
Radicality and the Open Source Development Model

Christopher Oezbek
Freie Universität Berlin

Berlin, Germany
oezbek@inf.fu-berlin.de

Florian Thiel
Freie Universität Berlin

Berlin, Germany
thiel@inf.fu-berlin.de

ABSTRACT
Background: The Open Source development paradigm has ma-
tured sufficiently to give greater importance to questions on how
to change the architecture and development processes of individual
projects.
Objective: We explore the abilities of Open Source projects to per-
form radical vs. incremental changes and suggest ways to improve
them.
Methods: We worked qualitatively and performed first a content
analysis study of thirteen medium-scale Open Source projects. Us-
ing impression from this observational study we conducted an ac-
tive case study with one large-scale Open Source project to achieve
a radical change.
Results: We found evidence that Open Source projects prefer incre-
mental changes for software design and implementation as well as
for the introduction of processes and tools. Our results include pre-
liminary explanations for this preference such as legacy constraints
and structural conservatism.
Limitations: Further work is necessary to validate results widely
and add a quantitative assessment to the results.
Conclusions: We conclude that project leaders and innovators need
to limit the radicality of the means to the goals they want to achieve
in their projects, and give some advice on how to do so.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management; D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement—Restruc-
turing, reverse engineering, and reengineering

General Terms
Management, Human Factors

Keywords
open source process, incremental, evolutionary, radical, innovation
introduction

Submitted to FLOSS Workshop 2010, 1-2 July, Jena, Germany

1. INTRODUCTION
Over the last ten years our understanding of the Open Source

development paradigm has increased greatly. From the licensing
terms conceived by Richard Stallman [24], over the various as-
pects of the development process such as bug-tracking [6], lean
Internet-based communication [27], distributed source code man-
agement [8], role-advancement [11] and software design [1], to the
detailed study of the larger flag-ship Open Source projects such
as the Apache web server [15], the Linux kernel [16], the Mozilla
browser [21] and the OpenBSD operating system [12], the ques-
tion on what constitutes Open Source development and how it is
achieved is understood much better today.

Given this wider understanding of the Open Source paradigm as
arising from loosely-coupled development by globally distributed
volunteers using mostly informal means of coordination, it becomes
more and more interesting to assess the implications of using the
development paradigm from different perspectives. One such per-
spective could for instance be on security achieved in Open Source
production [19] or on sustainable development over longer periods
of time [4]. In this paper, we look at the ability of Open Source
projects to achieve changes to their software product and develop-
ment process. This perspective is of interest when considering that
requirements for a particular software product and the technologies
and processes used in software development are subject to rapid
changes. If Open Source development is meant to be a viable mode
of software production, it must be able to handle such changes just
as it must be able to demonstrate its ability to produce secure soft-
ware.

Our starting point was to ask if Open Source projects can deal
with radical changes to their implementation, architectures and pro-
cesses when prompted by disruptive changes in user needs, soft-
ware landscape or available technology. To explore this question,
we adopted two research methods: Firstly, we used qualitative con-
tent analysis on mailing-list data from thirteen Open Source projects
which we gathered during a previous study on software develop-
ment innovations in Open Source projects [17].1

The regarded projects were medium in size with 3-15 core mem-
bers and were analyzed for their activity in the complete year 2007
for a total of 33,027 e-mails in 9,419 threads to uncover incidents
in which those projects attempted re-implementations of consid-
erable size, other radical code changes or radical changes of their
processes and tool-usage.

Secondly, we performed an Action Research case study [7] with
two separate Open Source projects to explore how our ideas about
incremental and radical change would work in practice.

1Originally this data had been analyzed using Grounded Theory
methodology [25], but for this analysis a less stringent method was
used.



In the following text, issues regarding the software and the soft-
ware development process will be kept mostly separate. Changes
concerning software are commonly referred to using terms such as
refactoring or reimplementation, while changes to the development
process are called innovations.

With this separation in mind, this article proceeds in three steps.
First, discussion is focused on re-implementations using the mailing-
list data and related literature (see Section 2). Second, the case
study of incrementally achieving a radical change to the code is dis-
cussed in Section 3. Third, the focus is shifted on radical changes
to the development process in Section 4. Finally, we conclude with
some results in section 5.

2. SOFTWARE DEVELOPMENT
The initial interest in the question about on degree of radical

changes an Open Source project can achieve was raised by discus-
sions in a sample of thirteen projects studied by one of the authors.

