
* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novática, journal of the Spanish CEPIS society ATI (Asociación de Técnicos de In-
formática) at <http://www.ati.es/novatica/>.

UPGRADE is the European Journal for the Infor-
matics Professional, published bimonthly

at <http://www.upgrade-cepis.org/>

Publisher
UPGRADE is published on behalf of CEPIS (Council of European Professional
Informatics Societies, <http://www.cepis.org/>) by Novática <http://www.ati.
es/novatica/>, journal of the Spanish CEPIS society ATI (Asociación de Técnicos
de Informática, <http://www.ati.es/>)

UPGRADE monographs are also published in Spanish (full version printed;
summary, abstracts and some articles online) by Novática

UPGRADE was created in October 2000 by CEPIS and was first published by
Novática and INFORMATIK/INFORMATIQUE, bimonthly journal of SVI/FSI
(Swiss Federation of Professional Informatics Societies, <http://www.svifsi.
ch/>)

UPGRADE is the anchor point for UPENET (UPGRADE European NETwork),
the network of CEPIS member societies’ publications, that currently includes
the following ones:
• Informatik-Spektrum, journal published by Springer Verlag on behalf of the
CEPIS societies GI, Germany, and SI, Switzerland

• ITNOW, magazine published by Oxford University Press on behalf of the
British CEPIS society BCS

• Mondo Digitale, digital journal from the Italian CEPIS society AICA
• Novática, journal from the Spanish CEPIS society ATI
• OCG Journal, journal from the Austrian CEPIS society OCG
• Pliroforiki, journal from the Cyprus CEPIS society CCS
• Pro Dialog, journal from the Polish CEPIS society PTI-PIPS

Editorial Team
Chief Editor: Llorenç Pagés-Casas, Spain, <pages@ati.es>
Associate Editors:
François Louis Nicolet, Switzerland, <nicolet@acm.org>
Roberto Carniel, Italy, <carniel@dgt.uniud.it>
Zakaria Maamar, Arab Emirates, <Zakaria. Maamar@ zu.ac.ae>
Soraya Kouadri Mostéfaoui, Switzerland,
<soraya.kouadrimostefaoui @gmail.com>
Rafael Fernández Calvo, Spain, <rfcalvo@ati.es>

Editorial Board
Prof. Wolffried Stucky, CEPIS Former President
Prof. Nello Scarabottolo, CEPIS Vice President
Fernando Piera Gómez and Llorenç Pagés-Casas, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

UPENET Advisory Board
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Llorenç Pagés-Casas (Novática, Spain)
Veith Risak (OCG Journal, Austria)
Panicos Masouras (Pliroforiki, Cyprus)
Andrzej Marciniak (Pro Dialog, Poland)
Rafael Fernández Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur Cook, Tracey
Darch, Laura Davies, Nick Dunn, Rodney Fennemore, Hilary Green, Roger
Harris, Jim Holder, Pat Moody, Brian Robson

Cover page designed by Concha Arias Pérez
"Exit of Room 101" / © ATI 2007
Layout Design: François Louis Nicolet
Composition: Jorge Llácer-Gil de Ramales

Editorial correspondence: Llorenç Pagés-Casas <pages@ati.es>
Advertising correspondence: <novatica@ati.es>

UPGRADE Newslist available at
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist>

Copyright
© Novática 2007 (for the monograph)
© CEPIS 2007 (for the sections UPENET and CEPIS News)
All rights reserved under otherwise stated. Abstracting is permitted with credit
to the source. For copying, reprint, or republication permission, contact the
Editorial Team

The opinions expressed by the authors are their exclusive responsibility

ISSN 1684-5285

Monograph of next issue (February 2008)
"ICT Governance"

(The full schedule of UPGRADE is available at our website)

 Vol. VIIII, issue No. 6, December 2007

2	 Presentation.	 Free	Software:	 Scientific	 and	Technological	 Innova-
tion — Andrea Capiluppi, José-Rafael Rodríguez-Galván, Manuel
Palomo-Duarte, and Israel Herraiz-Tabernero

5 The Need for Libre Software Research in Europe — Israel Herraiz-
Tabernero, José-Rafael Rodríguez-Galván, and Manuel Palomo-
Duarte

