.

Perl–Ruby B modest Maturity of frameworks and language
Perl–Ruby B small Ruby/Rails is based on many assumptions, defaults

than perl/Catalyst
Perl–Ruby A modest I just say irb. I have a perl shell in my IDE (Kom-

modo) but this is’n quite as cool as logging into your
model as in ruby.

Perl–Python A very large Testing frameworks are VERY well developed in
Perl and Catalyst encourages unit testing in the de-
velopment cycle. Perl also has many web robot type
tools for testing a web application.

1 PARTICIPANT COMMENTS 25

Perl–Python A small When refactoring Perl module names you have to up-
date a lot of package-declarations. In Python you just
have to rename the modules (and of course update
the references).

Perl–Python B large Perl can be much more loosely coupled than other
languages.

Perl–Python about zero - only experience
PHP–.NET A modest .NET is strict. Many bugs can’t happen because its a

strict language .NET has many default ”extensions”
while in php you have to check if php is compiled
with this extension and there are different extension
for the same task. Also .NET provides a object ori-
entated way to access this ”extensions”

PHP–.NET A large I find the edit-compile-run cycle in Visual Studio too
slow.

PHP–.NET A about zero Depends on the change. I’d prefer to make a change
in .NET, but no compiling in PHP is nice.

PHP–.NET B modest To modify a PHP application, you just change the
code and test it out.
For .NET, changing pages and ”code behind” pages
and rebuilding solutions is confusing and time con-
suming. Everything must be done through Visual
Studio which, while it is nice editor, it is expensive
and it is a memory hog.

PHP–.NET A modest Man verliert gerne die Struktur, da wenig Zwang
herrscht..

PHP–.NET B large Huge amount of built in functions
PHP–.NET B very large .Net is tailored to IE. You can never be sure if it

works on other browsers, and if it doesn’t, it is very
hard to fix.

PHP–Java EE A very large Probably my fault, I write my java code in a very
OO way and always plan out my design to minimize
headaches later. I find PHP too lacking in its OO
approach

PHP–Java EE B large Again the same reason: Much more knowlegde (of
all used classes) is needed to understand what a ma-
jor change involves in Java.

PHP–Java EE A modest Less typesafty. Debugging of Java code is better.
PHP–Java EE A modest language design and purpose
PHP–Java EE B very large In PHP you can do quick-and-dirty hotfixes right on

the server, no re-compile and re-deploy cycle neces-
sary. Of course this can cause lots of headaches later
on ...

PHP–Java EE B large PHP has a good debug system that tells you where
and why things happened. Plus with PHP it is easier
to trial-and-error solutions without much extra pro-
cess overhead.

PHP–Java EE A modest PHP apps are often less architected; once you are
in complete understanding of the Java program,
changes are easier.

PHP–Java EE B modest Less of a gap between write and run
PHP–Java EE B large see pages 6, 7
PHP–Java EE B large source code available simple architecture less lines

of code

1 PARTICIPANT COMMENTS 26

PHP–Perl A very large Again, usually PHP is chosen instead of Perl for it’s
availability. This means Visual Basic syndrome all
over again (lots and lots of cheap PHP programmers
on the market.)

PHP–Perl B large Because in PHP the programmer can use object ori-
ented syntax and write reusable code, which as far as
I know Perl does not support.

PHP–Perl A modest Design of the programming language
PHP–Perl A modest Test::* modules in Perl Apache::Test

PHP–Ruby A modest Did you guys mean to ask about the language AND
the framework? Because all these questions are
about the language alone, but most of these questions
don’t make sense unless applied to both. From now
on I’ll answer for both.
Rails lends itself to easier refactoring. I think this is
due to the hardcore enforcement of MVC. Also, the
language is more OO.

PHP–Ruby A modest more code
PHP–Ruby A very large Anemic testing tools. Culture that devalues design

and testing.
PHP–Ruby B small Again, ability to modify a program depends on the

architecture, not the language.
PHP–Ruby A modest Even with Frameworks PHP tends to be more unflex-

ible to the programmer
PHP–Ruby B about zero There is no difference
PHP–Ruby B small Better transparency of code
PHP–Python A large No builtin test-facilities
PHP–Python A large Integrating several PHP scripts or applications into a

project is a real headache due to the complete lack
of proper name-spacing. Almost every database-
powered PHP script names their database class in-
stance, ”$db” which is a huge pain on large projects.
The unit testing frameworks for PHP leave much to
be desired.
The PHP CLI is not an effective environment to run
scripts under since PHP behaves differently when run
under an Apache process; Python on the other hand
runs the same so playing with a script in the Python
interpreter tends to yield far more productive results.
PHP also lacks some powerful constructs like list
comprehensions, decorators, and generators. This
tends to lead to highly verbose and obtuse logic to
solve certain common problems. It also means that
the solution to said common problems is usually dif-
ferent for each project.

PHP–Python A very large Python has excellent OOP support. PHP has horrid
OOP support.

PHP–Python A about zero Cannot really judge here. I think there’re better test
test tools for Python. But software design in general
is very much dependent on people and not so much
on the used language.

PHP–Python A modest weak type system and use of globals in PHP

1 PARTICIPANT COMMENTS 27

PHP–Python A small Application design, testing and performance are near
equally simple with both.

PHP–Python A large Python is more consistent and easier to read. Python
needs less code to do the same amount of stuff.

PHP–Python A small Readability of the code
PHP–Python A small Not enough bug testing in the PHP core and strange

language behaviour.
PHP–Python A very large interactive interpreter builtin debugger ability to re-

mote control python web app
Ruby–Java EE B modest - flexibility through duck typing - less code to mod-

ify (thanks to the ”don’t repeat yourself”-principle in
rails)

Ruby–Perl B large nice framework integration
Ruby–Perl B modest There’s probably a Perl framework equivalent to

Rails for Ruby, but I have not used it. Having worked
with Perl DBI – which provides no ORM support –
everything is a pain in the ass. About the same
pain-in-the-ass as the Ruby DBI. I believe that most
of the ease-of designing and testing an unexpected
change comes from the framework, not the language
itself. Having said that, Ruby by itself tends to be a
lot more DRY, so there is often less work I have to
do with when it comes time to refactor.

Ruby–PHP B large Ruby language and Rails conventions

Ruby–PHP B large Integrated and consistent test framework
Ruby–PHP B large Testability Syntax
Python–Java EE B large Difficulty of tracing dependenciesin Java.
Python–Java EE B large Java makes you wait to compile and doesn’t come

with a read-eval-print loop program so you can’t test
your changes till you compile (and compiling can
take a while).

Python–Java EE B small python tends to be more explicit in terms of being an
imperative language. On the other hand, Java server
pages tend to be more explicit in terms of the HTML
code that is delivered.

Python–Java EE B large Java!
Python–Java EE B very large Python is a better language
Python–Java EE B small Using basically the same tools.
Python–Perl B small if well designed, and if the guy that wrote the code is

making the change, it probably doesn’t matter much.
Python–Perl B large The code is more readable
Python–PHP B modest Python includes unit-testing modules; doesn’t have a

flat namespace
Python–PHP B very large language design
Python–PHP B modest Per-module testing of Python is easy and very help-

ful.
On the other hand the ORM is not necessarily as use-
fully testable as database testing using stored proce-
dures. This is a framework rather than language is-
sue.

Python–PHP B very large Structure and modularity

1 PARTICIPANT COMMENTS 28

Python–PHP B large Again syntax and clear separation between HTML
templates and code.
Great Frameworks like django also help

Python–PHP B very large Python’s modularity puts organization first for nearly
all purposes. I have much better MCV organization
than I was ever able to achieve with PHP.

Python–PHP B modest More frameworks being available for Python than
PHP.

Python–PHP B very large The separation of code from logic with Django is
beautiful.

Python–PHP B very large great standard library, full OO
Python–PHP B very large you are to writing pythonic, modular code in python,

a full blown program.
Python–PHP B large better libraries, more powerful language and frame-

works
Python–PHP B large Python has Unittest-Modules in the Standard-

Library
Python–PHP B about zero pydoc, Pythons clarity of code
Python–PHP B modest Properties, dynamic language features, and better

testing support make python easier to work with for
this sort of thing. Having the interpreter to do small
changes and tests while refactoring also makes things
a bit simpler.

Python–PHP B very large Exceptions in Python are better. In Python all is an
object and support functional programming, PHP is
a complete mistake.

Python–PHP B modest It depends on how well you architect your code -
but PHP does tend to lead to spaghetti code which
is harder to maintain (unless you are incredibly dis-
ciplined).

Python–Ruby B small good development platforms and management tools
(eg. eric)

Python–Ruby A small quality of the framework - Rails is superior to Turbo-
Gears in most aspects (despite my lesser familiarity
with Ruby)

Python–Ruby B very large While Rails provides seperate databases for produc-
tion, development and testing uses, Django’s tem-
plate system is more flexible as it uses inheritance.

Python–Ruby B modest python being more explicit makes it easier to change.

1.5 readability comparison

Platforms Comparison Comment
.NET–Java EE B very large The user must know all the external libraries used

in an j2ee app to understand it. In asp.net app it is
mostly enouh to know the framework

.NET–Java EE B modest - high-level constructs - syntactic sugar (foreach etc.)

.NET–Java EE B modest namespaces properties vs. getter & setter styles ...

.NET–Perl B large not as cryptic as perl can be

1 PARTICIPANT COMMENTS 29

.NET–Perl A about zero Both languages can be cryptic and neither enforces
readability although .Net visual studio defaults to au-
tomatic code formatting.
PERL can encourage documentation in testing
though this is optional.

.NET–PHP B modest stark formalistischer ansatz, strker umgesetzte idee
eines frameworks in allen bereichen von .net

.NET–PHP B modest VB was designed for terrible programmers to be able
to use

.NET–PHP B modest awkward function names in PHP worse OOP support
in PHP

.NET–PHP A modest It’s easy to over-engineer a solution in .NET, since
it seems like you’re working with a full-blown pro-
gramming language, not a scripting one

.NET–PHP B large PHP has so many different syntaxes for certain
things; .NET has a more common framework.

.NET–PHP A large Complex IDE Compiled versus Uncompiled Code

.NET–PHP B about zero Code behind might make things a bit easier to under-
stand, but I think the difference is trivial

.NET–PHP B about zero kl

.NET–PHP B very large Having a true object oriented structure to derive
pages and create robust base class pages makes pick-
ing up .NET web sites MUCH easier.

.NET–PHP B large separation of code and design object orientated logic

.NET–PHP B large OO, modularization, large framework

.NET–PHP B large Code separation makes commenting and debugging
easier

.NET–PHP B large ASP.NET pages are easier to read because of the
code Behind and the event-oriented system

.NET–Ruby A large rails applications are built 1 way, vs .net apps that
can be coded a great number of different ways

.NET–Ruby B very large The languages are more commonly understood, and
Ruby web apps are almost always built with rails,
which is another big learning curve

.NET–Python A modest I have very little trouble understanding Python code,
but sometimes .NET code can be weird.

Java EE–Perl B large Perl is almost always very ”dense” and thus very dif-
ficult to ramp up on.

Java EE–Perl B small most perl programmers are not good in writing read-
able code, though it has changed in last years

Java EE–PHP B large J2EE applications tend to have better separation of
business logic and presentation than a typical php
app

Java EE–PHP B very large modularity, encapsulation, frameworks (ok, I never
used php 5+)

Java EE–PHP B very large - Not using a MVC frameworks. - Many ways to
do the same thing. - mixing logical application with
presentation subjects. - Few discipline.

Java EE–PHP A large More complex infrastructure, multiple vendors
Java EE–PHP A about zero programmers understand nothing at all, never, ever
Java EE–Ruby A very large Ruby syntax in many cases looks like plain English

The code is smaller, so it’s easier to read

1 PARTICIPANT COMMENTS 30

Java EE–Ruby A very large Ruby’s conciseness as a language Standardized
project structure in Rails Tests generally being used
better in Rails Less configuration in Rails Less of a
hodgepodge of frameworks with Rails (Rails, com-
pared to, e.g., Stripes + Spring + Hibernate)

Java EE–Ruby B modest It is harder to write tricky code with java. But that is
developer dependend. Good witten and documented
code is easy to understand, no matter which language
is used.

Java EE–Ruby B large Java Tool Support Propagation of Java
Java EE–Python B very large Java has more stock libraries and more people have

experience with it.
Java EE–Python A large bullshit criteria. different use for different languages
Perl–.NET A modest Perl is a more verbose language (sigils).
Perl–.NET B large (only if the Perl-Programmer works in a responsible

way and the reader is a somewhat experienced Perl-
Programmer)
code is more compact it is easier to express what is
important often there is no need to reinvent the wheel
because of CPAN

Perl–Java EE B large It depends of course on the source code. If the pro-
grammer used best practices, then it’s the expressive-
ness that makes it easier to understand. If, on the
other hand, the external programmer doesn’t know
Perl, it can be more difficult, but that’s also the other
way round.

Perl–Java EE A large Perl offers many ways in which a given project can
be solved. This leads to very heterogeneous code.
The very limited tool support for perl programming
(integrated IDEs, static checking, ...) and the lim-
ited structure enforced by perl also hinder programm
understanding.

Perl–Java EE B large Much less code to read, much simpler tools
Perl–Java EE B small CPAN does much of the work and has good docs.
Perl–Java EE B modest Since Perl is less verbose you don’t have to see as

much code to understand what’s going on. Plus, most
of Perl’s operands, built-in methods and core mod-
ules have almost natural language names. If done
right, Perl is extremely readable.

Perl–Java EE A modest Perl offers many ways to say the same thing and it is
very much a question of programmer style whether a
Perl script is more readable than Java. However, an
experienced Perl programmer should know the syn-
tactic variants....

Perl–Java EE B small Perl can be written in many different ways, which
makes reading complex Java on the other hand re-
quired instantiating millions of objects with varying
complex APIs

Perl–Java EE B large Again: less code. And simpler code-pathes. OTOH
you can get more Jave developers quicker.

Perl–PHP B about zero better abstraction tools for Perl
Perl–PHP A modest Perl tends to be more cryptic (but more powerful)
Perl–PHP B large CPAN

1 PARTICIPANT COMMENTS 31

Perl–PHP B small PHP has its root in Perl, so some expressions are the
same. But PHP has a lot of inconsistent namings of
methods (just see the many methods for regular ex-
pressions).

Perl–PHP B modest due to the missing design of PHP, resulting in the
code normally similarly bad organized.

Perl–PHP A modest There are simply more people that know PHP these
days. The code in Perl is generally of a higher den-
sity and quality as well so the developer needs to be
that much better.

Perl–PHP B large most php code is mixed with html and can be hidden
inside of tags

Perl–PHP A small that there are many ways to express yourself when
coding in Perl, and this might add some extra effort
to understand the code

Perl–PHP B modest Typical perl applications use as many language fea-
tures than typical php applications use, but perl ap-
plications tend to have a clear separation between the
layers and almost never contain html code. Perl apps
are more often refactored (at least in our team)

Perl–PHP B modest CPAN vs. PEAR
Perl–PHP A modest Perl, as a result of its flexibility, has many different

ways to express syntax. These differences can lead
to Perl code that is quite complicated. PHP code is
more straightforward.

Perl–PHP B large assuming a well documanted code in both apps, perl
has the better ability to separate functions into mod-
ules and to separate design from logic

Perl–PHP B modest It really comes down to best practices. PHP matured
later than perl offering worse infrastrutcture for orga-
nizing code and concepts. The degree of integration
with the webserver is still below par

Perl–PHP A modest Regular expressions are somewhat harder, and Perl
programmers usually have evolved to use them ex-
tensively.
Regular expressions is an advanced topic and many
fail to understand it at all.

Perl–PHP B small This depends largely on the style of the developer.
Perl gives you a lot of tools for good code and good
developers use POD for documentation.
There is a good standard way for the naming of files
etc.
With perltidy it is easy to format code in the way, the
reader prefers it.
Usually there is a strong separation between HTML
and code. Mixing it sucks. It also sucks if you use
something like Embperl (and partly Mason). Nowa-
day it is also typical for PHP to separate code and
HTML, but usually there are still files with mixed
code and HTML.

Perl–PHP B very large You can write very readable, self documenting Perl,
but not self documenting PHP.