The maintainer of the Bugzilla project questioned the viabil-
ity of continuing development using Perl as the programming lan-
guage [bugzilla:6321]2. In this discussion, which was heated and in
stretches very personal [bugzilla:6394], one core-developer brought
up the decisive reason against such a radical rewrite: He recounted
the story of how Bugzilla had already faced the choice between
rewrite and incremental repair before, when development on ver-
sion 3.0 started and history had shown that the incremental repair
succeeded, while the rewrite failed [bugzilla:6767].

Similar points were raised in three other projects on four other
occasions by leaders or senior members of the respective projects:
(1) During a discussion about the tasks to assign to students for
participating in the Google Summer of Code program3, the main-
tainer of the project ArgoUML praised agile methods and incre-
mental development and cautioned against giving any task to a stu-
dent, which would replace existing code rather than improve on it
to achieve new functionality [argouml:4912]. The maintainer’s pri-
mary argument was that a radical change would likely lead to so
much additional work beyond the student’s engagement to bring
the replacement up to par with the existing solution that the project
could not afford such at the moment. (2) In the project gEDA,
the preference for incremental development was raised twice in the
context of setting course for the future development of the project
as the only viable way to move forward [geda:3004,3979]. The
maintainer of the project mandated that all radical changes must be
broken down in “a set of controlled small step refactoring stages”
[geda:3016]. (3) In the project U-Boot, one developer proposed to
switch to a date-based version naming scheme, because “u-boot has
been around and refined for quite some time now and the changes
have become a lot more incremental” rather than “earth-shattering”
[uboot:31353]. This proposition was initially rejected, but eventu-
ally accepted in 2008 as this realization had spread in the project.

Taking these impressions and looking into the literature on Open
Source development we can find accounts and analyses of several
failures to achieve reimplementation:

Østerlie and Jaccheri give the most thorough account of such a
failure when they describe the trouble the Gentoo distribution un-
derwent when trying to re-implement their package manager Portage
from 2003 to 2006 [18]. With three major attempts to replace the
existing system by a more robust, better structured and faster code

2Citations such as [bugzilla:6321] are hyperlinks to e-mails from
the respective developer mailing-list and are numbered in the order
they were posted to the mailing-list archive Gmane.org.
3The Google Summer of Code program sponsors students to work
on Open Source projects over the summer.

base within three years, yet no success on this goal, they find strong
evidence that Open Source projects should prefer evolutionary over
revolutionary development strategies.

In their paper the authors provide us with four reasons why the
reimplementation failed: (1) There is over-indulgence in discus-
sion which drains scarce development resources akin to a Garbage
Can in organizational decision making [5]. (2) The failure to pro-
vide a prototype version that can serve as a starting point for mo-
bilizing the community or — in the words of Eric S. Raymond —
which provides a “plausible promise” that “convince[s] potential
co-developers that it can be evolved into something really neat in
the foreseeable future” [20]. (3) Competition for resources by (a)
other reimplementation efforts and (b) the day-to-day business of
dealing with bug-reports by users and attracting new developers.
(4) The inability to balance the need for a stable starting point to
achieve a rewrite and the need for progress on mainline develop-
ment.

The authors in their concluding section condense these reasons
down into the following substrate: Reimplementation is “limited by
the installed base” and only possible “through a continuous negoti-
ation with the installed base” about what is possible to say, expect
and do [18]. The failure to re-implement thus is seen primarily as
a failure to provide a transition strategy which takes the realities of
the existing situation into account.

A similar account is given by Conor MacNeill, one of the main-
tainers of the project Ant, in his discussion of the history of Ant [14].
In his cases, there were multiple competing proposals for rewriting
Ant as a version 2.0, none of which eventually succeeded. He ar-
gues that these proposals were typical results of second-system ef-
fect [3], in which the developers became aware of the deficiencies
of their initial implementation and asked for too much in terms of
new features and architectural capabilities. The project was able to
resolve the splintering in different proposals eventually, but even
then it proved impossible for the reimplementation to keep pace
with the development of the trunk and settle the resource compe-
tition. Eventually it was accepted that incremental changes were
more likely to result in the desired architecture and features [14].
Today Ant is at version 1.8.0, having achieved what was originally
planned for version 2.0 [14] and much beyond, paying tribute to
the realization that the way forward was an incremental one and
beneficially so.