8 From the Cathedral to the Bazaar: An Empirical Study of the Lifecycle
of Volunteer Community Projects — Andrea Capiluppi and Martin
Michlmayr

18 The Commons as New Economy and what this Means for Research
— Richard P. Gabriel

22 Libre Software for Research — Israel Herraiz-Tabernero, Juan-José
Amor-Iglesias, and Álvaro del Castillo-San Félix

27 Technological Innovation in Mobile Communications Developed with
Free Software: Campus Ubicuo — Javier Carmona-Murillo, José-Luis
González-Sánchez, and Manuel Castro-Ruiz

34	 The	Case	of	the	University	of	Cádiz’s	Free	Software	Office	Among	
Spanish Universities — José-Rafael Rodríguez-Galván, Manuel
Palomo-Duarte, Juan-Carlos González-Cerezo, Gerardo Aburruzaga-
García, Antonio García-Domínguez, and Alejandro Álvarez-Ayllón

40 On Understanding how to Introduce an Innovation to an Open Source
Project — Christopher Oezbek and Lutz Prechelt

45 3D Distributed Rendering and Optimization using Free Software —
 Carlos González-Morcillo, Gerhard Weiss, David Vallejo-Fernández,

Luis Jiménez-Linares, and Javier Albusac-Jiménez

54 Identifying Success and Tragedy of FLOSS Commons: A Prelimina-
ry	Classification	of	Sourceforge.net	Projects — Robert English and
Charles M. Schweik

60 From Novatica (ATI, Spain)
 ICT Security
 Security of Electronic Passports — Václav Matyáš, Zdeněk Říha, and

Petr Švéda

UPENET (UPGRADE European NETwork)

Monograph: Free Software: Research and Development
(published jointly with Novática*)
Guest Editors: Manuel Palomo-Duarte, José-Rafael Rodríguez-Galván, Israel Herraiz-Tabernero,
and Andrea Capiluppi

40 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

Keywords: Empirical Methods, Innovation Adoption,
Open Source, Software Engineering Invention.

1 Introduction
Most software engineering research produces technolo-

gy such as tools, methods, or processes to be applied during
the construction of software systems. It has been gradually
understood that the empirical evaluation of such inventions
is necessary to judge research progress and generate accept-
ance outside of academia [25][28].

There are two classic scenarios for how to conduct such
empirical evaluations: First, there is the laboratory trial, of-
ten in the form of controlled experiments with student sub-
jects. Such studies are difficult to set up in such a way that
they are sufficiently impartial and realistic (in particular in
their choice of task) to be credible—but credibility is what
counts [19]. Controlled experiments with professional sub-
jects are harder to set up, but often hardly more credible.
Second, there is the industry trial, commonly performed as
a case study in cooperation with a company. While such
studies are certainly realistic, they have problems too: Cost
and risk considerations make it hard to find industrial part-
ners, non-disclosure constraints make it hard to fully de-
scribe the setting and results, and company idiosyncracies
often make it hard to understand generalizability.

For many (though not all) evaluation purposes, some
researchers consider observational studies in the context of
Open Source Software (OSS) projects to be a third approach
and one with almost ideal properties in many respects: Cred-
ibility can often be high, they are easy to observe, publica-
tion constraints hardly exist, risk considerations are more
relaxed, and corporate cost considerations are replaced by
(mere) group willingness hurdles.

Unfortunately, OSS projects are not interested in stud-
ies, they are interested in developing software. So, perform-

On Understanding how to Introduce an Innovation to an Open
Source Project

Christopher Oezbek and Lutz Prechelt

This article was previously published in the Proceedings of the First International Workshop on Emerging Trends in FLOSS
Research and Development. FLOSS ‘07. ISBN: 0-7695-2961-5. Digital Object Identifier: 10.1109/FLOSS.2007.11. It is
reproduced with kind permission of IEEE and the author.

We propose to research the introduction of Software Engineering inventions into Open Source projects (1) to help re-
searchers with creating opportunities for evaluating their tools, methods and process designs in real-life settings, and (2)
to help Open Source projects with improving their processes based on state-of-the-art knowledge. Such research will go
beyond diffusion and dissemination of inventions to active introduction, and thus increase the chances of adoption. We
will discuss the research approach, our preliminary insights, limitations of the approach, and why researchers interested
in evaluating their own inventions should be interested in this research.