1 PARTICIPANT COMMENTS 32

Perl–PHP B very large Structure, and clear separation of code and display.
PHP simply requires more coordination due to the
way the language fits in to the templates. This can
be avoided with things like Smarty, but in my expe-
rience PHP tends to be more fragile. This is due in
no small part to the lack of namespacing.

Perl–PHP A small You can write one-liners in Perl; I’ve seen entire
scripts reduced to a single one-liner in Perl. Wasn’t
always easy to read/follow them when you were
done, but it worked the same.
Depending on what expertise level you’re coding at,
you can code Perl to be easier to read for someone
with less expertise or who isn’t familiar with some of
the ”voodoo” internals of how Perl does things (e.g.
how many people really know what a ”Schwartzian
transform” works, much less when its appropriate to
be used).

Perl–PHP B large fewer script kiddies writing in perl; generally perl
apps are better written

Perl–PHP B modest experience, programming style
Perl–PHP B very large usual lower code quality of php applications. usual

mixture of php code and html markup.
Perl–PHP A large You need to know perl to read it. If you don’t

know the the special operators, the stuff with $ and
the contenxt sensitivity, you quickly get lost. But
you also can’t read a mathematical expression if you
don’t know the syntax. So i don’t think it’s the fault
of perl, it’s the fault of the programmers which think,
if you know one language you know all. ;)

Perl–PHP A modest There’s more than one way to do it
Perl–PHP B large perl changes less often than php better designed code

in CPAN than those in PEAR or core php better doc-
umentation for CPAN classes than PEAR classes or
core php documentation

Perl–PHP B large code styling mvc paradigm less newbie
Perl–PHP B modest Less dependence on framework API, and more mod-

ularity.
Perl–PHP A about zero Perl tend to be more eclectic and require a little more

understanding of the language.
With PHP, while the syntax is understandable, it eas-
ily spirals into a complex heap

Perl–PHP B about zero If you use OOP there is no big difference
Perl–PHP B modest POD, the incentive to document in the code.
Perl–PHP A modest Perl-specific syntax, Elements in Unix-

Commandline-Syntax (for People comming from
Windows)

Perl–PHP B very large If perl code is written using strict guidelines (eg. Perl
Best Practise) your code is readable and more intu-
itive than php code where you’ve to write much more
keywords to get sth. working. Perl code can be writ-
ten very compact without loosing readability.

Perl–PHP B very large Higher order functions, 10000 modules on CPAN,
great testing frameworks, active community (devel-
oping quality frameworks, etc)

1 PARTICIPANT COMMENTS 33

Perl–PHP B modest Included POD documentation. Perl is way more ex-
pressive than PHP. Therefor you can say more with
less. Perl has namespaces. Code-reuse is more com-
mon in Perl teams in my experience. Masses of de-
veloped, documented and tested libraries on CPAN.
Testing and test-suites are regarded as vital by a big
part of the Perl community.

Perl–PHP B very large Modularity, avaliability of namespaces, lexical vari-
ables, higher order programming, CPAN.

Perl–PHP A large most people dont know perl, but php
Perl–PHP B small any external developer needs to know a) the structure

of the application and b) the language it’s written in
... if he does know these thing’s, he’s gonna be fine.

Perl–Ruby A modest Perl is too dialectic sometimes and can lead to dif-
ficulty following someone else’s code. Sometimes
great difficultly. Maintaining good style and fol-
lowing widely accepted best practices can eliminate
this problem, though.

Perl–Ruby A small Perl is an older language, and it has evolved over
time. Many people need to not only put their brain in
Perl mode, but also learn how Perl has evolved since
1997. :)

Perl–Ruby B large use strict; and clearly readable code as short and
sane code paths are easy to achief with Perl - Rubys
everything-is-an-object concept is based on a silly
oversimplificated view to programming and leads to
more complicated and thus slower and to understand
code.

Perl–Ruby A modest Perl syntax
Perl–Ruby A modest ruby is more clear than perl
Perl–Ruby A modest Both languages have a sometimes crude (but effi-

cient!) syntax that makes it easy to produce unread-
able code. Perl much more than ruby.
In Perl, you can do some ”magic”.

Perl–Python A modest Perl can be very terse, but this is up to the program-
mer - not the language.

Perl–Python A large Python’s motto: There should be one - and preferably
only one - obvious way to do it. Perl’s motto: There
is more than one way to do it.

Perl–Python A modest depends on the Perl know-how of the external pro-
grammer. Perl syntax can be very confusing.

Perl–Python A modest Perl can be a lot more flexible than Python. Good
programmers won’t have issues understanding good
Perl code, but the external programmer can be a be-
low average one.

Perl–Python A modest - The design of Perl
PHP–.NET B small PHP is more procedural programming
PHP–.NET B about zero You can write good code in either. PHP examples

you find on the Internet are really poor.
PHP–.NET A very large It’s easier to make spaghetti code with PHP. Visual

Studio keeps projects organized.
PHP–.NET B large Not su much auto generated code

1 PARTICIPANT COMMENTS 34

PHP–.NET B modest If you know C/C++ or PERL or Java, then you can
figure out any PHP app and perhaps a C# .NET app.
In order to figure out a ASP.NET application, it helps
to know Visual Basic or classic ASP.
The ”code behind” for .NET can be frustrating.

PHP–.NET B modest Durch Einfachheit kann der instinktive Ansatz umge-
setzt werden.

PHP–.NET A large if not written very clean and pragmatically, code be-
comes messy. Main problem is that PHP is a loose
typed language.

PHP–.NET about zero It depends entirely on the documentation, not on the
language.

PHP–Java EE A very large Again java is very structured and you are forced to
write easy to understand code.
In php and more so in my old perl work you tend to
get away with writing crazy code to save 5 lines

PHP–Java EE B large The massive amount of classes used in a typical Java
project requires knowledge of them all to do the job
right, while PHP tends to be much simpler and to the
point.

PHP–Java EE B very large complexity of the syntax, intensity of oop
PHP–Java EE A modest Less typesafty. Hacking in PHP is easier.
PHP–Java EE A small language design and purpose
PHP–Java EE B small PHP applications that have about the same function-

ality are much smaller in terms of lines of code, num-
ber of files etc; so it’s easier to get an overview and
find out what’s happening where. This is partially
offset by better Java tool support.

PHP–Java EE B large Java is fully OOP, PHP is not. In my experience,
PHP is more procedural so it is easy to follow when
being looked at by a casual viewer.

PHP–Java EE B large Because 99,9% Java apps I saw are very overar-
chitected they can only be understood after days or
weeks of studying while an average PHP app takes a
few hours (no matter how big) to start working on. I
am saying average; ofcourse you can write the same
in both languages.

PHP–Java EE B small Less syntactic sugar in PHP
PHP–Java EE B large see page 6 very easy syntax, easy to understand types

and functions.
PHP–Java EE B about zero Die Qualitt der Software hngt in erster Linie vom

verwendeten Framework ab.
PHP–Java EE A modest standards

PHP–Java EE B large simple architecture
PHP–Perl B modest Perl is terse and cryptic.
PHP–Perl B very large Perl isn’t just as popular. It is wacky, too, which

doesn’t help.
PHP–Perl B small The perl syntax is more complicated, but allows

compacter code. It needs more rigorously code
guidelines.

PHP–Perl B modest My opinion: Perl is awfully cryptic, and so for me its
hard to read and difficult to understand.

1 PARTICIPANT COMMENTS 35

PHP–Perl B modest ”Intuitive Design” Many syntax options/functions
Documentation

PHP–Perl A modest In both it you can write unmaintainable code, in PHP
this is more typical.

PHP–Ruby A modest The break up of the code into the MVC architecture
PHP–Ruby A modest PHP simply harder to read. I also find that PHP pro-

grams tend to be more disorganized, but this is not
the language’s fault per se.

PHP–Ruby B modest ruby has a strange syntax
PHP–Ruby A modest more code
PHP–Ruby A large PHP’s ”just get it done” culture leads to poorly-

maintainable spaghetti code with no clear separation
of responsibilities between components.

PHP–Ruby B small How understandable a web application is depends on
the programmer and code quality. It very rarely de-
pends on the language. Although b/c PHP is easy to
pick up and there are so many tutorials/code snippets,
you get a lot of novice programmers creating terrible
apps.

PHP–Ruby B large Don’t know. Personal experience ;)
PHP–Ruby B about zero There is no difference
PHP–Ruby B small Less ”magic” happening in the background, less sep-

aration of processes in files.
PHP–Python A modest To many ways to do things in python. No ”stnadard”

way. Everyone ends up doing things their own way.
PHP–Python A small PHP is far more prevalent than Python as a web pro-

gramming language, so there may be a small amount
of effort required by the programmer to understand
the Python language before taking on a web applica-
tion built in it.
However, the difference is small because Python is a
rather easy language to learn and is actually far more
robust and easier to read than PHP in the long run.

PHP–Python A modest Due to PHP’s lack of namespaces and standardized
function names, it can be difficult to tell at a glance
if a function call refers to something built into PHP
or not.

PHP–Python B modest Many (so called :) web developers in Germany are
still unfamiliar with frameworks or best practices in
web programming. PHP is not bad itself but his-
torically very much tied to procedural programming
style and bad deployment. Using Python, frame-
works and MVC is unfortunately still very uncom-
mon.

PHP–Python B modest very familiar c like syntax.
PHP–Python B modest Python’s most useful features are a bit more com-

plicated than PHP. As is learning how to code in a
”Pythonic” manner (smaller, and cleaner code). Set-
ting Python up to work with a web server has a few
particulars that throw newbies.

PHP–Python A large It is easier to read other peoples code in Python.
Python programmers are usually ”better” than PHP
programmers.

1 PARTICIPANT COMMENTS 36

PHP–Python B modest The syntax is similar to C, C++, C#, Java, JavaScript,
ActionScript.

Ruby–Java EE B modest less and simpler code due to ”convention over con-
figuration”, domain-specific languages, easy to read
language syntax

Ruby–Perl B modest nice syntax
Ruby–Perl B small Ruby’s domain-specific-language looks more like

natural English, but this is offset by how often people
try to be clever. Sometimes, this cleverness produces
code that can be just as obtuse as some Perl code I
have seen.

Ruby–PHP B very large Ruby language and Rails conventions

Ruby–PHP B large Syntax Extensibility
Ruby–PHP B large Every rails project has nearly the same as folder

structure.
Ruby–Python A modest The nature of Python as a language itself.
Python–Java EE B large Verbosity of java syntax.
Python–Java EE B very large Python is less verbose, there is no build phase.

Python code is easier to test because of the interac-
tive interpreter.

Python–Java EE B large Less cruft because Python is dynamic.
Python–Java EE B large The clear syntax.
Python–Java EE A modest Less external programmers are likely to have Python

experience
Python–Java EE B very large Python is a better language
Python–Java EE B very large the Python language and the add-on modules avail-

able.
Python–Perl B small Consistent formatting as part of the syntax, only one

way to do things.
Python–Perl B very large because someone else’s perl is usually about as read-

able as ancient Greek.
Python–Perl B very large Small core language Very clear and concise syntax

Well-structured library
Python–PHP B large Python is clearer and more concise
Python–PHP B large syntax naming conventions difference of how mod-

ules are used
Python–PHP B large the python syntax is clearer and usually encourages

”the right way” of doing something.
Python–PHP B large Python encourages more readable code

Programmers on our team are encouraged to use doc-
strings.

Python–PHP B very large Documentation Language expressivity Language
syntax constraints Modularity and structure

Python–PHP B very large Python code is clearer. Code is clearly separate from
template Classing is easier to get grasp of.

Python–PHP B very large Same - Python has a clear readable coding style that
makes grokking easier for anyone.

Python–PHP B modest Same as above: Python is a more clearly-thought-
out language, and I believe easier to understand for
newbies than PHP.

1 PARTICIPANT COMMENTS 37

Python–PHP B modest Irrelevant, as a studyied, professional programmer
knows enough about good coding styles and archi-
tectural means.

Python–PHP B very large language design
Python–PHP A modest no inline-code (which is not good) must understand

http and the web at first
Python–PHP B very large php is ugly again
Python–PHP B large Simplicity of python
Python–PHP B very large better language, more concise, more powerful and

extremely readable
Python–PHP B large python is more readable then php (php uses c-style

syntax, python does not); Python code is usually a
lot shorter than php-code.

Python–PHP B small syntax, Pythons legandary clarity
Python–PHP A small Code in python can have side effects, and ”magic” is

not only easier, but more prevalent in the platform.
That makes it harder to determine exactly what is
going on by looking at a given piece of code. As
a language, PHP is much simpler.

Python–PHP B very large Syntax in Python is well done.
Python–PHP B large Python’s explicit import semantics mean you can al-

ways trace the code back to see where a given sym-
bol came from - not so with PHP, where you have
to know the contents of every included file to have a
hope of tracking something down. Also, Python’s
syntax is designed for readability - it’s very, very
hard to write unreadable Python thanks to the inden-
tation and strong culture for shared coding standards.

Python–Ruby B modest clearer code with self documenting tendencies.
Python–Ruby B modest No unexplicit returns, straight syntax, easier to see

difference between functions/variables/types/etc.
Python–Ruby B modest the cleaner language design and especially the better

modularity of Python
Python–Ruby B small Rails installs lots of directories and files when start-

ing a project. Django installs only what is actually
needed.

Python–Ruby B large if the other dev doesn’t know the framework, a rails
app looks strange. Very few lines of code make
things happen behind the scenes. You’ve to read a
lot...

1.6 robustness comparison

Platforms Comparison Comment
.NET–Java EE A about zero If the programmer has done his job good there will

be no difference

1 PARTICIPANT COMMENTS 38

.NET–Java EE A large better input validation as jsf - expl. validation groups
- client side validation - extentions like ajax control
toolkit - ...
some .net classes are more powerfull than java
jsp has no validations
etc.

.NET–Perl A about zero Both languages have good UI tools.

.NET–PHP A large viele mchtige validatoren und injection-safe metho-
den

.NET–PHP B about zero when using proper methodologies the difference is
moot

.NET–PHP A modest more built-in validator support

.NET–PHP B large .NET enables drag and drop web apps, which lets
less experienced developers create pages that are not
fully thought through

.NET–PHP A large .NET framework built in validators, vs non in PHP.

.NET–PHP A large .NET has validation controls build in which are rela-
tively easier to implement

.NET–PHP A about zero This again is a matter of design, not of the language.
There is absolutely nothing in either language that
affects this matter intrinsically.

.NET–PHP A very large The .NET framework guard against scripting attacks
automatically (relieving the developer of THAT
mind numbing chore) and being able to write code
behind pages in a real language makes testing for
nonsensical input much easier.

.NET–PHP A very large large amount of built-in security features, ASP.NET
managed code, runtime security, deeper and more ef-
ficient debugging - none of these are known in php

.NET–PHP A about zero Validation and such can be done either way

.NET–Ruby A modest just a lot more work in the .net projects than my cur-
rent ruby experience has to compare with

.NET–Ruby about zero again, not really a function of the platform, more
about the development team.

.NET–Python A small .NET has more validating features, but that doesn’t
care that much on the long run.

Java EE–Perl A modest Many more validation frameworks are built in to Java
EE.

Java EE–PHP A small php tends to complicate things in the long run, and
it’s easier to loose the control there

Java EE–PHP A large - Better tools to validate forms. - More test units. -
More integration. - More mistaken detected into the
compiler phase.

Java EE–PHP A large Better exceptions support in java, better securitu fea-
tures un servlet container

Java EE–PHP A small just register globals. Stupid programmers can make
anything insecure.

Java EE–Ruby A about zero Not sure about this. I need more experience on pro-
duction environment to be sure.

Java EE–Ruby B small Rails has good built-in validation techniques. With
Java, you need to roll your own or select a frame-
work.

Java EE–Ruby A very large JSF validation

1 PARTICIPANT COMMENTS 39

Java EE–Python A small More libraries to handle unusual cases.
Perl–.NET B small A stringly typed vs. dynamic typing issue mostly.

But proper param checking nullifies any differences.
Perl–.NET A large perl offers some mechanisms like strict, warn-

ings and taint-mode, and placeholders against SQL-
injections

Perl–Java EE A modest You have taint mode (and taint-mode for DBI) in
perl. That encourages to check every user input.