Jørgensen, as a third example, surveyed the Open Source oper-
ating system FreeBSD on their development process and found it
to be highly incremental and bug-driven, while the development
of radical new features appeared to be difficult [12]. Two reasons
were uncovered: (1) Radical changes render the code-base of the
project unusable for long times, making intermediate releases fol-
lowing the “release early, release often” [20] principle impossible.4

This lack of releases has two negative consequences: First, the per-
ception of progress in the project by users will decrease, making
the project seemingly less attractive to users, which in turn will
demotivate developers. Second, maintenance effort in the project
will increase, as bugs need to be fixed in two (or more) diverting
code bases, stretching the limited developer resources. (2) In radi-
cal feature development, the number of subtle bugs which emerge
from architectural complexities rises. This makes parallel debug-
ging break down because the number of developers who find the

4This is also a problem for agile development and its emphasizes
of no Big Design Up-Front [13] which might make more radical
changes to the architecture necessary as the project progresses. Us-
ing a comprehensive test-suite as a “safety net” will probably be
the reason why agile development is able to handle bigger changes
with more ease [13].

http://article.gmane.org/gmane.comp.bug-tracking.bugzilla.devel/6321
http://article.gmane.org/gmane.comp.bug-tracking.bugzilla.devel/6394
http://article.gmane.org/gmane.comp.bug-tracking.bugzilla.devel/6767
http://article.gmane.org/gmane.comp.db.axion.devel/4912
http://article.gmane.org/gmane.comp.cad.geda.devel/3004
http://article.gmane.org/gmane.comp.cad.geda.devel/3979
http://article.gmane.org/gmane.comp.cad.geda.devel/3016
http://article.gmane.org/gmane.comp.boot-loaders.u-boot/31353
http://article.gmane.org/gmane.comp.bug-tracking.bugzilla.devel/6321


“shallow” bugs (in Raymond’s terms) is becoming too small [12].
Similar to this last point, Benkler makes a theoretical argument

about the importance of modularity, granularity and cost of integra-
tion as limiting factors in collaborative production [2]. He argues
that for Open Source to be successful in attracting participants, the
independence of individual components must be maximized and
the granularity of tasks for each such module and the cost for in-
tegrating them into a product must be minimized [2]. Radical fea-
tures as described above are hurting granularity and exclude con-
tributors with small scopes for activity [23].

One danger of reliance on evolutionary development is discussed
by Weber based on a path dependence argument [26]: Open Source
development has been able to overcome the path dependent lock-
in caused by proprietary software such as Microsoft Windows, by
providing a cheaper alternative and collecting contributions from
users. But would Open Source projects be able to break their own
paths as caused by evolutionary processes, based for instance on an
inferior architecture without hierarchical control? The projects in
the sample studied for this article seem to answer this question with
yes by assuming a positive out-look of what can be achieved using
evolutionary refactorings of even big concerns.

3. A REMEDY?
Judging by the results presented in section 2, open source soft-

ware projects prefer incremental modification and also have a better
chance of actually integrating changes of that nature. This observa-
tion leads to the natural question of how to turn large-scale, radical
changes into manageable, evolutionary ones.

In a former case study we looked at how the development com-
munity of Open Source projects handles a proposal for an architec-
tural change related to software security that comes with on out-
line describing an incremental, evolutionary path for achieving the
change.

We chose the popular online publishing applications WordPress
and Mambo, because we assessed via code review that the pro-
tections against SQL injections and Cross-Site-Scripting were not
using known-good architectures nor libraries. To be able to benefit
from secure abstraction libraries, the architecture had to be changed
in a way that unified access to the SQL (for protection against SQL
injection) backend and the creation of HTML output (for protection
against Cross-Site Scripting).

To overcome the resistance to a radical change to existing ar-
chitectures, we then devised an incremental update path: Architec-
turally unsound code locations would be annotated using a simple
coding scheme, including a name for the issue and an estimation of
the effort needed to repair this code location. A typical annotation
would look like this:
// @RawSQLUse, trivial_implementation

We assessed that almost all of the annotated code locations could
be fixed independently. By splitting the architectural change into
manageable work packages we hoped that it would appeal to a
group of developers who were interested in getting the security
record improved and who could then pick individual annotated lo-
cations and fix them.