Authors

Christopher Oezbek received the Vordiplom in informatics from
Universität Karlsruhe (2002), the MS in computer science from
Georgia Institute of Technology in 2004 and is currently pursuing
his PhD at Freie Universität Berlin. His research interests include
Open Source development processes, source code documentation
and API usability. He is a member of ACM and GI (Gesellschaft
für Informatik). <oezbek@inf.fu-berlin.de>.

Lutz Prechelt is full professor of Informatics at the Freie Univer-
sität Berlin since 2003. Until 2000, he worked as senior researcher
at the School of Informatics, University of Karlsruhe, where he
also received his Ph.D. in Informatics in 1995. In between, he
was with abaXX Technology, Stuttgart, first as the head of various
departments, then as Chief Technology Officer. His research in-
terests include software engineering (using an empirical research
approach), measurement and benchmarking issues, and research
methodology. His current research topics revolve around open
source software development, agile methods, and web develop-
ment platforms. Prechelt is a member of IEEE CS, ACM, and
GI (Gesellschaft für Informatik) and is the editor of the Forum
for Negative Results (FNR) within the Journal of Universal
Computer Science (J.UCS). <prechelt@inf.fu-berlin.de>.

ing a study first requires to make the project adopt the in-
vention in its normal work. However, as anybody knows
who has ever tried to get any group of people to adopt an
invention (that is, to introduce the invention as an innova-
tion), this is rather difficult. So, rather than letting a long
row of researchers individually attempt, fail, attempt, fail,
get frustrated, and give up, we suggest to make the adop-
tion process itself the subject of research in order to provide
these researchers with a proven methodology for introduc-
ing an invention to an OSS project.

Here the term introduction is used to signify the planned
initiation of an adoption process within an organization or

UPGRADE Vol. VIII, No. 6, December 2007 41© Novática

Free Software: Research and Development

social system. Adoption then can be seen as the turning point
where inventions become innovations that are actively used
by individuals [7]. Introduction contrasts well with diffu-
sion, which carries more passive connotations, and dissemi-
nation, which does not go beyond distributing information
or resources related to an invention.

From the researcher’s point of view, combining active
introduction with OSS projects has several advantages. In
contrast to industry settings, the public visibility of most of
the working process, artifacts, and communication as well
as the openness for outsiders to contribute to these projects
allow the researcher to both capture and influence the
project to a much larger degree. In contrast to dissemination
and diffusion, the researcher can (1) observe the adoption
and use of the invention as it happens rather than perform-
ing post-hoc analysis, (2) tailor the invention to the particu-
larities of the project and repair problems that often plague
early versions of inventions on the spot, and (3) choose the
project such as to maximize the insights gained.

From the point of view of the OSS community, such re-
search increases their chances for benefitting from software
engineering improvements, given the fact that conventional
approaches to managing software process improvement
such as CMMI [5], even approaches specialized to OSS [8],
do not explain how the actual introduction of the improve-
ments should be conducted, and traditional key success
mechanisms such as management commitment and support
[24] are unlikely to work.

The rest of the paper presents our research approach for
gaining insights into the introduction of inventions in OSS
projects as well as our preliminary results for the following
research questions:

1. How to select target projects suitable for introducing
software engineering inventions.

2. How to approach a project to offer an invention.
3. How to interpret reactions and make strategic and tac-

tical decisions based on them in the course of the adoption
process.

4. How to phase out involvement and exit the project.
5. How to obtain evaluation result data during and after

the introduction.

2 Research Approach
To develop an understanding of the introduction of in-

ventions, we will perform a series of iterative case-studies
[27] using action-research methodology [2], i.e., a circu-
lar, collaborative process of planning, acting and reflecting.
These studies will be performed with three different inven-
tions of different type and with a variety of different Open
Source projects. We will not introduce several process im-
provements in the same project [9] in order to avoid syner-
gies or cannibalization between improvements [11].

Inside each case we will gather qualitative data on ac-
tion-reaction relationships and recurring patterns (using
Grounded Theory data analysis methodology [6]) to obtain

an understanding of the key interactions during an in-
troduction effort.

We will work on minimizing risk toward the project and
on protecting the autonomy of the subjects [4] by creating
an atmosphere of collaboration, involvement and partici-
pation between project and researcher, and protecting pri-
vacy and confidentiality [3][13]. Even though Open Source
projects are very robust against negative influence from the
outside, similar precautions must be taken by researchers
who evaluate their inventions in projects to ensure proper
ethical conduct.