Perl–Java EE B small The small nature of most perl applications which i
have dealt with meant that we mostly did the in-
put validation ourselfs, which can be errorprone.
Java frameworks like struts or seam offer better ap-
proaches to this problem. However, once again, use
of a suitable perl framework would also achieve this
goal.

Perl–Java EE A small Perl has a data tainting mode that does this very well,
but it’s not always used

Perl–Java EE A small it’s more easy and more usual to use regex to validate
input in perl

Perl–Java EE A small Catalyst framework is robust against nonsensical
end-user inputs

Perl–Java EE A large typing, exception handling
Perl–Java EE A modest It has less to do with what language is used, but as

to how the input is treated. Make sure you only use
bind variables in SQL , etc. Perl has a slight advan-
tage over other languages since it was ”taint” mode,
which when activated will cause a fatal error is any
”tainted” (data which comes from outside the pro-
cess) is used for system calls of any kind. Not the
most user friendly of error messages if the input isn’t
caught, but it will never do anything malicious.

Perl–Java EE B large Powerful taglibs, validators and converts in the Java
frameworks help to protect the business portion of
the application very much. A positive side-effect of
Java’s typedness.

Perl–Java EE B small If using standard servlet engines and type validation
of the framework, java has slight advantages here.

Perl–PHP A about zero Neither platform has much impact; all has to do with
programmer discipline. That said, I’ve seen a lot
more SQL injection opportunities in PHP sites than
in most Mason sites

Perl–PHP about zero User input should be checked thorougly always.
Does not depend on the language. Besides, both lan-
guages have similar capabilities.

Perl–PHP A large As with every other question: It depends on the pro-
grammer. If a programmer is very experienced, it
shouldn’t be a problem to avoid nonsense.
In Perl you have modules for URI-/HTML-/JS-
escaping an many more. You have modules for input
validation. DBI (database interface) supports bind-
ings as a default that should prevent SQL injections
etc.

Perl–PHP A very large perl’s taint pragma as well as having many imput val-
idation libraries and using placeholder vars in SQL.

1 PARTICIPANT COMMENTS 40

Perl–PHP A small If the application architecture contains the necessary
abstraction layers, the code that is resposible for fil-
tering user input can easily be added at a single place,
whereas in most php applications the changes would
need to be made at several places. This strategy
requires that robustness is planned from the begin-
ning on and integrated into the architecture. Unfortu-
nately, in some cases the abstraction layer needs to be
bypassed, and in these (very rare) cases, user inputs
are not checked anymore, as the developer is no more
accustomed to checking inputs. Furthermore a bug in
the security code usually reflects to all the forms. As
the security code can be tricky (very abstract, general
case behaviour), robustness may be affected too.

Perl–PHP A large Better ORM
Perl–PHP A about zero Perl and PHP applications can be written equally

well to handle gibberish input. Perl might be a little
better because of its robust regular expression sup-
port, but that is only a small part of the equation.

Perl–PHP A large interpolation, fallback, fallback in frameworks, great
modules for robustness, easy to use syntax for ro-
bustness (you know, the syntax python folks hates us
for)

Perl–PHP A large Even tho the projects where we have participated in
perl and php efforts were taken to validate inputs,
from the experience with freely available web appli-
cations I feel that generaly PHP apps are quite brittle

Perl–PHP A small With CGI::FormBuilder and data validation you are
completely robust against nonsense inputs in terms
of machine readable data (e.g. length of input fields,
only numbers, ...). But not everyone uses this, so, it
depends heavily on the developer.

Perl–PHP A very large More options for data validation - many mature op-
tions from CPAN which are easy to integrate.
Generally, Perl developers in my experience tend to
be more experienced with the full development pro-
cess and tend to think about these issues when devel-
oping. Unfortunately, the PHP realm seems to have
a lot of people in it who have a lot of enthusiasm for
functionality at the expense of being thorough. I see
sites developed with other languages suffering from
this as well.

1 PARTICIPANT COMMENTS 41

Perl–PHP A large Data::FormValidator. For validating input data, noth-
ing beats Data::FormValidator; build up a validation
profile that lists what fields you’re expecting, any fil-
ters/constraints that are to be applied to the data, and
then let it do its work. You’ll then get back results
talking about what was/wasn’t valid and get access
to -filtered- (and presumably clean) data.
I haven’t yet found a framework that does this for
PHP, though. For the last PHP app I’d worked on
we actually did a basic port of Data::FormValidator
to PHP. Although functional for simple validations,
though, it wasn’t near as useful as the Perl module
when it came to complex validation rules, in part be-
cause PHP doesn’t support closures (so I couldn’t
whip up validation routines on the fly as needed and
just add them in).

Perl–PHP A very large taint mode easy use to regex system
Perl–PHP modest experience
Perl–PHP A modest CPAN modules for input validation etc. taint mode.
Perl–PHP A large Perl makes it easy to program safe, e.g. the taint

mode, no confusing quoteing, default databaseab-
straction (DBI) with bind values (no SQL-Injections)

Perl–PHP None language does not matter, design does
Perl–PHP A small Greater availability and choice of input validators.

Unfortunately, they are not necessarily as well inte-
grated, or as simple to use.

Perl–PHP B small PHP gets this for ’free’ but it also puts a lot of re-
strictions on the developer.

Perl–PHP A large Perl has (optional taint-mode which is secure by
design. As of the very simple code layout (regis-
ter globals etc) PHP programmers tend to code un-
securely

Perl–PHP A small because of taint perl and a thorough security model
in perl

Perl–PHP A very large Perl has use strict and use warnings pragmas which
ables you to find many errors before your code is pro-
ductive and very good test applications to find fail-
ures in your code. You can also check your tests if
they covers all of your code lines.

Perl–PHP A modest I used ODBC with bind vars in PHP, so I didn’t have
to worry about escaping. Most PHP programmers
are stuck with drivers that don’t support that, though,
so they have to manually escape all input (which is
prone to error).
In Perl, I use DBIx::Class, which lets me do inser-
tion (and updates) and validation in one step. So not
only is SQL injection impossible, data that doesn’t
make sense triggers an exception (and as a wosrt
case, gives the user an error screen).

Perl–PHP A small Taint and common use of DBI bindvars. PHP can in
my experience be as secure, but it’s a bit more work.

1 PARTICIPANT COMMENTS 42

Perl–PHP A large There are APIs that make it a lot easier to guard
against harmful input, as opposed to php where peo-
ple are encauraged to write raw sql queries, escape
things with things that aren’t bound to the current
database, etc.

Perl–PHP A large * catalyst based on cpan provides more advanced for-
mular input handling modules * the dbo interfaces
for perl (dbic for example) are more stable * place-
holders <−> prepare statements in dbd

Perl–PHP A large tainted data etc pp developers get a feeling for secur-
ing userinput in perl because they really need to deal
with it (and if it’s only by using CGI.pm), in php the
user’s input just happens to be there when your script
is run.

Perl–PHP modest Use of libraries that filter
Perl–Ruby A small DBIx::Class, Data::FormBuilder,

Data::FormValidator.
Perl–Ruby A large Handling user-input was allways nicer with Perl as

there are many intuitive ways to solve it; more than
with Ruby.

Perl–Ruby A modest Maturity in language and tools implementation
Perl–Python A very large Perl has the strongest and easiest to express support

for regular expressions. It also has a wealth of Vali-
dation modules on CPAN.

Perl–Python A about zero Both languages offer good input validation modules.
Perl–Python A about zero using Data::FormValidator in Perl helps a lot. I don’t

know a similar module for Python.
Perl–Python A about zero This is really a bad question as it has nothing to do

with the languages or platforms, but on programmer
knowledge and best practices.

Perl–Python A large Perl’s DBIx::Class is a very good ORM which pro-
vides complete security from SQL injection attacks.

PHP–.NET B large It’s so easy to make poor apps with PHP. Validation
is so easy in .NET. In the end it’s still up to the de-
veloper to make apps secure

PHP–.NET B large this really depends on the framework or the effort
the programmer puts in. Since PHP is widely used at
beginners, many web apps a easy to trick.

PHP–.NET about zero depends on the smartness of the programmer, not on
the language

PHP–Java EE B large PHP is used by less knowledgeable users because it
is easy and fast. They tend not to be aware of the
possible risks until something bad happens

PHP–Java EE A about zero Almost no diiference. In both Java and PHP you, the
programmer, should validate input. Always.

PHP–Java EE B modest language design and purpose
PHP–Java EE B modest - Java programmers tend to use frameworks that hap-

pen to do some input validation - PHP’s dynamic typ-
ing causes PHP programmers to worry less about the
input; in Java you need to, for example, explicitly
convert the input to a number.

PHP–Java EE B modest PHP has to be told how to handle input and some-
times this can be a tedious process.

1 PARTICIPANT COMMENTS 43

PHP–Java EE A small Most PHP courses and programs on the web are
stuffed full of userinput validation methods; Java is
more focused on good programming. In Universities
userinput validation is very undertaught.

PHP–Java EE A modest Java developers tend to rely more heavily on being
protected by their frameworks.

PHP–Java EE A small no need for exceptions in PHP
PHP–Java EE B small frameworks are not as developed as in java (yet)
PHP–Perl small A good developer can handle nonsensical user inputs

in any language.
PHP–Perl None Again, not a language issue.
PHP–Perl B modest The PHP ”Framework” at the interpreter level

does more unnecessary background operations, that
should be done by a framework.

PHP–Perl B small Perl is used to be working with regular expressions
more easy than PHP, and so nonsensical user input
can be detected more easy.

PHP–Perl B modest Validator Modules on CPAN

PHP–Ruby B small there’s more coding that must be done in php to make
it as useful as ruby in this regard

PHP–Ruby B large Rails’ built-in validations have no match in the typi-
cal PHP web app.

PHP–Ruby A modest Default values, very permissive type conversion, and
infrequent exceptions.

PHP–Ruby A small Security depends on programmer aptitude. PHP has
some libraries for parsing input correctly. Ruby does
too. But it’s up to the programmer to do this.

PHP–Ruby A about zero There is no difference
PHP–Ruby A small Better library support for filtering, less generated

source with bad filtering.
PHP–Python B modest magic quotes, weak typing.
PHP–Python B modest PHP has the facilities to be more robust, but the ro-

bustness is hidden in PHP’s poor naming conven-
tions. It does have printf() which is a fundamental
method for escaping bad data in strings... but python
has an operator for it.

PHP–Python B very large validation
PHP–Python B modest PHP has continually changed how it handles user in-

put (magic quotes, etc).
PHP–Python B small Again very much a matter of people’s knowledge.

For historical reasons I say PHP is a little worse.
PHP–Python B modest weak typing and globals in php leading to unforseen

errors once the project grows.
PHP–Python B modest In both cases, the programmer just needs to pay close

attention to user-input. Django does have pretty good
form validation, however.

PHP–Python B large Python programmers are usually better programmers
than PHP programmers. PHP encourages sloppy
practices.

PHP–Python A about zero It’s not a part of the platform, but on the frameworks
used or the smartness of the developer.

1 PARTICIPANT COMMENTS 44

PHP–Python B very large experience/quality of average PHP programmers
compared to experience of Python programmers

Ruby–Java EE A small integration of input validation and unit testing into
the web framework (rails)

Ruby–Perl A small framework integration for input validation
Ruby–Perl A about zero Again, this is based on the framework support and

the ability of the programmer.
Ruby–PHP A small PHP magic variables
Python–Java EE A about zero Again, not a sensible question.
Python–Perl A about zero I don’t see a large difference here.
Python–Perl A about zero it all depends on the developer. They’re equally ro-

bust.
Python–Perl A large Perl lacks real exceptions
Python–PHP A about zero I’d say they’re about comparable...either one allows

good or poor programming practices
Python–PHP A modest language design.
Python–PHP None again, this question has nothing to do with the pro-

gramming language. its about checking user-input
which can be done with all languages.

Python–PHP A about zero While it is easy to test for most common user in-
put glitches with Django rather than a custom frame-
work, there is a concern that the rules of the frame-
work validation allow invalid input particularly in
cases that depend on complex database joins.
This is not a language question, but a framework
question. I’m worried this survey is somewhat
specious.

Python–PHP A small Simply better coding standard in the community
Python–PHP A modest It’s probably because I relly on better frameworks to

make validation.
Probably some PHP frameworks are as good and as
safe as python ones.

Python–PHP A about zero Again, this depends on the developer who is required
to trap/protect against user negligence/anger/idiocy.
Not a framework question per se.

Python–PHP A small Its class/object system is easier to use and makes it
easier to check against this kind of thing, IMHO.

Python–PHP B about zero –
Python–PHP A very large PHP and his magic global vars ;)
Python–PHP A modest depends on developer. php has a few flaws, most

prominent with the so-called superglobals, ..
Python–PHP A small Strong typing, and frameworks that are generally

more strict with input. Register globals, though not
really used any more, is still a black mark on PHP
in this, as is weak typing without strong exceptions.
PHP generally does not fail early.

Python–PHP A modest PHP have some weaks in user input validation.
Python–PHP A modest Python has a better type system than PHP (you can’t

add an integer to a string without first casting it,
for example) and more robust exception handling as
well.

Python–Ruby A about zero no reason, see question b4

1 PARTICIPANT COMMENTS 45

Python–Ruby A small Django uses a sepcial language for its template code
leading to less Python code in the tamplates and mak-
ing it very easy to convert variable input into a form
where HTML specials are escaped properly.

Python–Ruby A about zero thats not a language issue

1.7 scalability comparison

Platforms Comparison Comment
.NET–Java EE A modest ?
.NET–Java EE A modest you can find more stuff for java BUT those for .NET

are more usefull ;)
.NET–Perl A small the IDE makes these things easier
.NET–Perl B small Apache under UNIX has proven scalability and man-

ageability, particularly in the ability to manage the
application processes across boxes as well as just
parallel. Microsoft IIS is closing the gap though scal-
ing is limited to running boxes in parallel.

.NET–PHP B very large web farms suck with view state, you have to do
things much differently to make them scalable. In
PHP, you’re already doing them that way. PHP
also runs better on cheaper hardware so adding more
servers is cheaper.

.NET–PHP A modest if done right, because the PHP-OOP-code so easily
becomes a total mess

.NET–PHP A small It’s easy to throw processors on the web application
with the .NET. PHP has conventions that enable it
to scale smarter, but it involves more work from the
webmaster

.NET–PHP A small Server farming, compiled pages. Though I don’t
know much about PHPs parallel processing abilities.

.NET–PHP B modest ASP.NET appears to consume more system re-
sources than a comparable PHP application

.NET–PHP A modest The ability to use a distributed architecture gives
.NET the edge here: but PHP can be made highly
scalable when used with Enterprise Java Beans.

.NET–PHP A very large Page scaling and session state management in SQL
Server allow .NET sites to easily scale to hundreds
of thousands of simlutaneous users (in a web farm
environment).

.NET–PHP A large built in scalable architecture on windows base

.NET–PHP A about zero about the same either way...gotta be smart regardless
of the language

.NET–Ruby A small again my ruby experience is not enough to hit these
scalability issues, but .net is very scalable

.NET–Ruby A large The rails app degraded in performance very quickly,
probably due to memory consumption and large
numbers of behind the scenes queries, but I’m not
sure the exact cause.

1 PARTICIPANT COMMENTS 46

.NET–Python B small Windows’s clustering solutions are expensive.
Java EE–Perl A large More time has been invested in this problem.
Java EE–Perl A modest Java EE has ”almost” built-in support for clustering,

though one has to still keep some pitfalls in mind
when using this support

Java EE–PHP A very large J2EE’s support for running an application on multi-
ple servers

Java EE–PHP A large Server replication it’s easier.
Java EE–PHP A modest Database clustering in Java is good Networking im-

provements in GlassFish are unmatched (concurrents
users, I/O, ...)

Java EE–Ruby A about zero Again, the language isn’t the only factor. Scalabity
depends on hardware, band width, application de-
sign.

Java EE–Ruby B very large The Java style of development (single-process or few
processes, use many threads, share a lot in the ses-
sion) is harder to scale than the shared-nothing ar-
chitecture encouraged by Rails.

Java EE–Ruby A very large Ruby is just slow.
Java EE–Python A very large Python frameworks have not generally been used in

as high-traffic sites as Java frameworks and are less
optimized for high volume.