Proposing this innovation—first to the project maintainers and
(after receiving positive feedback) then to the community at large—
to two Open Source projects failed and provided further insight into
the reasons why some types of changes might be difficult in the
Open Source development paradigm. Most importantly, we found
that the presence of independent third-party projects (TP) that build
on another project (P) and which are important for the popularity
of P prevent changes to P if they break compatibility with TP (in
this case, plugins for WordPress). This is especially problematic

if some TP depend directly on the inner workings of P since this
makes all changes of the latter potentially harmful to TP.

Without a well-defined interface, the breadth of the feature-use
by third-party projects was intransparent. We call the concept be-
hind this impediment for (radical) change Legacy Constraint (in-
ability to change the current state because of a dependency) caused
by a Missing Interface (failure to define contracts for use).

We also discovered an apparent Structural Conservatism in one
project, where (even incremental) architectural change was rejected
out of fear that getting used to the new architecture would be too
much of a burden for developers.

A similar Legacy Constraint could be observed in the above-
mentioned discussion in the project Bugzilla: One mailing-list par-
ticipant reminded developers that many companies were selling
customized versions of Bugzilla to customers with specific needs.
These customized and non-public versions were reliant on incre-
mental updates, which can be merged painlessly, and would likely
fork the project if radical changes occurred [bugzilla:6354].

After so many negative examples of re-writes failing, one exam-
ple should be given in which a rewrite was successful, yet only
after a substantial amount of time had passed. In the example
given above, the maintainer of the ArgoUML project had cautioned
against assigning tasks in the Google Summer of Code to students,
which aim at rewriting existing code. Yet, this advice was not fol-
lowed by the core-developer who still offered to mentor the task.
When a student was found to work on this task [argouml:4987], the
outcome predicted by the maintainer occurred: The student was
able to rewrite the existing code, but failed to get it integrated into
the trunk, because legacy constraints were caused by the need to
support users who were still using data based on the old implemen-
tation [argouml:5636] [argouml:7492]. From the time the Summer
of Code ended in August 2007, almost 18 months passed before the
new implementation was announced in a release [argouml:7905,
8209].

Why did this reimplementation eventually succeed? First, the
core-developer who mentored the change put sufficient energy into
seeing the change be integrated [argouml:5686,7911] and thus de-
feated the primary argument of the maintainer who had assumed
a lack of resources. Second, an incremental update-path was cho-
sen in which the new implementation of the feature was integrated
along-side the existing one [argouml:5686] for bleeding edge users
[argouml:6254]. Third, there was absolutely no concurrent devel-
opment on the legacy feature [argouml:5507,4903], leaving it en-
tirely broken [argouml:6955]. It is easy to argue that parallel de-
velopment on the existing feature could likely have out-paced the
reimplementation in a similar way that it had caused the reimple-
mentation in Ant and Portage to fail. Fourth, the Google Sum-
mer of Code paid the student to work intensively on the task for
three months, thus raising the student’s possible task granularity
to a level where the reimplementation could be achieved. Fifth and
last, in stark contrast to the above case with WordPress and Mambo,
sufficient interface contracts were in place so that the Legacy Con-
straints were limited to the need to support the old file format.

4. RADICAL INNOVATION
As a last step in this exploration on radical changes in Open

Source projects we want to now look at changes to the develop-
ment process, to used tools and methods. Such changes to the way
software is developed — in contrast to changes to the product —
are interesting because they might affect the capabilities of Open
Source projects to produce software in an efficient and high-quality
way. For instance, one could consider the introduction of a new
bug-tracker into a project which can be easier understood by non-

http://article.gmane.org/gmane.comp.bug-tracking.bugzilla.devel/6354
http://article.gmane.org/gmane.comp.db.axion.devel/4987
http://article.gmane.org/gmane.comp.db.axion.devel/5636
http://article.gmane.org/gmane.comp.db.axion.devel/7492
http://article.gmane.org/gmane.comp.db.axion.devel/7905
http://article.gmane.org/gmane.comp.db.axion.devel/8209
http://article.gmane.org/gmane.comp.db.axion.devel/5686,7911
http://article.gmane.org/gmane.comp.db.axion.devel/5686
http://article.gmane.org/gmane.comp.db.axion.devel/6254
http://article.gmane.org/gmane.comp.db.axion.devel/5507,4903
http://article.gmane.org/gmane.comp.db.axion.devel/6955


technical users. This may raise the amount of feedback about us-
ability issues and technical problems which are easily overcome by
power-users but a large problem for non-technical users.