3 How to Choose a Host Project
Choosing an appropriate Open Source project when

evaluating a software engineering invention is important to
establish a case that is (a) typical enough to generalize to
other projects, (b) suitable for the given invention, and (c)
has potential for interesting interaction regarding the intro-
duction.

In particular, the project should be Open Source not only
by license but also by development style: The project mem-
bers need to be distributed rather than co-located at a single
company site, communication must be public and preferably
archived, it must be possible for external newcomers to join
the project, and basic processes and tools (such as release
process, issue tracker and version repository) should be es-
tablished. The distribution, observability, and openness en-
sure that the researcher can study the use of the invention at
all, while the presence of basic processes and tools indicates
that the project probably fulfils basic professional software
engineering standards so that study results may generalize
to other software development projects. Fortunately, with
the existence of project hosts such as SourceForge these
tools and processes are now standard.

Regarding the size of the project a viable middle ground
must be found between too small and too large. Small
projects with less than three to four developers usually have
little interaction, communication overhead, tool usage, and
process inefficiencies or are still in the process of establish-
ing basic process patterns. They are thus rather unsuitable
for all but the most basic software engineering inventions.
Large projects with more than fifty developers on the other
hand have quite the opposite problem: They usually have
well established processes, so that the “not invented here”-
syndrome, explicit opposition, tedious consensus finding,
low perceived benefit against the established processes, and
high communication overhead might make it impossible for
a single researcher to be heard. Accordingly, we suggested
to chose a middle-sized project: five to fifty developers of
whom at least five have been active during the last few
months.

As a last project property, we believe it useful to target
a project that has shown an affinity for change (or at least
no opposition to it) in the past. In many cases this property
will correlate with the openness of the project to accept new
members, but it is still beneficial to study the history of in-

42 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

thus can be supported by the researcher by talking to indi-
vidual developers. As an example of the third kind of inno-
vation-decision and its implications for how to approach the
project, consider the introduction of a feature freeze1 two
weeks prior to a release. This decision can be driven by the
project leaders and maintainers in an authoritative fashion
and supported technically by creating a local branch for the
release in the version control system. Individual members
can undermine the decision, but they need not take specific
action to make it a reality. Thus, the researcher should com-
municate directly to the project leaders.

The second important property of the invention that af-
fects the approach is the benefit structure of the invention
offered by the researcher, i.e., the return on investment or
relative advantage [22] for each project member in con-
trast to the return on investment for the whole project. The
documentation of the project, for instance, does not provide
a high return on time spent for the experienced developer
who writes it, yet the information is highly useful for new
developers (where they might provide large returns for the
project). Inventors often understand the increasing returns
[1] promised by their invention but tend to overlook that (a)
individual project members driving the introduction might
not benefit from the improvement sufficiently to compen-
sate for the effort they spend on it and (b) the benefits might
be hard to measure or only visible in the long-run.

We hypothesize that the researcher should start the ap-
proach with those project members who can gain imme-
diate benefits. Instead of asking other project members to
perform tasks with a negative bottom line in terms of their
personal benefit, those tasks should be performed by the re-
searcher initially. Later on, when the benefits become vis-
ible and affect individuals in the project, the researcher will
have a much better chance to involve project members and
withdraw from these activities.

5 How to Interpret Reactions and Make
Strategic and Tactical Decisions

When introducing inventions and novelties of any kind
into a social system, the researcher should expect rejection,
adoption, and reinvention as ultimate reactions to occur
both on the individual and group level [22].

Rejection is the decision not to adopt an innovation. It
might occur both actively, i.e. after considering the adop-
tion or even conducting a trial, or passively, i.e. without any
consideration at all [22]. Passive rejection, i.e. not getting
a response at all, is not uncommon even if the researcher
explicitly expresses interest in joining the project [26].

Reinvention occurs if members of the project take up
the invention and recast or reuse it in unexpected and un-
intended ways. Reinventions might prove highly beneficial
for the researcher, as they may point to new fields of appli-
cation for the invention.