Perl–.NET A very large More options to scale than windows and such.
Perl–Java EE about zero That depends on the application. Does scalable here

mean just one webserver, or does it mean the archi-
tecture? Then it depends more on database architec-
ture then on the language being used.

Perl–Java EE None Scalability to multiple servers is often attributed to
JEE application servers due to their clustering sup-
port. However depending on the type of application
in many cases no real clustering is needed for scala-
bility. I.e. a typical perl web application with a cen-
tral database and a shared memory cache (like mem-
cached) has no need for clustering support which
goes beyond an additional http loadbalancing server.
As such I believe that scalability can be equally well
realized with perl and java.

Perl–Java EE B small mod jk with tomcat is a nice way to extend a java
application but this don’t resolv data access

Perl–Java EE about zero I don’t think this is so much a language issue as an
application architecture issue. There are plenty of ex-
amples of real life projects written in both languages
that have scaled very well.
Even Cold Fusion can scale to large numbers of users
if done right (first version of myspace was written in
CF and scaled to an extremely large size before it had
to be re-done).

Perl–Java EE B very large Through its standardized frameworks, it’s easy to
scale up a Java Webapp by deploying it to multiple
servers. The Perl way needs much more handcraft-
ing. Also, the JIT compilers for Java help to opti-
mize application performance if the number of users
increases...

1 PARTICIPANT COMMENTS 47

Perl–Java EE B about zero Scalability requires the same mechanisms in Perl and
Java, both allow (distributed) caching, IPC, cluster-
ing, ... no winner

Perl–PHP A large The abstraction layers provided by a well-designed
Perl site provide very few serialization choke points.

Perl–PHP B large Php has scalability build in.
Perl–PHP A large namespaces
Perl–PHP A small I think it’s nearly the same.
Perl–PHP A very large there’s just more options for scalability.
Perl–PHP A small In some abstraction layers of a perl web architec-

ture, caching can be integrated easily, whereas in php
these abstraction layers often do not exist.

Perl–PHP A large i don’t know, but i mentioned it sometimes. have a
look at amazon.com

Perl–PHP A large Typical mod perl and fastcgi applications scale very
good. And as always: this depends a lot on the de-
veloper.
Perl gives you a lot of tools, with mod perl you can
keep big data structures in memory (I have an appli-
cations, which builds up a 60 MB data structure on
startup) etc.
PHP is much more restricted here. e.g. it is not pos-
sible to keep big data structures in memory between
requests.
Both have support for memcached, but this is some-
thing else.

Perl–PHP A very large I find that Catalyst (and perl apps in general) tend to
be more engineered from the start. Which means that
scalability related issues are anticipated and planned
for.
In general, though, the structure of Catalyst apps tend
to lend themselves to ’going wide’ where-as PHP is
less so. There are tools and modules in Perl to assist
in deploying to more than one server, and these tend
to scale well. While it is possible to do the same in
PHP, it tends to be more difficult.
For an example of this, try a Perl based Redirector in
Squid. :-)

Perl–PHP A about zero I wouldn’t expect to see any noticable difference in
scaling between either PHP or Perl. If the apps are
running at about the same speed, then scaling out can
mean going horizontal and just adding more boxes to
handle the load.

Perl–PHP A very large code caching better written apps
Perl–PHP A modest experience
Perl–PHP A very large mod perl does the better job in caching then

mod php. mod perl is threading safe, so instead of a
lot of sleeping childs you can use the threaded apache
server for exeample.

Perl–PHP A modest language is not that important in this matter
Perl–PHP A large Greater choice in httpds and deployment, as opposed

to only a mod php with apache deployment, which is
considerably slow.

1 PARTICIPANT COMMENTS 48

Perl–PHP A modest Perl frameworks tend to be ’designed’ to deal with
scaling scenarios

Perl–PHP A about zero No big difference. Both languages can be used for
large scale projects.

Perl–PHP A small the perl culture is more professional, less ’hackery’
Perl–PHP A very large see 11 and 12
Perl–PHP A small Easy to cache and plug in things like memcached in

front of the database. Possible in PHP, but you have
to do everything yourself.

Perl–PHP A large i would guess so.. based on my experiences with
cake/php, php does scale with a small or medium
amount of users very good but then breaks fast .. so
does perl - but for perl there are couple of easy ways
to span you app ”on the fly” above couple of ma-
chines

Perl–Ruby A modest Mongrel limits your concurrency to the number of
mongrels in the pack, and as previously stated, they
are memory intensive.
A well tuned mod perl application will scale much
further with the same hardware.

Perl–Ruby A large Perl is faster, uses less memory and proven to work in
production absolutely reliable. Ruby is slower, uses
more memory and didn’t scale as well as Perl.

Perl–Ruby A modest More options to scale
Perl–Ruby A modest Long tradition of building huge/fast web sites with

perl, mod perl, fast cgi etc.
Perl–Python A modest I believe that Perl has more cache and distribution

modules available, especially as plugins.
Perl–Python B about zero There exist both deployment strategies for

both Perl and Python. E.g. Fast-CGI and
mod perl/mod python.

Perl–Python A small More possibilities or easier/faster to realize to cache
data in Perl

Perl–Python A modest Maturity of platform, more ways to attack the same
problems

Perl–Python A modest It’s easy to distribute the load. But that should also
be easy in Python.

PHP–.NET A about zero No idea. Depends on the developer. There are ways
to go wrong with both solutions.

PHP–.NET None No Idea. Never hit a border.
PHP–Java EE B modest J2EE is build up with loadbalancing in mind.
PHP–Java EE A modest Just a guess.
PHP–Java EE B modest Java is designed for scalability, PHP is not.
PHP–Java EE A large On average PHP scales better, as, again, scalability in

Java needs real brains and experience, while almost
any PHP/MySQL app is scalability without effort.

PHP–Java EE A very large Problems in replicating session data across Java ap-
plication servers

PHP–Java EE A large good settings in php.ini
PHP–Java EE A modest PHP is easyier to scale because of the simple archi-

tecture of session management. The most requested
sites are implemented in PHP. It can be optimized
very well.

1 PARTICIPANT COMMENTS 49

PHP–Perl A about zero Ease of development in PHP to handle large-traffic
sites.

PHP–Perl A modest mod perl Applications need more memory and pre-
forked child processes.

PHP–Ruby A small Probably easier to split different parts of a web app
out than with Ruby

PHP–Ruby about zero I actually think they’re the same. Any shared-nothing
stack will be.

PHP–Ruby B small Better existing tools and culture for Ruby.
This is a bit of a silly question, when you reach truly
huge numbers of users language is almost least im-
portant.

PHP–Ruby A about zero There is no difference
PHP–Ruby A large Better scalability infrastructure
PHP–Python B small Python applications can be far more modular. In-

tensive work can be offloaded to other processes on
other machines. There’s more choice and flexibility
for deployment (mod python vs mod wsgi for exam-
ple).

PHP–Python B small when large numbers of users expected, it should al-
ways be supported by a full-blown httpd like apache
–> no difference

PHP–Python A small Same argumentation as for speed. Better tools avail-
able for PHP.

PHP–Python B modest More of a server architecture problem than a lan-
guage problem. Django tends to force a separation
between certain things which make it slightly more
simple to scale an application to multiple-servers.
And it’s far more simple to add caching.

PHP–Python B small Python apps tend to be longer running processes that
don’t need to start up for each request. But there are
various techniques and addons for PHP to mitigate
this.

PHP–Python A large psyco pyrex

Ruby–Java EE B modest java infrastructure has been optimized for years
Ruby–Perl A modest To compensate for Ruby’s slowness, the Ruby com-

munity has written some very good deployment
tools. There’s several options for distributing across
a cluster. I don’t know of something similar for Perl,
probably because that need has not been there.

Ruby–PHP A modest ”Shared-nothing” architecture support
Python–Java EE B modest I believe Java has industrial support. This makes me

believe that it is stronger in this respect. (But I have
no real clue.

Python–Java EE B large Based on my readings and not any real-world expe-
rience.

Python–Perl A small Mostly the speed issue again – a slightly faster site
will need scale less frequently.

Python–Perl A about zero because I have no experience dealing with scalability
– my apps are intranet based and targeted at 100-200
users.

Python–Perl A large It is easier to wrap C libraries for use in Python

1 PARTICIPANT COMMENTS 50

Python–PHP A about zero both can easily use a RESTful design, making it scale
well behind a load-balancer

Python–PHP A very large using zope ;)
Python–PHP None scalability doesnt relate to a programming language.

see ”Building Scalable Web Sites” by Cal Hender-
son.

Python–PHP A very large Python is just more robust, older and well tested on
huge loads than PHP.

Python–PHP A large Again, not necessarily the fault of the language, but
here more than elsewhere Python lends itself to bet-
ter separation of MCV which lends itself to better
scalability too. Most PHP apps designed for basic
purposes will not scale well, whereas most Python
frameworks are very scalable. But this too is not nec-
essarily the language’s fault.

Python–PHP A large This is due to less memore usage and Python-code
being compiled once and run several times. PHP ode,
unless run with an accelerator, is translated every in-
voke.

Python–PHP A large Again, this is much more framework and database
related than just language.

Python–PHP A small Better performance of the interpreter, with fairly
standard binding to the web server makes python
scalable on a single server, but still decent for multi-
ple servers. PHP is slower, but for some frameworks
might be easier to scale to multiple servers, since
it has a stronger ”shared-nothing” philosophy than
python.

Python–PHP A very large Python runs on more platform, have some different
programming approaches, is more scalable, is more
stable, is a general programming language, is faster
and is supported by other different languages.

Python–PHP A about zero If you know what you’re doing, both will scale
equally well.

Python–Ruby A small Supported threading and richt support libraries in
larger scale applications (google use it!)

Python–Ruby about zero scalability in both cases easily achieved through re-
verse proxies like pound, and in both cases processes
similarly resource intensive

Python–Ruby A small both envs only scale with multiple processes. Ruby
threads are wonky, python has the GIL.

1.8 security comparison

Platforms Comparison Comment
.NET–Java EE A about zero If the programmer has done his job good there will

be no difference
.NET–Java EE A modest - only know the security-namespace and the mecha-

nism from microsoft

1 PARTICIPANT COMMENTS 51

.NET–Java EE A large built in security system

.NET–Perl B large it’s native to microsoft platforms and has more holes
than most open source products. That being said it
also has the most attention when it comes to people
doing penetration testing and finding ways to break
in. Why waste time on less main stream products.

.NET–Perl B modest Many of the CPAN modules and frameworks have
been peer reviewed for security and you have to work
harder to make things less secure. .Net developers
can easily make poor choices and the documentation
usually helps them to make these mistakes, securing
an application is usually either part of a business de-
velopment policy, later review, an afterthought, user
testing or an attack.

.NET–PHP A large siehe vorfrage

.NET–PHP B very large ASP.NET has to run on windows, PHP can run on
good platforms

.NET–PHP A modest has more to do with typical ”insert SQL here”-PHP
style coding

.NET–PHP B large .NET runs on Windows which has been proven
to have more attacks against it than comparable
Linux/Unix setups which would run PHP

.NET–PHP A large Programming PHP3 with REGISTER GLOBALS
on vs. programming ASP.NET with a full business
logic layer.

.NET–PHP A large ASP.NET is more secure by default than PHP

.NET–PHP B about zero Again, it’s how you code and how you set up your
hardware that’s important for this. You might argue
that PHP provides more built-in functions to protect
against such things as SQL and HTML injection, but
you could also argue that the ability to use distributed
architectures in .NET provides more protection than
PHP can without resort to externalities such as Java
beans.

.NET–PHP A very large The .NET framework is built with security in mind
wheeas other scripting languages place that burden
on the developer.

.NET–PHP A very large same answer as previous question

.NET–PHP A modest .NET has a lot of built in stuff that you would have
to develop on your own in PHP

.NET–Ruby B small M$ is a big target, period

.NET–Ruby A small has more security options out of the box, and which
work very well.

.NET–Python A small I tend to think that Windows servers are less secure,
but Microsoft has been doing a better job securing
their systems.

Java EE–Perl A modest Java EE’s virtual machine is built secure from the
ground up.

Java EE–PHP A large There are thousands of possibilities implemented (as
Frameworks) it’s quite difficult to find out what’s be-
hind the courtains, so it’s more difficult to exploit.
PHP use *normally* standard solution which might
be easier to explot.

Java EE–PHP A modest The old use of global parameters.

1 PARTICIPANT COMMENTS 52

Java EE–PHP A very large Security framework in JavaEE is unmatched in PHP.
SQL injections are also easier to deal in JavaEE

Java EE–Ruby A about zero Again this depends on the design of the application,
not the framework or language themselves

Java EE–Ruby A about zero Rails’s quick development makes it easy to get a
change in, so that change may not get as much re-
flection as to its security implications.

Java EE–Ruby A None Java is robust, stable and mature and has more secu-
rity features/frameworks

Java EE–Python A small Longer-lived libraries.
Perl–.NET A modest No because of the language, but what OS the lan-

guages run on.
Perl–.NET A large Don’t normally deploy on Windows.
Perl–.NET A modest taint mode frameworks
Perl–Java EE about zero I think this is difficult to answer. Again I would say

perl has taint mode and I don’t think Java has some-
thing similar. It highly depends on the programmers.

Perl–Java EE A large It is much simpler to harden a self-written perl ap-
plication which is based on a very simple application
stack than a full blown JEE setup. The complexity
of the framework and underlying server implementa-
tion in the JEE case limits the developers understand-
ing for potentially security critical issues.

Perl–Java EE A small Same answe: taint mode helps, but is not always used
Perl–Java EE A small the use of cpan permit to use more robust library
Perl–Java EE A small CPAN
Perl–Java EE A modest Again, taint mode is an advantage for Perl. No out-

side data that hasn’t been filtered explicitly by the
programmers can make it into system calls.
This doesn’t protect from other things like XSS at-
tacks, but XSS is almost always an HTML escaping
issue, and all major Perl templating engines provide
very easy ways to handle HTML escaping.

Perl–Java EE B modest Again, a framework question: in the Java case, one
concentrates on the application main path. In Perl,
one has to permanently consider security vulnerabil-
ities within the application

Perl–Java EE B about zero Again you can get it wrong, no matter what
Perl–PHP A very large the reliance on horribly unreliable and insecure li-

braries and cut-and-paste progamming by PHP pro-
grammers. Again, this is more the USERS of PHPs
fault than PHP itself – it provides tools comparable
to those of Perl to improve security, but it seems that
few users avail themselves of those tools.

Perl–PHP A small Perl libraries tend to be (a little) better than PHPs.
Perl–PHP A small knowledge of programmers
Perl–PHP A large The language itself is more secure than PHP (just

have a look at the bugreports). You can see new secu-
rity bugs nearly every month for PHP, but there was
just one buffer overflow in one Perl module (that is
on CPAN) during the last two years (at least).

Perl–PHP A large perl’s taint pragma and a strong security record on
the perl codebase.

1 PARTICIPANT COMMENTS 53

Perl–PHP B small Access to the system libraries Some code is still writ-
ten in C (due to performance issues, or to access cer-
tain libraries).

Perl–PHP A about zero I don’t know much about the security differences be-
tween Perl and PHP.

Perl–PHP A large perl issues are discovered, announced and fixed.
php issues are discovered, internally announced, and
then, they soft-pedal a potentially explosive issue be-
cause ”PHP is safe!”

Perl–PHP A very large use taint, use strict, etc...
Perl–PHP A very large With bind parameters SQL injection is really impos-

sible. This is the usual way in Perl since more then
ten years. For PHP this is more or less new. A lot
of developers use the mysql ... funtions for database
access, and they have no support for bind parameters.
So, you have to quote each input manually ...
When using an ORM wrapper like DBIx::Class Perl
is also secure, because they internally use bind pa-
rameters. There will be an exception (you should
trap it), but it is secure.
When enabling the taint mode (see perldoc perlsec)
you are forced to validate (and ”untaint”) every user
input before you can use it in a possible insecure way.
PHP has nothing comparable.
A lot of PHPs internal functions had security prob-
lems in the past. So, if the language itself has se-
curity issues the developer has a problem. Some
weeks ago there were a new problem with an Inte-
ger Overflow in an internal function. The ”solution”:
if int var > MAX INT. OMG, it is really stupid to
compare an integer var to MAX INT. Thats in the
PHP core! I can’t take such coders seriously.
And you may look at the troubles with PHP’s
safe mode.