To approach this aspect of change capability in Open Source
projects, we want to first discuss what radicality means in the con-
text of innovation introductions. The first and most obvious defin-
ing aspect of a radical innovation introduction is the degree to which
it affects changes in the project. Such changes might have an effect
on:

(1) Social Structure: Consider as an example the innovation of
self introductions, which was established in the project Bugzilla. In
this innovation, new developers joining the mailing-list are asked
to introduce themselves by sharing some social and occupational
facts about themselves [bugzilla:6549]. This innovation is radical
in the social dimension, because people are asked to reveal hitherto
private information about themselves [bugzilla:6554].

(2) Suddenness: The suddenness by which a change is intro-
duced in a project affects the perceived radicality of the introduc-
tion. If large changes are spread out over a long time, they are
likely to be felt as incremental and evolutionary. Combining both
aspects, one could say that radicality is the first derivative of change
over time.

(3) and (4) Scope and Effort: The concept of radicality seems to
have surprisingly only minor conceptual associations to the per-
ceived scope of the innovation, i.e. in particular the question to
whom and in which situations it might apply, and to the amount
of effort associated with it [xfce:13027]. For instance, in the case
of the self-introductions at Bugzilla, the criticized radicality of the
innovation in social matters touching privacy [bugzilla:6554] was
limited by making participation voluntary [bugzilla:6549] and giv-
ing participants control about the extent to which they want to share
“some information about themselves” [bugzilla:6555]. Effort was
similarly small, consisting in most cases of only a single e-mail to
be written. This explains why over the observed months after the
innovation was introduced, 16 participants introduced themselves
to the list.

A good introductory episode to explore the concept of radical-
ity in conjunction with innovation introductions can be found in
the project GRUB. The project had long suffered from the lack of
a working bug-tracker and project members were repeatedly dis-
cussing remedies. Over the course of the debate, a total of five
proposals were made which can be ranked by increasing radicality:
(1) Not radical at all is the proposal to stick to the status-quo of not
using a bug-tracker and keeping the existing flow of bug-reports be-
ing sent to the maintainer or the mailing-list [grub:3934]. (2) The
team members could restart using the existing bug-tracker [grub:
4047], which was at the time of the debate filled with bugs for a
legacy version of the software product. In this option the existing
bugs would have to be confirmed for the current version or closed.
(3) The project considered altering the existing bug-tracking soft-
ware to distinguish current and legacy bugs and thus avoid the work
to confirm or reject the legacy bugs [grub:3391]. (4) Some mem-
bers suggested moving to an entirely novel bug-tracking system
such as Bugzilla [grub:3902], which already included the capabil-
ity of managing several software versions. This option would pro-
vide additional features over the existing bug-tracker. (5) It was
suggested to use an integrated bug-tracker on top of a new version
control system [grub:4082,3934]. Systems in this later category,
such as Trac5, simplify bug-tracking procedures by giving devel-
opers the ability to control the bug-tracker via commit-messages
and enhance the bug-tracker using links to version control.

5http://trac.edgewall.org/

Considering the radicality of the propositions, the first one is of
course without any radicality as it maintains the status quo. The
second one can be assessed as modifying only data of the project;
the third is modifying infrastructure instead by adapting the exist-
ing bug-tracker; the fourth is modifying infrastructure and data (as
a migration of data is needed into the new system) and the last is
modifying both data and infrastructure of the bug-tracking data and
also data and infrastructure of the source code management system.
While all proposals are favored at one or another point in time dur-
ing the discussion, it is the least radical proposal which achieves
any change that is ultimately executed by a core developer [grub:
4093].

Unfortunately, the discussion in the Grub project, does not give
much an indication of why deviations in certain dimensions are
perceived as more radical than those in others. For instance why is
modifying data perceived as less radical than the change to the soft-
ware? Only the reasons for favoring the existing bug-tracker over
a new one (with or without SCM integration) [grub:3273] and a
rationale for not using the bug-tracker at all [grub:3934] are exten-
sively explained by the maintainer. In the first case of using a new
bug-tracker, the maintainer argues that the burden of maintaining
a server over the years is unreasonable in comparison to using an
existing hosting platform [grub:3273], an argument which connects
radicality to long-term effort required. For the second case of not
using any bug-tracker at all, the maintainer argues that bug-trackers
are unsuitable for discussion in comparison to e-mail and provide
no advantage over a wiki in terms of taking note of important tasks
to be done [grub:3934]. This rejection is thus not connected to rad-
icality but rather to the perceived capability and utility of solutions
and in both cases rather a questionable judgment.6

Nevertheless, we propose the following hypothesis:

Open Source projects will prefer innovations that in-
crementally improve on the existing situation in pref-
erence to radical innovations that cause major disrup-
tions.