1 In a software release process, a feature freeze is the point from
which onwards no new features must be introduced; only defect
corrections and documentation are allowed to be performed.

ventions adopted by the project; a typical example might be
the transition from the CVS version control system to the
newer and clearly superior SVN.

To acquire a project somewhat randomly yet within the
limitations given above, a project news announcement site
like Freshmeat, which aggregates projects independently
of their hosting, or a project listing site like SWiK can be
used.

Both of these example sites offer the option to visit
a project at random from the listing. While SWiK shows
all projects that relate to Open Source, Freshmeat’s nota-
ble limitation is its requirement for projects to run under
an Open Source operating system; purely Windows-based
OSS projects are not listed.

4 How to Approach Open Source Projects
Some knowledge exists in the literature about how to

approach an OSS project [10][26]. Firstly, the concept of
“gift culture”[21] suggests that the respect for the exter-
nal participant and influence s/he carries are correlated to
his/her contribution to the project. This raises the question
whether the invention itself will be seen as a gift if dissemi-
nated to the project. A case study on the effects of offering
a source code gift that requires further effort to integrate
into the code-base of the project appears to indicate the fol-
lowing: Unless the gift is directly useful for the project and
immediately comprehensible to the participants, chances
are low that it will be accepted [20]. Thus, we hypothesize
that the researcher should expect to spend a considerable
amount of work generating these benefits until the inven-
tion is accepted and adopted.

Secondly, the researcher needs to decide whether to ap-
proach the project by contacting the maintainer and project
leaders, individual developers, or by addressing the project
community as a whole. Our working hypothesis is that the
type of approach should be correlated closely with (a) the
degree of independence of each member’s adoption deci-
sion, and (b) the benefit structure of the invention. We will
now explain these factors.

In Diffusion of Innovations, Rogers distinguishes three
types of innovation-decisions: optional innovation-deci-
sions, which each member of the project can make individ-
ually and independently, collective innovation-decisions,
which require consensus within the project, and authority
innovation-decisions, which are made by a small influential
group within the project [22].

As an example, consider the adoption of a practice such
as “mandatory peer review before committing patches to
version control”. Such an improvement usually starts as
a collective innovation-decision to improve code quality,
since a general consensus is needed that every member of
the project will submit his or her patch first to a mailing-
list for inspection, and thus the whole community should
be addressed to promote the adoption. Additionally, it also
involves an optional innovation-decision by each member
to participate in the review of patches sent by others, and

UPGRADE Vol. VIII, No. 6, December 2007 43© Novática

Free Software: Research and Development

Of course, there is still a lot of room for interaction be-
tween the project member, researcher and technology until
these ultimate reactions are made. Social science literature
provides various models for such discourse such as the
theory of fields [12] or network-actor theory [17]. We have
chosen to follow the innovation model developed by Den-
ning and Dunham [7]. In this view, the innovation process
starts with (1) the sensing of possibilities for change and
(2) a vision of what might result from the change. (3) Of-
fering this vision to the affected people (or other units of
adoption) and receiving their feedback allows the idea to be
shaped into something that can be (4) executed and imple-
mented in concrete terms resulting in a product, process or
social improvement. It is only after the invention has been
(5) adopted by the desired target population and (6) sus-
tained as a successful novelty that a successful introduction
of innovation has occurred. In the setting discussed here,
the first two stages will focus more on the tailoring of the
existing problem, vision and invention rather than the gen-
eration of new ideas and implementation.

6 How and When to Phase Out Involvement
and Leave?

Our current working hypothesis is that the researcher
can leave a project when s/he has successfully established
the innovation as self-sustaining, or if the adoption has
failed and no clean-up work remains to be done. In success-
ful cases, withdrawal from the project should be gradual
rather than abrupt or it may endanger the success and cause
harm to the project. Leaving a project after a failed intro-
duction on the other hand obliges the researcher to clean up,
say, revert changes to the code-base or reinstate previous
infrastructure before a (gradual) withdrawal is in order.

7 How to Obtain Evaluation Results?
The actual evaluation of the invention under investiga-

tion is highly dependent on the nature of the invention itself
and on the particular evaluation research goal. For some
inventions the successful adoption itself can be a sufficient
success, while others can only be judged by comparing
product, process, or usage metrics to their baseline values
prior to introduction. A third kind of invention might re-
quire the developers to be surveyed about their experience
with the new technology.