Perl–PHP A very large See previous question. Again CPAN offers many
tested methods of input validation.
The Catalyst framework, for example tends to lead to
more clearly defined processes, which make it easier
to validate data/actions.
And again, experience vs. enthusiasm.

Perl–PHP A modest Comes back to how you’re validating your data; if
you’re not validating the data then you’re not pro-
tecting yourself against malicious attacks.

Perl–PHP A large script kiddies don’t use perl taint mode
Perl–PHP A large experience
Perl–PHP about zero depends on the code quality and not on the plattform.

1 PARTICIPANT COMMENTS 54

Perl–PHP A very large You dan’t have silly global variables which the peo-
ple tend to use simply unverified in critical expres-
sions. Even in Taint-Mode if i would use a GET-
Param in system call without prior checking, perl
will stop the execution and tell me about the security
issue. So no ”tainted” variables can be used in secu-
rity related functions without untaint them by check-
ing them for validity.

Perl–PHP A small language does not matter so much
Perl–PHP A small Less dependency on inherently flawed tools provided

by the language. Any PHP framework worth its salt
implements such things in a sane way; However, I
do not know of any (but I’m not exactly an expert on
implementation of security features of PHP frame-
works).

Perl–PHP A large PHP holds the developers hand too much, so they
don’t tend to have a fuller understanding of the tech-
nicalities

Perl–PHP A large Perl has (optional taint-mode which is secure by
design. As of the very simple code layout (regis-
ter globals etc) PHP programmers tend to code un-
securely

Perl–PHP A small taint perl, as before
Perl–PHP A very large Perl has the taint mode
Perl–PHP A modest taint mode and intelligent libraries make security

simple in Perl. In PHP, you’re on your own.
Perl–PHP A modest Broad reuse of available modules means testing, us-

ing, extending, etc. by a broader audience. Taint
mode. DBI bindvars. Perl has more maturity, on both
the sides of available libraries and the interpreter.

Perl–PHP A large same as last answer.. php’s dbo implementations are
just far less sophisticad than perl’s are

Perl–Ruby A about zero Well built, they should be about the same
Perl–Ruby A modest Perl developers often come from UNIX world and

are more likely to know what security means and
how to use Perl to do it. Ruby developers are mostly
interested in fancy GUIs, JavaScript functions and
other features, seldomly in the consequences those
funky things provide and their language pushes them
towards that direction.

Perl–Ruby A modest Maturity in language implementation Larger avail-
ability of security modules

Perl–Python A very large Same as for the previous question about robustness.
Perl–Python A small Perl has the Taint-Mode.
Perl–Python A about zero Data::FormValidator again.
Perl–Python A small buildin security features such as the taint mode, that

are a powerful tool, if used
Perl–Python A large Perl’s DBIx::Class can provide strong protection

against SQL injection attacks and by using Catalyst
you can avoid unauthorized access using an ACL, for
instance.

PHP–.NET B modest It’s so easy to make poor apps with PHP. Validation
is so easy in .NET. In the end it’s still up to the de-
veloper to make apps secure

1 PARTICIPANT COMMENTS 55

PHP–.NET B large Der Programmierer muss bei PHP alles selbst filtern..
PHP–.NET B large the bug and security issue list is huge.
PHP–.NET about zero doesn’t depend on the language
PHP–Java EE B large Java is more specialized than php
PHP–Java EE A about zero Nearly no difference. Good programmers take pre-

cautions in both languages.
PHP–Java EE B very large Less of typesafty in PHP. Insecure interpreter.

PHP–Java EE B modest language design and purpose
PHP–Java EE B modest Same reasons as for previous question: Java pro-

grammers use frameworks and have to do explicit
type conversions

PHP–Java EE B modest This is a guess because Java is a far more developed
language so I can only assume it is better at security.
PHP has to be told how to handle attacks...although
my experience is limited because applications I have
built are all internal with little risk of attacks.

PHP–Java EE B large Java is more unknown and the VM is certainly more
robust. The language platform of PHP is a mess,
making it easier to misuse or use for attacks.

PHP–Java EE B modest There are so many hoops to get through just to get
your code up and running in the application server
that it actually acts as a security measure. To get ma-
licious PHP code to run you just need to find a dodgy
include statement or get the code on the server’s
filesystem.

PHP–Java EE B small again: more framework coverage in java
PHP–Perl B None Not a language issue, but lots of third party libraries

and applications are very insecure.
PHP–Perl B modest see 10.
PHP–Perl A modest I think PHP has more buitin functions or classes to

make it more secure, and in addition there is the
Suhosin-Extension and -Patch. I don’t know some-
thing similar for Perl.

PHP–Perl A large Higher availabilty in th web
PHP–Perl B large taint mode better structure

PHP–Ruby B small There are a lot of ways to allow hackers into a php
app where as ruby covers most of those holes

PHP–Ruby B large Particularly historically, PHP was insecure due to
problems like REGISTER GLOBALS. Even these
days, I’ll see shared hosts where this setting gets en-
abled for some reason.
Rails has become even more secure since the fo-
cus on RESTful development. Explicitly specifying
what method and params each route/controller action
will use helps.

PHP–Ruby B modest PHP tends to have more XSS holes and SQL injec-
tion attacks as it ships with a huge array of subtly-
different escaping functions instead of a handful of
standard ones.

PHP–Ruby B modest Bei
PHP–Ruby A about zero There is no difference
PHP–Ruby A modest Less auto generated source.

1 PARTICIPANT COMMENTS 56

PHP–Python B large More ”standardized” ways of attacking (script-
kiddies), security problems in php core are likely to
affect installations world-wide.

PHP–Python B modest PHP has built-in mutable access to
GET/POST/REQUEST and session data. These are
by far the most common and injection points for
web-based attacks on an application. This requires
the developer to be aware of and compensate for all
injection points... which most PHP developers aren’t
generally aware of.

PHP–Python B very large url-dispatcher
PHP–Python A about zero Same as before.
PHP–Python A small PHP is more widely used
PHP–Python B modest Again, mostly a programmer issue. Again, Django

has a few out-of-the-box niceties.
PHP–Python B large PHP encourages sloppy code, and the language

seems inconsistently hacked together rather than be-
ing well designed. PHP itself always seems to re-
quire patching for security problems.

PHP–Python B about zero The same as for previous questions
PHP–Python B modest Too much old stuff in PHP.
PHP–Python B modest builtin better security measures in python frame-

works PHP code oftem being a unreadable and non-
understandable mess

Ruby–Java EE B about zero don’t know
Ruby–Perl A modest same as befaore
Ruby–Perl A about zero This has more to do with the way things are setup.
Ruby–PHP A small Good library functions for input validation
Ruby–PHP B very large The worse art of programming in php lots of people

are doing.
Python–Java EE A modest The python DBAPI is designed to prevent SQL in-

jection when used properly.
Python–Java EE B about zero Again, it depends on how you build the app, and not

necessarily the tool used to build it.
Python–Perl A about zero Vulnerabilities aren’t found in only one language.
Python–Perl A about zero equally secure.
Python–PHP A small easier to understand the code; fewer deployments

(smaller target)
Python–PHP A very large php is not secure at all.
Python–PHP None see questions before.
Python–PHP A small Again this question is about Django versus our in-

house PHP framework.
Because there are more eyes on Django, there are
fewer chances of code defects going undetected. On
the other hand code defects that do occur in Django
could be widely exploited.

Python–PHP A modest Again, i don’t believe it’s a Python vs PHP ques-
tion, but about the robutness of the frameworks and
clasess used.

1 PARTICIPANT COMMENTS 57

Python–PHP A about zero Again, this depends wholly on the framework it-
self, and not the language that the framework is built
upon. If the framework allows cross-scripting at-
tacks (or is vulnerable to any type attack), it will be
exploited whether the language behind it is Python,
PHP or any other.

Python–PHP A modest Due to availability of validation frameworks the de-
veloper has less stress on implementing what his
needs dictate. So he can better focus.

Python–PHP A very large too much magic in the PHP regarding GET, POST
and other stuff.

Python–PHP A modest pythons web development frameworks don’t try to
make the developer not think about web app at-
tacks. with php there are several escape-functions,
magic quotes, etc.

Python–PHP A large Less code has less security bugs
Python–PHP B about zero Python frameworks running their own app server

might add another layer behind the web server with
possible security flaws. Long running processes
might open up more flaws through concurrency prob-
lems or opening flaws that change server-level appli-
cation state.

Python–PHP A large PHP have more security holes and a weak design.
Python–PHP A large PHP is prone to SQL injection attacks (due to a

culture of gluing strings together for queries rather
than using parametrised queries) and makes escaping
HTML output against XSS quite painful (due to the
unfortunately verbose htmlspecialchars() function).

Python–Ruby A about zero no difference. depends on programmer
Python–Ruby A small minor security design differences in the frameworks
Python–Ruby B small URLs are decoupled completely from the underlying

filesystem.
Python–Ruby A about zero see previous answer

1.9 speed comparison

Platforms Comparison Comment
.NET–Java EE A small The process pipeline on java is a little bit more com-

plicated. Webserver -¿ Application Server -¿ Java
Runtime

.NET–Java EE A about zero - I think there is no difference, both are using kind of
virtual machine

.NET–Java EE A about zero depends on how good you can programming. both
systems are fast! ;)

.NET–Perl B modest heavier foot print because of the framework

.NET–Perl A small Microsoft have spent more time optimising their
framework.

1 PARTICIPANT COMMENTS 58

.NET–PHP B small der ie scheint mir manchmal fr diese anforderungen
nicht stark genuk zu sein oder es gibt zu viel over-
head zwischen framework und application server.

.NET–PHP B very large again, the view state and the fact that a server running
asp.net needs to have the overhead of a fat windows
OS

.NET–PHP A large semi-interpreted/compiled wins out to fully inter-
preted

.NET–PHP B modest Again, this is due more to the over-engineering of
the web application by the developer, which .NET
enables, than it is due to the framework itself.

.NET–PHP A about zero Fast machines on fast computers yield fast results,
regardless of the program. All of my applications
have been for low usage (3 concurrent users max)
sites.

.NET–PHP B large View State results in large pages and more page loads

.NET–PHP A about zero Your architecture will have more effect on this than
the language. A PHP program that resides entirely
on a Web server that also acts as the database server
will likely be faster than a distributed .NET pro-
gram. Since PHP programs cannot be distributed in
the same way as .NET or Java Web applications, it
isn’t possible for me to compare like with like.

.NET–PHP A very large With page caching and user control caching complex
pages dont have to reexecuted for the same input.

.NET–PHP A modest all the code is precompiled

.NET–PHP B modest more overhead - less performance

.NET–PHP B small I have not studied this, but there is more too a .net
page so it stands to reason it would be slightly slower

.NET–Ruby A small have not hacked active record to improve on anything
as my apps don’t have a huge user base. .net is fast -
as it’s compiled, etc

.NET–Ruby A modest all that nice rails framework stuff does come at a
price

.NET–Python B about zero Although .NET is actually a bit faster, ASP.NET
apps tend to be more cumbersome. Lazy program-
mers are the ones to blame, though.

Java EE–Perl A modest Java EE has been optimized like crazy.
Java EE–PHP A about zero That’s highly dependent on the implementation,

there is no 1:1 equivalent for a php - Java EE port.
Java EE–PHP A small - The use of more madure tools (caching,) but

they have a grater step of learning.
Java EE–PHP B modest PHP cache technology is more tested and more easy

to deploy
Java EE–Ruby B large The over bloated coding leads Java EE to be slower.

Simple is better.
Java EE–Ruby B small Rails has built-in caching stuff that’s easy to use.

With Java, you need to select and learn a framework
for this.

Java EE–Ruby A very large Java is much easier to compile to efficient code. Let
alone the JIT compilation.

Java EE–Python B small Java executes probably faster than Python but objects
are more heavyweight.

1 PARTICIPANT COMMENTS 59

Perl–.NET A modest *nix is always faster, although IIS6 is much better
than previous versions.

Perl–.NET A small mod perl lets you use the full power of Apache, so
you can delegate a lot of stuff to the webserver

Perl–Java EE A modest I don’t know. I don’t know much about the underly-
ing implementations of Java and perl.

Perl–Java EE A very large JEE is nice if you can afford to scale your server clus-
ter. But for a single server setup, perl is much more
efficient.

Perl–Java EE about zero It’s not so much a language issue as an application
architecture issue. If you run Perl in CGI mode then
it’s slow just like anything being run in CGI mode
because it has to be compiled on every request.
But if you use mod perl or FastCGI then the Perl
code is only compiled when the server is started and
each request is just execution time, not compilation.
Most speed differences I see in Perl vs Java applica-
tions is so much a language issue. It’s that the Java
apps tend to use more layers of abstraction and have
more complexity. This does cause some slowdown.

Perl–Java EE A very large Bloatware
Perl–Java EE B small The Java Web-Apps usually are readily compiled to

bytecode. However, to my experience the differ-
ence actually is small because on the other hand the
Perl implementations have much less size in terms
of LoC. Mod perl for Apache helps a bit, however
there is still a lack of such a standardized thing like
a servlet- or EJB container for Perl. In my appli-
cations so far, the most obvious difference is with
backend databases. Java’s DataSource concept with
connection pooling brings valuable performance plus
in comparison to Perl.

Perl–Java EE B small Java required far more memory, but usually puts it to
good use in terms of caching, modern Java VMs also
have very good performance for server side code.

Perl–Java EE B large This is true unless you use mod perl. In this case the
Difference is about zero.

Perl–PHP A small Both platforms offer rich sets of caching and precom-
piled code – but again, the USERS of Perl tend to be
more ”in tune” with their end-users experience than
typical PHP users.

Perl–PHP about zero Most time is spend in I/O
Perl–PHP A small depending on platform configuration
Perl–PHP A modest It depends on what you compare. Most tend to com-

pare Perl/CGI with mod php. That means that the
php app will be faster, but mod perl is faster than
mod php. As most webservers have mod php but not
mod php, php will be faster for the website user.

Perl–PHP A large perl has many modes of operation like mod perl,
fastCGI, CGI, SpeedyCGI. all the persistent modes
are very fast. for a dynamic language perl is gener-
ally fast enough.

1 PARTICIPANT COMMENTS 60

Perl–PHP B small Many abstraction and indirection layers, huge mem-
ory usage (cache/page faults). Tricky to calibrate
(many caches, etc). For applications with many con-
current users, perl apps tend to be faster, due to var-
ious caching techniques (see scalability). Databases
are the bottleneck of most apps, so the difference be-
tween perl and php is quite small. ORMs are used
in most perl apps, but they may generate inefficient
SQL code.

Perl–PHP A large Using ModPerl with Perl creates a vast difference of
speed between a Perl application and a PHP applica-
tion.

Perl–PHP A very large mod perl see http://www.witze-
welt.de/funbilder/show.php?id=35 for a good
argumentation :)

Perl–PHP A modest Perl’s response time is not good when using plain,
old style CGI. When using fastcgi or mod perl this
is no problem. Perl with mod perl is really fast. But
remember: ”mod perl is more than CGI scripting on
steroids” (Lincoln Stein)
Usually the performance depends on the developer;
and usually a lot of time gets consumed by database
requests, and here it depends on the skills of the de-
veloper.
I made some tests and the results was every time, that
some similar applications are faster with Perl then
with PHP.
Additionally: With mod perl there are a lot of pos-
sible tricks for performance tuning, e.g. keeping big
data structures in memory.

Perl–PHP A modest use mod perl
Perl–PHP A large When proper caching is employed, perl / Catalyst

apps can be MUCH faster than the equivalent in PHP.
And again because of the structure and clarity of a
Catalyst app, Caching is easily executed.
Since PHP tends to be ’execute in the page’, there
tends to be less overhead in processing individual re-
quests, plus the ability of nearly every PHP app to
be multi-forked along with Apache means a lot more
’apps’ to process your requests. It also means, how-
ever, that a clear caching strategy can be difficult to
implement.
Because PHP is execute in the page, etc... it does
tend to be a bit faster when caching is not present.
However, it does tend to put higher load on other
parts of your application, such as your database
server, as each ’thread’ has it’s own database con-
nections, etc.