Such a preference of course does not mean that an incremental
innovation is automatically likely to succeed or an radical innova-
tion automatically rejected. In the project Bugzilla for instance,
the maintainer proposed a highly incremental change to the devel-
opment process in which developers could additionally and volun-
tarily ask for a design review before starting to spend time imple-
menting a solution which might be rejected later on due to design
issues [bugzilla:6943]. This introduction fails, despite being timid
in the consequences it would have had and its potential to save a lot
of time in cases where a solution is later rejected.

Finally, we want to inspect the innovation introductions which
seemed most radical at first and in which projects switched from
a centralized to a decentralized source code management system
such as Git. Changes to the version control system are radical at
first sight because they invalidate tool setup for all participants,
potentially make new processes necessary, affect hosted software,
render long-honed skills and knowledge partly obsolete, require
changes to existing data and in the case of distributed version con-
trol can even affect the power relationships between project mem-
bers. The last point needs some elaboration: Distributed version
control systems are potentially disruptive to the power balance in
the Open Source work-flow because every interested person can ob-
tain an identical copy of the project repository and potentially sup-
plant the existing flow of contributions coalescing into the project’s
6It is both commonly suggested to avoid discussion in bug track-
ers [9] and well-known that Wikis are not very well suited for man-
aging structured information [22].

http://article.gmane.org/gmane.comp.bug-tracking.bugzilla.devel/6549
http://article.gmane.org/gmane.comp.bug-tracking.bugzilla.devel/6554
http://article.gmane.org/gmane.comp.desktop.xfce.devel.version4/13027
http://article.gmane.org/gmane.comp.bug-tracking.bugzilla.devel/6554
http://article.gmane.org/gmane.comp.bug-tracking.bugzilla.devel/6549
http://article.gmane.org/gmane.comp.bug-tracking.bugzilla.devel/6555
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/3934
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/4047
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/4047
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/3391
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/3902
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/4082
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/3934
http://trac.edgewall.org/
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/4093
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/4093
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/3273
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/3934
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/3273
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/3934
http://article.gmane.org/gmane.comp.bug-tracking.bugzilla.devel/6943


software by social convention alone [8]. Structural power relation-
ship as known from centralized version control, in which commit
and meta-commit rights are handed out by the project-core selec-
tively [10], can be invalidated and replaced by reputation and trust
between all interested parties.

How could the projects which introduced the distributed version
control system Git achieve such a radical change? The following
reasons stand out:

• Execution of the migration is performed by the project lead-
ership in person in all projects [rox:9371, geda:4322, kvm:
1399]. By executing the data migration, clean-up and server
setup within very short amount of times (within one day from
decision to finished execution in ROX, sixteen days in gEDA,
and without any prior announcement of intent in KVM), the
projects are quickly confronted with a new status quo.

• The adoption of the technology and adaptation of auxiliary
processes and tools on the other hand is spread-out consid-
erably over several months. For instance contributions were
still received using the old system initially [rox:9404], tools
were converted only as needed in the context of the next re-
lease [rox:9543,9434] and processes were slowly adjusted to
support the new realities [uboot:25853].

• Several projects used SCM adapters to enable the use of a
new technology prior to the migration [geda:2893] and use
of a corresponding old technology after the fact [geda:4322].
Spreading out opportunities for learning and at the same time
preserving the ability to contribute for all participants in this
manner can reduce much of the radicality associated with
an sudden change. It seems that some developers find their
personal migration not difficult and quickly manage it [grub:
4134, geda:9424], but others struggle [geda:4464,4457].

• All projects that performed the switch in 2007 performed it
partially on central components first and then only gradually
finished the migration of less important parts of the project.
This often duplicated maintenance effort but made the execu-
tion of the switch much more manageable for the maintainer.

• Not all projects switched to a distributed work-flow of pulling
changes, but some retained centralized operation in which
commit-rights are used to access one official repository [geda:
4335].

