Integrating a Tool into Multiple Different IDEs

Lutz Prechelt and Matthias Peter
abaXX Technology AG, Stuttgart
lutz.prechelt|matthias.peter@abaxx.de

Abstract

abaXX Techology produces component-based
platform products that help in the construction of web-
based systems, in particular process portals, using Java2
Enterprise Edition (J2EE) technology. Most parts of these
products are API-based and hence require support by
appropriate construction tools. Much support is available
in leading J2EE IDEs, but some specialized tools have to
be provided in addition. Since the products are platform-
independent, the tools should ideally work in many
different IDEs, too.

This position paper shortly describes the issues
encountered in designing one of these tools in such a way
that it is portable to both Eclipse 2.0 and IntelliJ IDEA
3.0 (and possibly others as well).

1. The starting point: Web Ul Framework,
Vanilla Portal, PortalBuilder

The Web UI Framework is one of abaXX’ J2EE
component products. It consists of the base framework
(similar to Jakarta Struts [2]) for representing a Model-
View-Controller design style for web-based user
interfaces, a powerful tag library, a Parts framework for
hierarchically modular Ul construction and configuration,
and the corresponding runtime system.

The Parts framework defines the notion of Part, a
fragment of a UI dialog page having its own view,
controller, and model. Parts appear to be somewhat
similar to Portlets, but in fact they are much more
lightweight, can be arbitrarily nested by using containers
(CompositePart) with dynamically controlled layout, and
can have their look-and-feel be centrally modified by
Decorators.

The structure of a portal is defined in a file called
parts.xml; see an excerpt in Figure 6.

Along with the Web Ul Framework we ship the Vanilla
Portal, an almost-empty portal frame containing a few
generic reusable Parts and predefining the directory
structure, naming conventions etc., thus making setting up
a new portal development project quick and easy.

On top of the Vanilla Portal comes the third major
element, the PortalBuilder: an application for interactively
modifying a live portal on the Parts level. The whole
portal (see Figure 1) is switched into ‘edit mode’ (see
Figure 2) and then Parts can be introduced, removed,
moved, and (re)configured. One can even introduce new
(not yet implemented) Parts, will immediately get to see a
dummy representation, and can then add actual views and
controllers incrementally. During all of these activities,
the full functionality of the portal proper is always visible
and available for use.

2. The tool and the integration goals

During the implementation phase of a Part (writing the
view JSP, controller class, and model bean), one would
not normally want to work with the PortalBuilder, but
rather with an IDE. Nevertheless, some of the
functionality of the PortalBuilder is relevant then, too —
namely, entering, reviewing, and modifying parts.xml
parameters for the given Part, its parent Part (container),
and children Parts, if any.

For simplifying this task, we offer a specialized tool,
the parts.xml editor (see Figure 4) that allows for
generating and editing these entries and that ensures their
syntactic and semantic integrity. For maximum benefit,
the parts.xml editor needs to be integrated into the IDE.

The following integration between parts.xml editor and
IDE would be nice:

(1) User starts the editor from within the IDE.

(2) Editor recognizes which parts.xml is relevant and

where to find it; editor loads and saves it.

(3) Editor understands where to find any resource
mentioned in the parts.xml (JSP, controller class,
model class, decorator, layout, etc.); can make the
IDE load and show/edit any of these.

(4) Editor can create lists of candidate resources in
any of the various categories from (3) and offer
them in selection lists.

(5) Editor makes semantic checks of internal
consistency of Parts descriptions. (Note that this
does not really require integration.)

(6) Editor makes semantic checks of consistency
between Part description and the resources
mentioned therein, such as (in increasing order of
complexity): JSP exists, controller class exists,
controller class is indeed a controller class, all
events declared in Part description are fired
somewhere, etc.

So far, we have implemented (1), (2), (3), (5), and

parts of (4), but only basic parts of (6).

3. Integration issues

We have currently implemented the parts.xml editor
for three different contexts:

e The IntelliJ IDEA 3.0 IDE ([4], see Figure 3)

e The Eclipse 2.0 IDE ([3], see Figure 4)

e The abaXX Workflow Modeler 3.2 tool (see

Figure 5)

The Workflow Modeler is an editor that manipulates
process descriptions for the abaXX Workflow Engine, a
process execution component that integrates process
control logic, calls to business logic, and GUI page flow.

3.1. GUI issues

The GUISs of different IDEs are neither technically nor
conceptually identical (or sufficiently similar).

For example, the parts.xml editor tool is programmed
in Java Swing (Java Foundation Classes), which is fine for
IntelliJ IDEA, because Swing is both its native technical
GUI platform as well as its standard look and feel. The
same is true for the Workflow Modeler.