Perl–PHP A small IMO I find that Perl apps run faster than PHP ones,
but that’s -HIGHLY- subjective; it all depends on
what frameworks you’re using.

Perl–PHP A large caching of code and templates better written apps
Perl–PHP A modest experience

1 PARTICIPANT COMMENTS 61

Perl–PHP B large In 99% of the cases you run an CGI based Perl
against an mod php based PHP script. The perl in-
terpreter needs to be loaded all the time again. The
PHP interpreter is already loaded and embeded in the
Apache. But when comparing mod perl to mod php
the thing is vice versa because mod perl caches the
bytecode of the application by default so no recom-
pilation is needed while mod php only delivers an
ready loaded interpreter.

Perl–PHP A large mod perl, persistence, better DB classes
Perl–PHP A large Caching, Caching, Caching! (and less overhead from

a language which leads its users to use global vari-
ables for just about everything)

Perl–PHP A about zero Perl in a CGI environment tends to be very slow. But
with FastCGI or mod perl there is no big difference.

Perl–PHP B modest because perl has a large working set for startup etc.
Perl–PHP A small Perl interpreter is a really fast piece of software
Perl–PHP A very large mod perl looks faster than mod php - and if anything

in php is currently faster than in perl, you’ve to write
just some XS code lines ;)

Perl–PHP B about zero It’s about the same, but Catalyst can be a bit slow
at times. It depends on the architecture of your sys-
tem; if database connections take a long time, PHP
will be slow. If you do a lot of forwarding through
your framework, Perl+Catalyst will be slower. But
it’s about the same.

Perl–PHP A modest mod perl2 .. but php with mod fastcgi is quite fast (
so is perl-fastcgi)

Perl–PHP A modest if it’s mod perl vs mod php. in cgi-mode perl usually
still win’s ... perl in cgi vs mod php, it’s usually php.

Perl–Ruby A modest Deployment scenarios are different. Ruby is not very
efficient in forking environments, while Perl is. The
ruby garbage collector sucks.

Perl–Ruby A very large Because Perl actually IS faster than Ruby. That aside
is Rubys object concept to expensive overall.

Perl–Ruby A modest Language is faster
Perl–Ruby A modest perl is faster, less dynamic than ruby
Perl–Ruby A large mod perl
Perl–Python B small http://shootout.alioth.debian.org/
Perl–Python B small Python is faster than Perl from my experience al-

though web applications are almost only limited by
database performance.

Perl–Python A modest Maturity of the platform
Perl–Python A large DBIx::Class generates extremely efficiente queries.

Catalyst is fast enough for real world scenarios. And
”perl” itself is much more optimized for speed.

Perl–Python A small - mod perl - FastCGI
PHP–.NET B about zero No real difference noted. I’ve never done any testing

to compare loading times.
PHP–.NET A modest Apache runs faster then IIS
PHP–.NET A modest .NET apps seem slower most of the time.
PHP–.NET A modest better optimization possiblities (faster, of course,

only with Zend Optimizer...)

1 PARTICIPANT COMMENTS 62

PHP–Java EE B small Java is compiled before, PHP when needed.
PHP–Java EE A large PHP applications tend to be a thin layer of extraction-

and-formatting code above a database. All the hard
stuff is done by the DB. Java apps sometimes totally
go overboard with complexity.

PHP–Java EE A large PHP is very speedy in my experience. Java takes
long time to load and response seems slower. But
this depends on how the application is built, so the
difference may actually be negligable.

PHP–Java EE A large You have to be a BRILLIANT Java programmer to
make fast Java webapps that actually do something
worthwhile; in PHP the biggest idiot can write enor-
mous apps that are fast where Java would crawl to a
complete halt.

PHP–Java EE A large The faster development cycle on PHP means that its
easier to inject instrumentation into the code. Also to
turn on and off diagnostics at run time.
Despite the fact that Java is (semi) compiled a tool to
do a specific taks job in Java seems to be slower than
the same one written in PHP.
Also PHP doesn’t maintain state and require garbage
collection the way Java does - looking at the Java ap-
plications I manage, they exhibit massive hysteresis
in processing time throughout the day; garbage col-
lection fails to keep up with the load changes.

PHP–Java EE A very large JVM too slow, big overhead. PHP is near C perfor-
mance when using caches and optimizer tools.

PHP–Java EE B small Die virtual machine in Java ermglicht das Berei-
thalten von Informationen im Arbeitsspeicher des
Servers.

PHP–Java EE A large php appz. are often more optimized for speed than
for architecture and security. usually they react
faster-

PHP–Perl about zero Both languages are server-side executed, and both
have optimized compilers/interpreters.

PHP–Perl B modest I’m not sure.
PHP–Perl A modest The PHP extensions (LDAP, Database, ...) are of-

ten implemented in C. The Perl modles often imple-
mented in pure Perl. If mod perl is used, this advan-
tage will be very small.
This advantage will be smaller and smaller if frame-
works are used.

PHP–Perl A about zero I think PHP is a bit faster, because the interpreter
module has less overhead compared to Perl.

PHP–Perl B small Depends on a lot of things ...
PHP–Perl B modest Perl+mod perl precompiled bytecode everytime
PHP–Ruby A small IMO
PHP–Ruby A modest Ruby’s slower, no doubt about it.

N.B.: this survey is too long. I’m losing my patience
to explain myself effectively.

PHP–Ruby A small php zend engine might be more sophisticated

1 PARTICIPANT COMMENTS 63

PHP–Ruby A modest Small sites tend to be quicker in PHP because they
have no abstraction and PHP (with opcode caching)
runs quicker than Ruby.
Large sites tend to be quicker in Ruby because it
lends itself better to the engineering they need.

PHP–Ruby A very large PHP is very fast.
PHP–Ruby A about zero There is no difference
PHP–Ruby A modest Generated Code, less performant and scalable infras-

tructure
PHP–Python B about zero The difference is hardly comparable. There are al-

most always far too many variables to consider to
make an accurate test of such a metric.
In terms of raw compilation speed, I’m pretty sure
that Python is faster.

PHP–Python B small depends on implementation
PHP–Python A about zero Response time is the same until you start doing lots

of classes in PHP, then response time starts to slow
unless you have a beefy server.

PHP–Python A modest More elaborate Caching tools are available for clas-
sical LAMP, I think. Since Python isn’t very well
supported by most hosters you have to do much more
work to make it good perform.

PHP–Python A small PHP being around longer
PHP–Python A small Speed is fairly equivalent, with the edge going to

PHP.
PHP–Python about zero This really depends on the actual application design

and where it is hosted. Too many variables to say
whether PHP or Python web apps are typically faster
than each other.

Ruby–Java EE B modest java has been optimized for server tasks (just-in-
time compilation etc.), ruby/rails is a much younger
player in this field

Ruby–Perl B modest bigger framework. much more work has to be done
for webserver integration. mod perl on the other
hand is fast.

Ruby–Perl B large Ruby 1.8.x is slow. There is no getting around that.
Its advantage is being able to quickly deploy new
nodes to a cluster, but the latency-per-user is still
fixed. Perl can be used through mod perl, can be
more or less faster ... but its runtime is generally
faster than Ruby anyways.

Ruby–PHP B small Ruby interpreter speed
Python–Java EE A large Equivalent code seems to run more slowly in Java

than Python.
Python–Java EE B small I believe Java is faster
Python–Java EE A large My experience has show this to be the case.
Python–Perl A small I think python has a slightly faster interpreter.
Python–Perl A about zero not much difference, both have accelera-

tors for apache and other servers. (Fastcgi,
mod python/mod perl, etc)

Python–PHP B small mod php
Python–PHP A large programming style.

1 PARTICIPANT COMMENTS 64

Python–PHP B modest in my experience, PHP is faster than PYTHON.
when using PYTHON (resp. DJANGO), without
memcache the applications are definitely too slow.

Python–PHP B small PHP seems a bit faster for our apps, probably be-
cause of the custom pgpsql functions as opposed to
the ORM.
Again, this has nothing to do with Python.

Python–PHP A small It’s just a feeling. Profiling will be needed.
Python–PHP A about zero Nope. This is not language dependent, but rather

how much work is being done by the framework it-
self. Completely useless comparison.

Python–PHP A about zero didn’t measure this one
Python–PHP A small Python is faster, but, this mainly depends on the other

factors like framework, caching, server setup and
greatly on the database access.

Python–PHP A large compiled, shared runtime, faster interpreter, ..
Python–PHP A very large benchmarks show us that
Python–PHP A large better interpreter on the Python side
Python–PHP A large Python runs faster, and pre-compiles the code. Code

is not recompiled per-request, as with PHP. PHP has
accelerators that cache compiled code, but they are
still slower, and can be buggy.

Python–PHP A very large Python is 10x or more times faster.
Python–PHP A about zero They’re both pretty fast.
Python–Ruby B small Python interpreter tends to be a bit slower.
Python–Ruby A modest language implementation
Python–Ruby A small benchmarking is evil

1.10 Tool dependence comparison

Platforms Comparison Comment
.NET–Java EE B large In J2EE you have to use many complicated different

libraries, most of the are open source.
.NET–Java EE B very large - e.g. Eclipse itself needs thousands of plugins - also

all these other things like tomcat etc.
.NET–Java EE very large time is money ;) see previous page
.NET–Perl A modest Without the use of the visual studios IDE it would

take longer to develop with .net than perl. Develop-
ing sophisticated tools makes them more appealing.

.NET–Perl A large It is very difficult to build anything useful without
Microsoft Visual Studio. PERL is a collection of text
files.

.NET–PHP A very large PHP exists without sophisticated tools, I believe
ASP.NET simply wouldn’t exist without the IDE.

.NET–PHP A very large Visual Studio, ’nuff said awkward xml-files you’d
have to write yourself

1 PARTICIPANT COMMENTS 65

.NET–PHP A very large Writing ASP.NET/.NET without an IDE is MUCH
more painful. There are so many things that can go
wrong, especially as the application increases in size.
PHP can be hacked together fairly well in a text edi-
tor.

.NET–PHP A very large PHP you can write in notepad. This would be very
difficult in .NET

.NET–PHP A large PHP is much easier to use for ”quick and dirty”
projects.

.NET–PHP A modest .NET websites tend to be more robust and complex
(because they can be) so the reliance on better tools
to amintain them is probably needed.

.NET–PHP B about zero if you want, you can do it all with a simple text-editor

.NET–PHP B modest There is a lot ”out of the box” with .NET.

.NET–Ruby A modest ruby is very independent and this is a plus compared
to the M$ only setup for .NET

.NET–Ruby about zero both can be done with as little or as much tool sup-
port as you want.

.NET–Python A very large .NET without Visual Studio would be a HUGE pile
of crap!

Java EE–Perl A very large One word: Websphere
Java EE–Perl A large one can’t work with Java productively without these

sophisticated tools
Java EE–PHP A modest J2EE apps need to be compiled

Java EE–PHP A small You could count Hibernate and so on, but you don’t
really NEED them, so...

Java EE–PHP A large JavaEE is more complexe, so more complex tools
Java EE–PHP A very large eclipse exists for a reason
Java EE–Ruby A large As configuration is over convention, many configu-

ration files are generated by tools.
Java EE–Ruby A very large Java is almost impossible to use without an IDE.

Ruby development is done with just a text-editor and
command line by many people. The IRB console al-
lows you to do much that more sophisticated Java
tools accomplish. The Java tools market is larger,
and more effort has gone into it, so developers have
grown dependent on those tools.

Java EE–Ruby A large The loss in productivity due to a concise dynamic
language can be taken back due to better refactoring
support.

Java EE–Python A very large Coding Java without an IDE sucks.
Perl–.NET B very large Try doing ASP.NET without the IDE. I dare you.
Perl–.NET B very large Of course that depends on the definition of sophis-

ticated. I took it to mean IDEs that write a lot of
boilerplate.

Perl–.NET B modest it is easy to write platform independend perl code
CPAN

Perl–Java EE about zero I don’t understand the question. What tools are
meant here?

1 PARTICIPANT COMMENTS 66

Perl–Java EE B very large Even when working with 200.000 LOC perl web ap-
plications I only use a simple text editor with syn-
tax highlighting and no other tools. The very fast
turn-around times during testing/debugging reduce
the need for any tool support, be it in terms of debug-
ger, static checking or others. Even though a good
IDE would certainly be welcome, it is not a require-
ment for productive perl programming.
On the other hand, working on a small to medium
sizes Java EE project without a good IDE would be
suicide.

Perl–Java EE B small Independent free language
Perl–Java EE A very large Because Java is more verbose I believe develop-

ers tend to memorize less of the core language and
rely on their IDE to remember the method and class
names.

Perl–Java EE B large I find perl developers are more knowledgable about
other languages and development in general. They
also seem to have a better grasp of database concepts.

Perl–Java EE B very large The other side of the tool-coin. To implement a Perl
webapp needs a text editor, a Perl interpreter and a
webserver. Java webapps often depend on the server
they are deployed to and the libraries with which they
are deployed. This in turn has to be supported by the
IDE and vice-versa.

Perl–Java EE B small Perl’s clear advantage is CPAN, there is no single
place to go for java modules

Perl–PHP None not clear what you have in mind with ”sophisticated
tools” ... Can’t offer an opinion.

Perl–PHP about zero Both are a bitch to debug, and both have about the
same tools to debug.

Perl–PHP B modest There is absolutly no dependence on any tools.
Perl–PHP B about zero They both have no dependance on tools.
Perl–PHP B about zero Neither Perl nor PHP seem to use sophisticated tools

(unless you use a code generator in php).
Perl–PHP about zero Perl and PHP are equally (not) dependent on the use

of external tools.
Perl–PHP B about zero you can programm both with a simple text editor, and

both languages depends on a configured server.
Perl–PHP A small There are a lot of cool tools out, but the typical code

is not dependent on these tools.
There are also a lot of high quality Perl tools; have a
look on Devel::Cover, the testing modules, the com-
piler tools in the B:: namespace etc.
But you are not dependent on them.

Perl–PHP B about zero I don’t find either language to require sophisticated
tools.

Perl–PHP B about zero Don’t think it makes any difference.
Perl–PHP B small both only need text editor; php needs good reference

manual for functions (which are *horribly* named)
Perl–PHP B modest Most of tools are written on the same language.
Perl–PHP B modest All you need to have is VIM and the Perl debugger ;)

1 PARTICIPANT COMMENTS 67

Perl–PHP B about zero Both languages can simply be written in a plain text
editor.

Perl–PHP A small Community conventions (of the standards type, not
the meet-up type).

Perl–PHP B large KISS
Perl–PHP B about zero Both languages offer great references.
Perl–PHP B small a cleaner module approach
Perl–PHP B small Expressiveness, flexibility and a large archive of Perl

modules.
Perl–PHP A large People actually use modules.
Perl–PHP B modest well.. acutally you dont need that sophisticated ides

in both: perl and php. sometimes something like a
”dot.complete” would be nice, but acutally.. it doesnt
matter as long as you know you language

Perl–Ruby B small Honestly, it’s because the tools aren’t as good.
Perl–Ruby B large Perl has just on dependency: CPAN. I read about a

few Ruby tools and more of them seem commercial
than in Perl area...

Perl–Ruby B about zero no reason
Perl–Python None ?
Perl–Python B about zero Developing both with Vim only is fine.
Perl–Python B modest Perl programmers are used to vim, not a sophisti-

cated tool.
PHP–.NET B large I wouldn’t be able to develop a .NET web app with

out Visual Studio. I can code PHP in a text editor.
PHP–.NET B large It’s easier to develop PHP in an Editor then ASP.net

on C#
PHP–.NET B large Developing a .NET app basically forces a developer

to use IIS, Windows Server, and Visual Studio. This
is big draw back if you have a small budget.

PHP–.NET A modest Unstrukturiertheit durch Freiheiten..
PHP–.NET B very large A text editor is all you need.
PHP–Java EE B modest It is quite impossible to develop a modest size ap-

plication in Java with only a texteditor, while this is
possible, be it awkward, with PHP .

PHP–Java EE B modest Since there is less need for IDEs to develop with
PHP, I think development is a little leaner and lets
me know exactly what is going on - more control.