In particular, adapters and partial migrations sufficiently stretch
out the introduction over time and limit their scope to take off the
edge of these introductions. Furthermore, the effort required to
“make the switch” only needs to be invested once in this case. The
ongoing cost for the project members is zero unless the switch to
a new version control system would make development processes
more complicated. In addition to reducing radicality in such ways,
the innovators needed in particular decisiveness (to overcome dis-
cussion) and strong capabilities in execution (to migrate data and
set-up systems) to be successful.

5. CONCLUSION AND LIMITATIONS
In summary, this article has shown evidence for the preference of

incremental change processes in Open Source projects and hypoth-
esized a similar preference in the context of innovation introduc-
tions. It can be argued that the volunteer nature of Open Source par-
ticipation limits the capabilities of a project to enact radical changes
both in design, code, process and tools.

The discussed possibilities for reducing the radicality of code
changes (e.g. change annotations) and for the radicality of inno-
vation introductions (e.g. adapters) appear to appeal to projects’
preferences for incremental solutions. Further studies are required
to establish even clearer criteria for radicality and to validate the
applicability of these criteria to Open Source development projects
in general.

6. ACKNOWLEDGMENTS
We would like to thank Martin Gruhn, Lutz Prechelt and Stephan

Salinger for advice and discussion, and the participants in the Open
Source projects we studied for this article, in particular from Word-
Press and Mambo, who engaged with us in implementation of the
proposed remedy.

7. REFERENCES
[1] F. Barcellini, F. Détienne, J.-M. Burkhardt, and W. Sack. A

socio-cognitive analysis of online design discussions in an
Open Source Software community. Interacting with
Computers, 20(1):141–165, 2008.

[2] Y. Benkler. Coase’s penguin, or, Linux and The Nature of the
Firm. Yale Law Review, 112(3):369–446, Dec. 2002.

[3] F. P. Brooks. The mythical man-month: essays on software
engineering. Addison-Wesley, Reading, MA, 1975.

[4] M. Ciolkowski and M. Soto. Towards a comprehensive
approach for assessing open source projects. In Software
Process and Product Measurement, volume 5338/2008 of
Lecture Notes in Computer Science, pages 316–330.
Springer, Berlin / Heidelberg, 2008.

[5] M. D. Cohen, J. G. March, and J. P. Olsen. A garbage can
model of organizational choice. Administrative Science
Quarterly, 17(1):1–25, 1972.

[6] K. Crowston and B. Scozzi. Bug fixing practices within
Free/Libre Open Source software development teams.
Journal of Database Management, 19(2):1–30, 2008.

[7] R. Davison, M. G. Martinsons, and N. Kock. Principles of
canonical action research. Information Systems Journal,
14(1):65–86, Jan. 2004.

[8] B. de Alwis and J. Sillito. Why are software projects moving
from centralized to decentralized version control systems? In
CHASE ’09: Proceedings of the 2009 ICSE Workshop on
Cooperative and Human Aspects on Software Engineering,
pages 36–39, Washington, DC, USA, 2009. IEEE Computer
Society.

[9] K. Fogel. Producing Open Source Software: How to Run a
Successful Free Software Project. O’Reilly, Sebastopol, CA,
USA, 1st edition, Oct. 2005.

[10] T. J. Halloran and W. L. Scherlis. High quality and open
source software practices. In J. Feller, B. Fitzgerald,
F. Hecker, S. Hissam, K. Lakhani, and A. van der Hoek,
editors, Meeting Challenges and Surviving Success: The 2nd
Workshop on Open Source Software Engineering, pages 26 –
28. ACM, 2002.

[11] C. Jensen and W. Scacchi. Role migration and advancement
processes in OSSD projects: A comparative case study. In
ICSE ’07: Proceedings of the 29th International Conference
on Software Engineering, pages 364–374, Washington, DC,
USA, 2007. IEEE Computer Society.