Independent of these three basic approaches, the re-
searcher will probably gain the most practical, albeit quali-
tative, insights for improving and assessing the invention by
communicating with the project during the introduction. A
researcher using the action research perspective may view
this as the primary result.

8 Chances, Limitations and Conclusion
In the end, the question remains whether the experienc-

es gained with introducing software engineering inventions
in OSS projects can be applied to other settings (external

validity). These might include differences in project sizes,
application domains, software architectures, non-volunteer
personnel, management, distribution and work-place set-
ting, prior experience with software engineering methods,
etc. The most common target setting is a revenue-depend-
ent corporate environment. The following arguments argue
why evaluation results from OSS projects may transfer to
such environments: 1) Open Source developers are notori-
ous for being critical of academic results, (2) availability
of management championship and extrinsic motivations
(like pay) can often spur adoption and use, and (3) full-time
employees will benefit more from economies of scale and
learning effects than part-time OSS developers.

The most notable limiting factor of our research ap-
proach is the restriction on the type of invention feasible
for investigation. The diffusion of innovation literature lists
several attributes of invention that will affect their rate of
success for being introduced: (1) The compatibility of the
invention with existing technology, values, and beliefs2,
(2) the intellectual and technical complexity, (3) the ob-
servability of the resulting effects of the invention, (4) the
possibility to experiment with the invention (trialability)
before committing to it, and (5) the uncertainty about the
invention [22]. Halloran and Scherlis hypothesize more
specifically with regards to OSS projects that these tend to
distinguish sharply between trusted and untrusted contribu-
tions (“walled server” metaphor) and that inventions need
to preserve this distinction to be applicable to OSS projects
[15]).

This limits the approach as follow: while successful in-
troduction suggests a valuable invention, failed introduction
may be the result of specific properties of the OSS project
(such as the walled-server) and may not say much about the
real qualities of the invention.

As a second limitation we note that in contrast to field-
work and ethnographic studies conducted with companies
(see for instance [18]), it will be difficult to study the actual
working processes and practices of each project participant
since only the intermediates and process results, say, bug
reports, CVS commits, and mailing list discussions are visi-
ble to the researcher. To gather information about the actual
usage of tools on the computers of the project members,
these need to be instrumented appropriately [23][16].

A third limitation of the approach concerns the speed
at which adoption can occur. Open Source projects are to
a large extent driven by volunteers who invest less than 10
hours per week and coordinate using asynchronous elec-
tronic means over different time zones [14]. The time scale
of change should thus be expected to be much slower than
in a commercial setting where employees work regular
working hours and frequently interact synchronously.

Summing up, we have proposed to study the introduc-
tion of software engineering inventions to help research-
ers evaluate tools, methods, and processes developed in

2 For instante, OSS projects may reject tools that are not licensed
as Open Source software themselves.

44 UPGRADE Vol. VIII, No. 6, December 2007 © Novática

Free Software: Research and Development

ware Engineering, pages 26– 28. ACM, 2002.
[16] P. M. Johnson, H. Kou, J. Agustin, C. Chan, C.

Moore, J. Miglani, S. Zhen, W. E. J. Doane. Beyond
the personal software process: metrics collection and
analysis for the differently disciplined. In ICSE ’03:
Proceedings of the 25th International Conference on
Software Engineering, pages 641–646, Washington,
DC, USA, 2003. IEEE Computer Society.

[17] J. Law. Notes on the theory of the actor-network: Or-
dering, strategy and heterogeneity. Systems Practice,
5(4):379–393, 1992.

[18] T. C. Lethbridge, J. Singer. Experiences conducting
studies of the work practices of software engineers.
In H. Erdogmus and O. Tanir, editors, Advances in
Software Engineering: Comprehension, Evaluation,
and Evolution, pages 53–76. Springer, 2001.

[19] D. E. Perry, A. A. Porter, L. G. Votta. Empirical stud-
ies of software engineering: a roadmap. In Proceed-
ings of the conference on The future of Software
engineering, pages 345–355. ACM Press, 2000.

[20] L. Quintela García. Die Kontaktaufnahme mit Open
Source Software-Projekten. Eine Fallstudie. Bache-
lor thesis, Freie Universität Berlin, 2006.