PHP–Java EE B large Without frameworks and tools you cannot do any-
thing useful with Java if you don’t want a billion lines
of code.

PHP–Java EE B about zero Other than my previous comment re hinting, I don’t
use the other features in my Java IDE. Everything
else is from the desktop

PHP–Java EE B large give me paper and a pen and thats it (in PHP)
PHP–Java EE B large again, because PHP is more simple. A complete app.

can be written in vi
PHP–Perl None no opinion
PHP–Ruby B modest Rails has killer tools like Capistrano. I think Ruby

developers are more likely to use version control.
PHP–Ruby A about zero both require those toolsupport
PHP–Ruby A modest PHP has a huge global namespace with inconsistent

argument ordering, so some kind of reference is al-
ways necessary.

1 PARTICIPANT COMMENTS 68

PHP–Ruby A about zero There is no difference
PHP–Ruby A about zero Code completion is easier, since inheritance is done

a straigther way
PHP–Python B small I rarely used IDE’s when working with PHP, but I did

find them necessary when tracing bugs. PHP’s ex-
ception handling is abysmal; the interpreter doesn’t
do a stack trace for you so finding bugs is slightly
more difficult.

PHP–Python A about zero developer needs more support to keep everything
clean, in the end it depends on developer

PHP–Python B small Just a matter of habit. More people have longer expe-
rience with PHP. Some Python tools might be more
sophisticated but more powerful, too.

PHP–Python A about zero PHP seems to require certain external libraries
slightly more often; maybe.

PHP–Python about zero Not sure
PHP–Python B large Python itself isn’t a language for web development

as the main branch.
Ruby–Java EE B modest the large amount of configuration used e.g. in struts

requires the use of wizards, generators etc. to deal
with configuration files

Ruby–Perl A large Ruby depends on a lot of tools – gem, Rails, code
generators, Rake, Capistrano. Fortunately, most of it
is written in Ruby, so it *appears* to be all mono-
lithic. This is the advantage of domain-specific lan-
guage support. Put in another way, Ruby depends on
sophisticated tools because it is easy to write sophis-
ticated tools using Ruby.
Having worked with Ruby, I know my future Perl
projects above a certain complexity will be written in
the style of a DSL. Perl is just as capable of closures,
code blocks, naming conventions.

Ruby–PHP B small Expressiveness
Python–Java EE B very large Python is a better language
Python–Java EE B modest I’ve used many different editors and such for Python

and very few with Java. The Python tools are not
sophisticated at all and I think the Java tools have to
be sophisticated to get any real productivity from the
language.

Python–Perl A small django uses a lot of smoke and mirrors :-)
Python–Perl A about zero I haven’t used sophisticated tools for either.
Python–PHP A about zero A text-editor is fine for both
Python–PHP B modest not really matters
Python–PHP A small One has to be sophisticated enough to use ’import’

statements in Python :)
Python–PHP B modest More grassroots and open-source frameworks that

require less sophisticated tools.
Python–PHP None same for booth, all you are need is just a text editor
Python–PHP B small vim, bash, - anyone ?
Python–PHP B modest PHP-Developers tend to user more optimizers.
Python–PHP B small The interpreter. If you don’t have an IDE for python,

you can still iteratively develop and debug your ap-
plications using an interpreter.

Python–PHP B small Python is more free, PHP is more Zend dependent.

1 PARTICIPANT COMMENTS 69

Python–PHP B about zero You don’t tend to use tools for either really.
Python–Ruby B small the clear and straight code needs no surrounding tool.
Python–Ruby about zero no sophisticated tools (apart from the frameworks

and a good editor) required for either

1.11 tools comparison

Platforms Comparison Comment
.NET–Java EE A large On the java side the only one really good tool is

eclipse. but it isn’t so good as VS
.NET–Java EE A very large - again Visual Studio.NET
.NET–Java EE A very large netbeans is HORRIBLE Visual studio is much much

better
eclipse is very powefull, usefull but not good enough
for web dev.
Visual studio and .net are growing much much faster

.NET–Perl A very large developing with the .net IDE is extremely easier than
with PERL which makes the learning curve shorter
as well.

.NET–Perl A small Microsoft’s Visual Studio is a good extensible de-
velopment environment with server testing and IE
browser (only) testing built in. PERL does not have a
preferred IDE so developers find the best set of tools
to suit their personal preference. Both development
environments make working in teams easy and man-
ageable with good testing and version control tools.

.NET–PHP A very large vs2005 ist ein sehr mchtiges werkzeug! ich bin vor-
eingenommen ;)

.NET–PHP A very large Visual Studio beats the pants of anything for PHP, as
much as I hate to admit it.

.NET–PHP A very large Visual Studio... ’nuff said

.NET–PHP A about zero The Visual Studio is about equivalent to Zend Stu-
dio/Eclipse dev environments, in my opinion. Intel-
lisense is nice, but it’s a memory hog.

.NET–PHP A very large Visual Studio.NET 2005, with full debugging sup-
port, SCC, multiple windows, syntax highlighting,
one-click refactoring, and a host of other cool fea-
tures vs.... gVim or Vim.

.NET–PHP A large .NET has large feature packed IDE

.NET–PHP A small Visual Studio is very good and Monodevelop is get-
ting there. PHP only really has Zend - which is pretty
good, but a bit clunky in my opinion.

.NET–PHP A very large Bisual Studio .NET ... ’nuff said.

.NET–PHP A very large VS.NET
* is a nearly perfect IDE * is customizable above a
high infrastructure level

.NET–PHP A very large Visual Studio is miles above any other IDE

.NET–Ruby A modest visual studio is very nice compared to the typical
ruby hand coding, etc

1 PARTICIPANT COMMENTS 70

.NET–Ruby A very large definitely a preference thing, but I found Eclipse with
RDT / Rad Rails to be a terrible development envi-
ronment. In contrast Visual Studio 2005 is excellent.

.NET–Python A large .NET wins hands down. Visual Studio is amazing.
Java EE–Perl A very large More commercial organizations are investing in

making the best possible tools.
Java EE–Perl A large much better tools for Java
Java EE–PHP about zero I typically do not use an IDE
Java EE–PHP A very large Java has better IDE support. Java EE make the most

out of it.
Java EE–PHP A large - A more madure market.
Java EE–PHP A very large NetBeans, Eclipse.. against no leader in PHP world
Java EE–PHP A very large eclipse
Java EE–Ruby A large Usually I can code with a simple text editor. But Java

used to be like this on the early years.
Java EE–Ruby A very large A lot of effort has gone into Java IDEs. Java pretty

much demands use of an IDE. Ruby IDEs have not
been around long, and a lot of Ruby programmers
prefer just a text editor to an IDE.
Also, Java’s static nature allows an IDE to easily dis-
cover much about your codebase.

Java EE–Ruby A very large Static Typing !!
Java EE–Python A very large Eclipse is native to Java; Python IDEs are less robust.
Perl–.NET B very large Now many IDEs for Perl that compare to Visual Stu-

dio.NET
Perl–.NET A very large Can use whatever tools you want rather than locked

into specific jack of all trades set.
Perl–.NET B small you have to customize your IDE or editor by yourself
Perl–Java EE B small Java programmers tend to use Eclipse, but I wouldn’t

call it a better tool than Vim. The only advantage
Java has is that it can be parsed by editors and so
they might be able to offer more tools. But I have
never missed them much.

Perl–Java EE B very large To date, there is no perl IDE which can even remotely
offer features matching those of IntelliJ IDEA or
Eclipse. And I am quite confident in that assertion as
I have evaluated most, if not all, available perl IDEs
over time.

Perl–Java EE B small eclipse is a nice tool
Perl–Java EE A small perl just works on linux, linux and a variety of other

tools are my IDE.
Perl–Java EE B large Java is more widespread
Perl–Java EE B large I don’t use a fancy IDE (I use vim), but for peo-

ple who like them, Java definitely has more choice.
Although I’ve heard good things about EPIC (on
Eclipse) and Komodo (from ActiveState).

Perl–Java EE B modest Popularity of the product. Perl is not funky and there-
fore has no buzz appeal.

Perl–Java EE B very large Eclipse - this nearly says it all. To click together a
base webapp and to extend it step-by-step using the
various Eclipse plugins is really easy. I haven’t found
a practical Perl IDE until now.

1 PARTICIPANT COMMENTS 71

Perl–Java EE B modest Perl people know how to use vi / emacs. Java peo-
ple don’t, they needed IDEs and they got it. So perl
lacks behind, although even eclipse is starting to pich
dynamic languages up.

Perl–Java EE B small Netbeans <−> Komodo
Perl–PHP None IDE? What a horrible unbearable idea.
Perl–PHP None Dunno, never use ’m
Perl–PHP B small i.e. ”delphi for php”
Perl–PHP B large There is just EPIC for Perl development. But most

Perl programmers work with an editor and the termi-
nal, so there is no need for an IDE. Such program-
mers can work with terminal and editor as fast as
such programmers that work with IDEs. It depends
on what they are used to use.

Perl–PHP B about zero I wouldn’t know cause i dont use an IDE.
Perl–PHP B modest Perl is quite difficult to parse and to automatically

understand. Most perl frameworks have not yet de-
veloped IDE plugins. Nevertheless, html templates
are in separate files, and there you can use any Web
Design Program. For some tasks (packaging, regres-
sion testing, ...) there exist appropriate tools.

Perl–PHP about zero I don’t use IDEs.
Perl–PHP B small Web-Application-Tools like Komodo are great, but

expensive. There is no free community IDE (which
is usable) now

Perl–PHP B about zero There are more IDEs for PHP, but with Komodo and
Eclipse there is fine support for Perl in the ”big”
IDEs.
A lot of Perl hackers are using vim or Emacs as IDE,
and there is very good support.

Perl–PHP A about zero use vim with some of its best perl plugins
Perl–PHP A small Lower number of core functions = easier to code to,

less need for external reference.
Perl–PHP B modest There aren’t too many IDEs that grok Perl. I’ve also

found that many serious Perl developers swear by vi
and wouldn’t use any other editor. This in turn re-
duces the efforts to even bother to create a better IDE
for Perl; if they’re already using vi and think its the
cats meow, why would they even bother to try an-
other IDE?

Perl–PHP A large I don’t know any IDE tools for php (I’m sure they
must exist though)

Perl–PHP modest no need to use special IDE, texteditor with syntax
highlighting is enough in most cases

Perl–PHP B large There is no real IDE for perl. PHP Editors tend to be
more comfortable.

Perl–PHP A large much better Perl support in Emacs, Eclipse, vim etc.
better debugger in perl

Perl–PHP B modest Less buzzwords in the official documentation.
Perl–PHP B large Perl developers tend to want to be closer to the code

and not rely on IDEs
Perl–PHP B large PHP is very popular so there is a big variety of tools

1 PARTICIPANT COMMENTS 72

Perl–PHP B small the perl community is less IDE oriented, and smaller
than the php community

Perl–PHP B modest Especially good open source IDE’s for Perl are hard
to get. Apart from vim there’s pretty much only
Eclipse / EPIC afaik. And PHP with Eclipse (PDT)
is much better than EPIC.

Perl–PHP A small PHP has IDEs, Perl has IDEs. I don’t use them.
cperl-mode for emacs is much better than php-mode,
though.

Perl–PHP A small More active tool-chain development on the Perl side.
Perl–PHP A large cperl-mode.el and gud+the perl debugger are much

better tools than the equivalent php stuff.
Perl–PHP B large php community is more ”stylish” and dependent on

graphical features (as ides provides) .. an average
perl coder would laugh out lout if you use something
not vi or emacs ... which doesnt look that good

Perl–PHP B modest the commercial factor is not as big as in php where
they just stomp out IDEs etc pp one after the other
which, of course, leads to evolution.

Perl–Ruby B small TextMate is awesome for Rails.
Perl–Ruby A about zero ... because vim looks the same way everywhere and

supports every language i’m writing. As the only ar-
gument left is the language itself i had to choose Perl
:-)

Perl–Ruby B large Few IDEs for Perl
Perl–Ruby B small Ruby is fast-growing and popular eg. people work-

ing with Java likes Ruby and develops IDE tools for
Ruby.
Perl has long tradition of lacking good IDE :(

Perl–Python B small ActiveState’s Komodo fits for both languages. But
PyDev seems more mature than EPIC (Perl) in
Eclipse.

Perl–Python B small Eclipse understands Python but not Perl. Vim is my
Perl editor of choice and works well for me.

Perl–Python A about zero I don’t use an ide, but rather good text editors. So
it doesn’t matter in my case. But I know, there are
more IDEs available for Perl than Python. But this
doesn’t mean, these have to be more usable.

Perl–Python B large Perl programmers are used to vim, not IDEs.
Perl–Python B modest - Perl is difficult to parse, so there are not so many

Perl IDEs...
PHP–.NET B large Nothing I have used beats Visual Studio for web app

development.
PHP–.NET B about zero Visual Studio.net is THE IDE but there are nice IDEs

for PHP too.
PHP–.NET B modest VS2005 is better than the last version of Zend Studio

I used.
PHP–.NET B very large developers don’t spend money on an IDE since all

must be open source == free attitude
PHP–.NET about zero Zend Studio is very good (but costs), but MS Web

Dev Express is free and also very good...
PHP–Java EE A about zero I found both languages have adequate open source

tools available.

1 PARTICIPANT COMMENTS 73

PHP–Java EE B large Java is used in large corporations that are able to
throw a lot of money at problems. There’s much
more money in the Java ecosystems. So more money
flows into IDE development.
There’s probably less demand for PHP IDEs, be-
cause PHP tends to be used on smaller projects.

PHP–Java EE B small I don’t use an IDE for my PHP development. And
most IDEs I see are targeted to Java or .NET folks.

PHP–Java EE B very large PHP tools are bad. Most use a normal texteditor for
this reason. Java tools are brilliant ;IDEA, Eclipse
etc.

PHP–Java EE B modest The absence of strong typing in PHP means that you
are never going to get hints as you type.
There are products like PHPLint which make PHP
strongly typed - but given the choice I would still
prefer it as it is.
Beyond a good programming editor, I don’t see the
attraction for an IDE if I can have access to all the
tools I need as easily from my desktop.

PHP–Java EE B small eclipse is cool
PHP–Java EE B modest Zend is doing what they can in terms of building an

IDE. The history of Java in terms of tools is much
longer, more users are looking for efficience there.
Visual modelling tools and CASE are more common
in Java.

PHP–Perl None don’t use ides
PHP–Perl B small The emacs cperl- ’ide’ support is more improved

than the php support. I don’t use Zend or Eclipse.
PHP–Perl A very large Availability
PHP–Perl A small PHP has more support on Win32

PHP–Ruby B modest Katana IDE
PHP–Ruby about zero I don’t use an IDE for PHP, so I couldn’t say.

I use TextMate for Rails, which is kind of a minimal-
ist IDE. I like it, but I’d be interested in other solu-
tions (I tried Aptana, but it’s so ugly and slow with
its Java).

PHP–Ruby B small i happened to have found more tools for ruby on rails
for easy developing

PHP–Ruby about zero I have no experience with IDEs for either language.
PHP–Ruby A modest PHP exists longer in the people’s mind
PHP–Ruby A about zero There is no difference
PHP–Ruby A large Real IDE-integrated Debugger with conditional

breakpoints, introspection and data modification
with a comfortable interface exists (Zend IDE)

PHP–Python A about zero I wouldn’t really know. I don’t use an IDE in my
toolset. They’re too much of a crutch and get in my
way.

PHP–Python A large python frameworks are still very young
PHP–Python A modest PHP probably has better support. But I never needed

it so far. I’m a control freak and like to know *each*
line I code personally. One reason I’m not using
Java.

1 PARTICIPANT COMMENTS 74

PHP–Python B modest Python has an edge here since it’s older and used for
non-web applications. I don’t feel that IDEs are ter-
ribly useful for web stuff.

PHP–Python about zero No real difference
PHP–Python B large PHP doesn’t have any IDE support, or?
Ruby–Java EE B modest due to missing type information, tools can’t offer the

facilities that are available for java, such as refactor-
ing, code completion, etc.