[12] N. Jørgensen. Putting it all in the trunk: Incremental software
development in the FreeBSD Open Source project.
Information Systems Journal, 11(4):321–336, 2001.

http://article.gmane.org/gmane.comp.desktop.rox.devel/9371
http://article.gmane.org/gmane.comp.cad.geda.devel/4322
http://article.gmane.org/gmane.comp.emulators.kvm.devel/1399
http://article.gmane.org/gmane.comp.emulators.kvm.devel/1399
http://article.gmane.org/gmane.comp.desktop.rox.devel/9404
http://article.gmane.org/gmane.comp.desktop.rox.devel/9543
http://article.gmane.org/gmane.comp.desktop.rox.devel/9434
http://article.gmane.org/gmane.comp.boot-loaders.u-boot/25853
http://article.gmane.org/gmane.comp.cad.geda.devel/2893
http://article.gmane.org/gmane.comp.cad.geda.devel/4322
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/4134
http://article.gmane.org/gmane.comp.boot-loaders.grub.devel/4134
http://article.gmane.org/gmane.comp.cad.geda.devel/9424
http://article.gmane.org/gmane.comp.cad.geda.devel/4464
http://article.gmane.org/gmane.comp.cad.geda.devel/4457
http://article.gmane.org/gmane.comp.cad.geda.devel/4335
http://article.gmane.org/gmane.comp.cad.geda.devel/4335


[13] M. Lindvall, V. R. Basili, B. W. Boehm, P. Costa, K. C.
Dangle, F. Shull, R. T. Tvedt, L. A. Williams, and M. V.
Zelkowitz. Empirical findings in agile methods. In D. Wells
and L. A. Williams, editors, XP/Agile Universe, volume 2418
of Lecture Notes in Computer Science, pages 197–207.
Springer, 2002.

[14] C. MacNeill. The early history of ant development. Personal
Blog. http://codefeed.com/blog/?p=98. Last visited
2010-03-01, Aug. 2005.

[15] A. Mockus, R. T. Fielding, and J. Herbsleb. A case study of
Open Source software development: the Apache server. In
ICSE ’00: Proceedings of the 22nd international conference
on Software engineering, pages 263–272, New York, NY,
USA, 2000. ACM.

[16] J. Y. Moon and L. Sproull. Essence of distributed work: The
case of the Linux kernel. First Monday, 5(11), Nov. 2000.

[17] C. Oezbek. Introducing innovations into Open Source
projects. Doctoral thesis, Freie Universität Berlin, to appear
in 2010.

[18] T. Østerlie and L. Jaccheri. Balancing technological and
community interest: The case of changing a large Open
Source Software system. In T. Tiainen, H. Isomäki,
M. Korpela, and A. Mursu, editors, Proc. 30th Information
Systems Research Conference (IRIS’30), number D-2007-9
in D-Net Publications, pages 66–80, Finland, Aug. 2007.
Department of Computer Sciences, University of Tampere.

[19] C. Payne. On the security of Open Source software.
Information Systems Journal, 12(1):61–78, Feb. 2002.

[20] E. S. Raymond. The Cathedral and the Bazaar. O’Reilly &
Associates, Sebastopol, CA, USA, 1999.

[21] C. R. Reis and R. P. de Mattos Fortes. An overview of the
software engineering process and tools in the Mozilla
project. In C. Gacek and B. Arief, editors, Workshop on
Open Source Software Development, pages 155–175,
Newcastle, United Kingdom, Feb. 2002. University of
Newcastle upon Tyne.

[22] R. Schuster. Effizienzsteigerung freier Softwareprojekte
durch Informationsmanagement. Studienarbeit, Freie
Universität Berlin, Sept. 2005.

[23] C. M. Schweik, R. English, and S. Haire. Open Source
software collaboration: Foundational concepts and an
empirical analysis. National Center for Digital Government
Working Paper Series 2, University of Massachusetts
Amherst, 2008.

[24] R. M. Stallman. Free Software, Free Society: Selected Essays
of Richard M. Stallman. GNU Press, Oct. 2002. With an
introduction by Lawrence Lessig.

[25] A. L. Strauss and J. M. Corbin. Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory. SAGE, 2nd edition, Sept. 1998.

[26] S. Weber. The political economy of Open Source software.
UCAIS Berkeley Roundtable on the International Economy,
Working Paper Series 1011, UCAIS Berkeley Roundtable on
the International Economy, UC Berkeley, June 2000.

[27] Y. Yamauchi, M. Yokozawa, T. Shinohara, and T. Ishida.
Collaboration with lean media: how open-source software
succeeds. In CSCW ’00: Proceedings of the 2000 ACM
conference on Computer supported cooperative work, pages
329–338, New York, NY, USA, 2000. ACM.

http://codefeed.com/blog/?p=98

	Introduction
	Software Development
	A remedy?
	Radical Innovation
	Conclusion and limitations
	Acknowledgments
	References