[21] E. S. Raymond. The Cathedral and the Bazaar.
O’Reilly & Associates, Inc., Sebastopol, CA, USA,
1999. ISBN: 1565927249.

[22] E. M. Rogers. Diffusion of Innovations. Free
Press, New York, 5th edition, August 2003. ISBN:
0743222091.

[23] F. Schlesinger, S. Jekutsch. ElectroCodeoGram: An
environment for studying programming. In Work-
shop on Ethnographies of Code, Infolab21, Lancaster
University, UK, March 2006.

[24] D. Stelzer, W. Mellis. Success factors of organi-
zational change in software process improvement.
Software Process: Improvement and Practice,
4(4):227–250, 1998.

[25] W. F. Tichy, P. Lukowicz, L. Prechelt, E. A. Heinz.
Experimental evaluation in computer science: A
quantitative study. Journal of Systems and Software,
28(1):9–18, Jan. 1995.

[26] G. von Krogh, S. Spaeth, K. Lakhani. Community,
joining, and specialization in open source software
innovation: A case study. Research Policy, 32:1217–
1241(25), July 2003.

[27] R. K. Yin. Case Study Research: Design and Meth-
ods. Applied Social Research Methods. Sage Publi-
cations, Inc., 1988.

[28] M. V. Zelkowitz, D. R. Wallace. Experimental models
for validating technology. Computer, 31(5):23–31,
1998.

academic settings, and have offered our preliminary results.
While the research community can benefit from access to
real life settings and the possibility to “feed back the com-
munity”, the Open Source community is introduced to state-
of-the-art inventions tailored to their specific problems by
the inventors.

References

[1] W. B. Arthur. Increasing Returns and Path Depend-
ence in the Economy. University of Michigan Press,
1994. ISBN: 0472064967.

[2] D. E. Avison, F. Lau, M. D. Myers, P. A. Nielsen. Ac-
tion research. Commun. ACM, 42(1):94–97, 1999.

[3] M. Bakardjieva, A. Feenberg. Involving the vir-
tual subject. Ethics and Information Technology,
2(4):233–240, 2001.

[4]		 J.	Cassell.	Ethical	principles	 for	conducting	field-
work. American Anthropologist, 82(1):28–41, March
1980.

[5] CMMI Product Team. Cmmi for development, ver-
sion 1.2. Technical Report CMU/SEI-2006-TR-008,
Software Engineering Institute, 2006.

[6] J. M. Corbin, A. Strauss. Grounded theory research:
Procedures, canons, and evaluative criteria. Qualita-
tive Sociology, 13(1):3–21, Mar. 1990.

[7] P. J. Denning, R. Dunham. Innovation as language
action. Commun. ACM, 49(5):47–52, 2006.

[8] S. Dietze. Modell und Optimierungsansatz für Open
Source Softwareentwicklungsprozesse. Doktorarbeit,
Universität Potsdam, 2004.

[9] G.W. Downs, L. B. Mohr. Conceptual issues in study
of innovation. Administrative Science Quarterly,
21(4):700–714, 1976.

[10] N. Ducheneaut. Socialization in an open source
software community: A socio-technical analysis.
Computer Supported Cooperative Work (CSCW),
V14(4):323–368, Aug. 2005.

[11]		M.	L.	Fennell.	Synergy,	influence,	and	information	in	
the adoption of administrative innovations. Academy
Of Management Journal, 27(1):113–129, 1984.

[12]		N.	Fligstein.	Social	 skill	 and	 the	 theory	of	fields.	
Sociological Theory, 19(2):105–125, July 2001.

[13] M. S. Frankel, S. Siang. Ethical and legal aspects of
human subjects research on the internet. Published
by AAAS online , June 1999.

[14] R. A. Ghosh, B. Krieger, R. Glott, G. Robles, T.
Wichmann. Free/Libre and Open Source Software:
Survey and Study – FLOSS. Final Report, Interna-
tional Institute of Infonomics University of Maas-
tricht, The Netherlands; Berlecon Research GmbH
Berlin, Germany, June 2002.

[15] T. J. Halloran, W. L. Scherlis. High Quality and Open
Source Software Practices. In J. Feller, B. Fitzgerald,
F. Hecker, S. Hissam, K. Lakhani, and A. van der
Hoek, editors, Meeting Challenges and Surviving
Success: The 2nd Workshop on Open Source Soft-