Ruby–Perl about zero emacs?
Ruby–Perl A about zero This question was already asked.
Ruby–PHP B small PHP’s comparative maturity
Ruby–PHP A very large textmate for mac is not an IDE, but it comes close

and developping rails with it is a joy!
Python–Java EE B about zero I use Ecplise for both, but feel there are more avail-

able tools for Java than Python.
Python–Perl A small emacs doesn’t seem to prefer one over the other. My

experience with python is that it has more debug sup-
port, but I haven’t worked with perl enough to say for
sure.

Python–PHP A large Python has a more consistent language design
Python–PHP B large popularity
Python–PHP B about zero we use vim.
Python–PHP B modest Big fat user community with a strong commercially

focused company behind it that has always pushed
tool sales (Zend).

Python–PHP A very large Better design of the language itself (namespaces,
modules...)

Python–PHP None I don’t use IDE for development in booth languages.
Python–PHP B modest vim, bash, what do you need more ?
Python–PHP B about zero PHP has a simpler syntax, which makes things like

Code Intelligence somewhat easier, and Zend makes
an IDE that is excellent. Python also has good IDE
support, generally, but the more dynamic nature of
the language makes tooling slightly more difficult to
accomplish.

Python–PHP about zero ZendStudio for PHP is very well developed. Python
is quite difficult to read by a computer. Python have
more tool but worsts IDEs.
Finally there is not a valuable difference.

Python–PHP B about zero There are IDEs available for both, although Python
probably has a better debugger.

Python–Ruby A about zero both have good ide-s
Python–Ruby A modest There are much more Phyton class libraries available
Python–Ruby A about zero dont know

1.12 usability comparison

Platforms Comparison Comment

1 PARTICIPANT COMMENTS 75

.NET–Java EE A about zero If the programmer has done his job good, the end
users do not feel any difference

.NET–Java EE A about zero there are no differences i think

.NET–Java EE A small better gui elements more robust (asp .net vs JSF at
least)

.NET–Perl A modest most of the world runs internet explorer and the .net
built pages are a native fit.

.NET–Perl B large Microsoft is very Internet Explorer biased, making
an application friendly to alternative browsers is time
consuming. Most developers I have met don’t know
the difference thus making very poor choices.

.NET–PHP A very large weniger fehler, die dem entwickler durch die lap-
pen gehen und somit nicht dem kunden vor die au-
gen kommen. robustheitsprfungen ber externe tools
fr das framework (z.b. fxcop).

.NET–PHP A very large Viewstate is terrible and postbacks are the devil

.NET–PHP B about zero This is something that is the courtesy of the designer,
not so much the language

.NET–PHP A modest More regular forms libraries and easier HTML cre-
ation.

.NET–PHP A small .NET allows more functionality to be built in the
same time frame

.NET–PHP B about zero Usability is nothing to do with the language. Well
thought-out, standards-compliant Web pages can be
produced whatever language you use. Usability test-
ing and standards compliance (especially for acces-
sibility) are the key here, not the language.

.NET–PHP A very large The built in UI components (grid, Repeater etc.) for
.NET FAR exceed the base HTML form elements
available in other web languages.

.NET–PHP about zero the result should be the same

.NET–PHP A about zero wrong question: you may build the same ui experi-
ence independent from the platform. it’s only a ques-
tion of efforts

.NET–PHP A about zero For the end user they are about the same

.NET–Ruby A about zero this is up to the designer / developer and the frame-
work should not play a huge role in the end result
with regard to usability

.NET–Ruby about zero usability isn’t a function of the language, its a func-
tion of the development teams effort and quality.

.NET–Python B small I don’t believe that usability depends on the tool.
However, customizing ASP.NET controls can be so
annoying sometimes I just leave them as they are.

Java EE–Perl A modest Java EE frameworks have invested much more time
in usability and making usability easier to develop.

Java EE–PHP A small Theres no difference besides the number of frame-
works and possibilities (JRuby being one of them)

Java EE–PHP A modest JavaEE apps are more designed that PHP apps
(write&forget), and because JavaEE apps are longer
to develop/maintain, UI is more carefully designed

Java EE–Ruby B about zero The user experience depends much on the design
of the application and not the language/framework
themselves.

1 PARTICIPANT COMMENTS 76

Java EE–Ruby B modest Rails’s encouragement of REST principles’ Rails’s
attaction to people who care about design Speed of
Rails development encourages incorporation of user
feedback into the application

Java EE–Ruby A very large Java easily outscales RoR. If the end user cant see
your website, there is not even such a thing as us-
ability.

Java EE–Python A modest A Java site will have more familiar components.
Perl–.NET B large ASP.NET has a lot of ”drang and drop it on the form”

just works functionality, esp with AJAX.
Perl–.NET A large Easier to output clean, accessible, cross browser

html.
Perl–.NET A small because often during development fast prototyping

can be used
Perl–Java EE about zero That depends totally on the framework and on the

programmers. And on the concept.
Perl–Java EE None There’s again no clear answer. Though the more

hacky nature of many perl applications may yield
lower usability as usability may not have received
enough attention during development. But this is not
a property of perl applications, it rather is the result
of the fact that one tends to write small, quick-return
applications in perl and bigger, long-term applica-
tions in java.

Perl–Java EE about zero End users don’t know the difference
Perl–Java EE A small It’s easier to create good apps with perl.
Perl–Java EE about zero End user experience for web applications has little to

do with back end server technologies. It’s all about
usability design, HTML, CSS and judicious use of
Javascript.

Perl–Java EE B modest The excellent Java frameworks offer out-of-the-
box solutions for day-to-day problems such as
proper HTML escaping, forms based user authen-
tication, session handling, connectivity to external
data sources - LDAP, RDBMSes... Appropriate Perl
implementations tend to often need ”wheel reinven-
tion” for mainstream tasks. Perhaps the lack of a
standardized Perl frameworks or the limited set of
Perl standardized modules (”Perl SE” but no ”Perl
EE”;-) is THE main reason for the difference in ques-
tion.

Perl–Java EE B about zero Alwas depends on the application You can get it
wrong, no matter what language you use

Perl–PHP A about zero honsetly think there is little visible difference
Perl–PHP about zero 1) Use the right tool for the right job, client experi-

ence is (or should be) one of the requirements
2) There is not much difference between the two

Perl–PHP B large You can put your php files on your webserver and
it runs. With Perl applications you have a lot more
trouble. You have to change the settings to 755
for every script that should be executable via the
browser. This is the biggest disadvantage of Perl
compared to PHP.

1 PARTICIPANT COMMENTS 77

Perl–PHP B about zero I don’t believe this is a valid question. UI has or at
least it should have nothing to do with the backend
implementation choices.

Perl–PHP B large PHP has always focused on web and perl has done
everything. So the open source stuff for php is
more web based and polished. php has also attracted
younger more hip coders who can do graphics and
code.

Perl–PHP B small PHP developers have more experience in designing
user interfaces. The user interface design is consid-
ered from the beginning, whereas perl users would
try to develop the core application as long as possible
without doing any ui work (as they try to really en-
force the separation between the ui and the business
logic). The difference is not as dramatic because perl
applications use lots of templates, which can be writ-
ten/adapted by real web designers, who have more
experience in designing forms that should be easy to
use for the end user. If AJAX is used in an extensive
way, perl tends to beat even php, for essentially the
same reasons as described above.

Perl–PHP A about zero I think, from the user’s point of view, applications
developed with PHP and Perl are equally functional.

Perl–PHP A about zero if it works, user won’t mentions what programming
language does its job.

Perl–PHP about zero With the appropriate effort they should be indistin-
guishable, regardless of the platform

Perl–PHP A about zero This depends on the implementation. When compar-
ing PHP and Perl there is not much difference and it
usually depends on the developer.
But a lot of (not all) Java applications really suck
because short ending sessions. They usually save the
complete state and everything in the session and after
20 or 30 minutes this is lost.

Perl–PHP A large Different teams working on design and development.
This usually means better UI.
The ’do one small thing well’ mentality makes for
flexible interface elements and simple usage.
PHP apps, in my experience, tend to grow in inter-
face as more features are added in to existing pro-
cesses... which just get glommed into the existing
interface. It doesn’t have to be this way, but it often
is.

Perl–PHP A about zero For the end user, it doesn’t really matter whether
you’ve built the app in Perl or PHP; it -should- func-
tion the same either way.

Perl–PHP A modest perl apps are generally better written; also have better
tools for creating good apps

Perl–PHP modest experience
Perl–PHP A about zero The usability aspect is part of the programmer, not

the language.
Perl–PHP None language does not matter, design does

1 PARTICIPANT COMMENTS 78

Perl–PHP B small The web interface is largely dependent on the devel-
oper to ensure usability; However, the developer API
of an application (if applicable) tends to be some-
thing less widely available (read: not SOAP). This
could be considered a good thing...

Perl–PHP None usability has nothing to do with technology
Perl–PHP A about zero The end-user shouldn’t see which language is being

used
Perl–PHP A small consistency in the way data is described.
Perl–PHP A modest Nice pieces of reusable code let you implement fea-

tures like natural-language date parsing (so the user
can say ”Tomorrow at noon” instead of ”2007-01-
01T12:00:00”). You could do this in PHP, but in Perl
it’s a quick ”cpan install” and you’re done. You can
add more cool features in less time.

Perl–PHP A small Large, extensive test-suites are more common in Perl
than in PHP.

Perl–PHP A modest the handling of the application is independent from
the language.. only depending on the usability design
/ layout

Perl–PHP A about zero the backend doesn’t really define the frontend.
Perl–Ruby A about zero Catalyst applications and Rails applications both

have usability pretty well handled.
Perl–Ruby A modest Everyone i worked with knows a bit Perl and thus ev-

eryone can send in patches. That allows better team
development than with Ruby developers because of
the overhead Ruby has.

Perl–Ruby A small Mature templating systems Easier external JS inte-
gration

Perl–Python B large Python has a cleaner syntax and there are less special
characters (sigils, semicolons, braces, ...) involved.

Perl–Python A about zero The backend should have no influence on the fron-
tend.

Perl–Python A modest TBH, I don’t think this has anything to do with the
language per se.

Perl–Python about zero - There are no differences
PHP–.NET A about zero Zero.
PHP–.NET B modest Depends on the developer & the finished product. A

.NET app is more likely to be better designed. .NET
controls make better apps easier to make.

PHP–.NET A small I think asp.net is a little bit slower but thats the main
difference for the user

PHP–.NET A small Errors that aren’t caught in a .NET app are scary
looking, but other than that it all ends up doing the
same stuff...

PHP–.NET B small Zusammenklickbare Oberflche..
PHP–.NET about zero It depends on the usability implemented in the fron-

tend, noton the language.
PHP–Java EE A about zero I don’t understand why the end user would care or

notice a difference to how the backend is written?
PHP–Java EE A about zero The technology used serverside should be of no con-

cern to the end user. When designing an applica-
tion, good developers know roughly what the en-
duser wants before building it.

1 PARTICIPANT COMMENTS 79

PHP–Java EE about zero void and null
PHP–Java EE A about zero No difference. Differences in usability are not

caused by the implementation language or frame-
work.

PHP–Java EE A about zero Usability is not determined by the programming lan-
guage, this is entirely up to design and interface.
I saw ”More” here because I am more familiar with
PHP.

PHP–Java EE A small End user has completely nothing to do with the pro-
gramming language used. On average PHP program-
mers are more into graphical design than Java pro-
grammers, so PHP programs tend to be a bit clearer.

PHP–Java EE B about zero If there is a difference it is that, reflecting the lower
barriers to entry, its a lot easier to be a PHP developer
than a Java developer; as a result Java programmers
will tend to be (on average) more capable *program-
mers* than the PHP developers.

PHP–Java EE A very large easyier to build compelling user interfaces more flex-
ible to adapt to changes

PHP–Perl about zero This is not a language issue.
PHP–Perl A about zero No difference, because the frontend is build in

(D)HTML.
PHP–Perl A about zero Perl or PHP - both languages typically produce

HTML-Output for web applications, and so I think
the usability does not depend on the backend.

PHP–Perl A about zero the developer is responsible
PHP–Ruby A about zero The end user experience is usually the same
PHP–Ruby B modest Rails enforces good conventions re: routing, valida-

tion, accessibility.
PHP–Ruby B modest PHP sites tend to have less up-front design.
PHP–Ruby B about zero Usability has nothing to do with the backend pro-

gramming language. It has everything to do with the
UI.

PHP–Ruby A about zero There is no difference
PHP–Ruby B modest Easier support for ajax allows the developer to build

more comfortable interfaces.
PHP–Python B about zero The end user should never know what language an

application was developed in. It shouldn’t be appar-
ent at that level.
This survey is asking some pretty terrible questions.

PHP–Python B about zero no difference to enduser...
PHP–Python B small There shouldn’t be a difference for the end user. But

since Python (especially Pylons) is as Ruby on Rails
quite engaged in usability, nice URLs, AJAX, Inter-
operability etc. I give my vote for Python.

PHP–Python about zero end user should not see any difference
PHP–Python B modest Going the extra mile in PHP is often prohibitively

time consuming, such as with clean URLs.
PHP–Python about zero Usability is up to the programmers and design-

ers. The interface isn’t PHP or Python but
HTML/CSS/JS which is where all the hard usability
work is needed.

PHP–Python B about zero It depends on the business requirements and usability
features, but not on the implementation

1 PARTICIPANT COMMENTS 80

PHP–Python B large nothing comparable to django in PHP PHP program-
mers generally much less competent

Ruby–Java EE A about zero depends heavily on the developer, I think
Ruby–Perl A about zero A language is a language – like a gun, conforms to

the will of the programmer. A app that is not usable
for the end user can place its blame on the incompe-
tency of the programmer.

Ruby–PHP A modest REST, AJAX, ActiveRecord validations

Ruby–PHP A small Good Ruby/JavaScript bridge
Python–Java EE A very large IME, the J2EE apps I’ve used were focused on ease

of development rather than ease of use.
Python–Java EE A about zero Not much of a difference. It depends on the interface

that the end user sees.
Python–Java EE A about zero I think this is a ridiculous question.
Python–Perl A about zero I don’t think most end users can tell the difference.
Python–Perl A about zero no difference, it all depends on the designer.
Python–PHP A about zero If it’s easier for the programmer to write reliable

code, it will be more reliable for the user
Python–PHP A about zero not relevant question. all turing complete program-

ming languages can be used to create user experi-
ence. the question is - if it is easy to do so or not.

Python–PHP None this question cant be answered because the end-user
experience doesnt relate to the programming lan-
guage or the framework.

Python–PHP A about zero Django templating is a bit easier to use in most areas
than Smarty templating.
The rest comes down to html/css design, which is not
down to PHP or Python.

Python–PHP about zero The langauge has nothing to do with the thing you
build with it, apart from the same result possibly re-
quiring more time and effort in a less expressive lan-
guage.

Python–PHP A about zero After all the end users just see HTML and CSS...
Python–PHP A about zero Now this question is silly, because the end user

should not see the web framework behind, and the
GUI for any system need not and should not reflect
the behind-the-scenes work.

Python–PHP A about zero Both languages are enough. You can build exactly
the same web app in PHP.

Python–PHP A about zero –
Python–PHP A modest Django handles validation and caching quite effec-

tively, whereas in PHP the developer is often left
needing to implement them himself.

Python–PHP A very large Usability depends on overall site design not on the
language itself.
OTOH, if this is a framework related question then
yes, Django gives a great boost to web app usability.

Python–PHP A modest can’t say. does depend on the developers, although
i think, python-developers tend to have more experi-
ence in what they are doing.

Python–PHP A large less time spent developing, more time to concentrate
on user experience, easier changes

1 PARTICIPANT COMMENTS 81

Python–PHP A about zero Long-running processes on the server and threading
support open up some more possibilities for improv-
ing the user experience. Python generally runs faster
on the server, which can improve user experience,
too. For the most part, you can code just about any
website in either language, and user experience is
largely dependent on application design and frame-
work features.

Python–PHP about zero In web programming is the HTML/CSS/JS to do the
difference, not the server-side.

Python–PHP A about zero It depends on how well you write the application.
Python–Ruby A about zero no difference if programmed right ;-)
Python–Ruby about zero there is no difference - end user experience will de-

pend on design, not on choice of framework
Python–Ruby A about zero Djngo’s look and feel is easier to customize
Python–Ruby B about zero the end user doesn’t care