For Eclipse, however, Swing is foreign: Eclipse,
although also based on Java, is built using a special,
native GUI library. While the look-and-feel issues arising
out of this can be overcome, at least for a tool as simple as
the parts.xml editor, the technical integration becomes a
problem: The parts.xml editor cannot easily be shown as a
fully integrated subwindow of an Eclipse session, but
appears as a separate window on top.

For more advanced tools, these problems will become
Wworse.

3.2. Semantic integration issues

The repository structure and services of different IDEs
are very different.

With respect to the integration wish list from Section 2,
this means that all functions that require advanced access
to the IDEs fact base are difficult to design in a portable
fashion. They essentially have to be re-done for each new
IDE.

For example, while the file-based integration functions
such as most of (3) and simplified versions of (4) can be
ported reasonably well, the advanced parts of (6) dig so
deep into the IDEs internal model of Java programs that
their design will invariably be very different for different
IDEs. In some cases (IDEA may be one of them) it may
even be impossible to provide this integration, because
too little of the respective functionality of the IDE is
documented and exposed to the tool developer.

3.3. Conceptual issues

Underlying all of the above technicalities is a much
more fundamental problem. Different IDEs approach their
problem in conceptually different ways.

For instance, while Intelli] IDEA follows mostly a
rather pragmatic approach, working in a file-level, text-
based manner wherever possible, other tools that are more
inclined towards a Modeling/CASE Tool kind of
approach will not just have different technical
mechanisms inside, but will require an add-on tool to have
a totally different form and approach in order to get a
good conceptual fit. In the case of the parts.xml editor this
could mean for instance to have visual representation (and
direct manipulation) of the inheritance relationships and
event relationships between parts, rather than just a parts
tree and attribute table.

4. Conclusion

Integrating a development tool tightly and adequately
into more than one kind of IDE is a difficult task. The
standardization that would be required for making this
task easier is not currently in place, neither on a technical
level (APIs, GUI look, basic GUI feel), nor, much more
importantly, on a conceptual level (repository structure,
service architecture, overall presentation and operation
styles).

5. References

[1] abaXX Technology AG, “abaXX.components”,
http://www.abaxx.com.

[2] Apache Software Foundation, “Jakarta Struts”,
http://jakarta.apache.org/struts/index.html.

[3] eclipse.org, “Eclipse”, http.//www.eclipse.org.

[4] JetBrains Inc., “Intelli] IDEA”,
http://www.intellij.com/idea/.

vanilla Portal Des rosoft Internet Explorer provided by abaxx Technology AG ;lglil
J Fle Edit View Favorites Tools Help |
EBack v =+ v @D 4| @search CdFavorites (History | Bhv S @ - 5
Address I@ htip:/flocahost:B080/vanila_test/-?§part=Test Examples j @60

Vanilla Web Desktop

H P d 0 Examples

Adressen

[~ Marina Nocturne

I Karla Lundegaard
™ Isodora Junoux

I” Gabrielle Hugo

I Ermano Fellini

I Claudine Delacre
I~ Amanda Bakersfield

Neue Adresse.., | 2 |[Reset]

2] [[B8 Localintranet 7

Figure 1: A small portal with 5 Parts: banner, menubar, empty menu, login, and a mini-application

G

Vanilla - PortalBuilder - Microsoft Internet Explorer provided by abaXX

Fle Edit WView Favorites Tools Help
GBack v = v @ o | @search GalFavorites BHistory | B & W ~ 5

Address I@ htip: /locahost:B0B0/vanila_test/-?¢part=PortalBuider frameset@part=Test Examples.content. AddressList j fides]
o Browser ry @& 0
Vanilla Web Desktop "z 8
d o Examples & B Master
= B VVanilia
Adressen [T decorated
[pTest
= B Goodies
Karla Lundegaard = [Test
Isodora Junoux = B Examples
Gabrielle Huga & (B content
(7] sesweni

7] Acidresstist
[T Displayadidress
7] Editaddress

(7] menubar
Neue Adresse.. | 3 [[Reset] [hanner

[index

[B topics

= B PortsiBuiider
B MyDesk

[#] bia

Clauding Delacre

=
-
r
I~ Ermano Fallini
-
-

Arnanda Bakersfisld

plate: [none]
Name: Addrasslist

Caption:
Page: JWEB-INFiclasses/abaxx/web/aspects/test/addressList . jsp
Type: Part -

Comment: LI

_ Intemals \ Params \ Events | Layout | Gallens

‘@ htp:/ocahost:B080vanila_test/-?$part=PortaBuilder.hooksk $event=pick-part&part=Test.Examples. barner | |

% Local intranet v

Figure 2: The same portal in PortalBuilder mode. The PartsBrowser shows some of the portal’s Parts hierarchy.

IntellijPlugin.ipr

o] x|

kumente und Einstellung

Fi it Search Wiew to Code Befactor Buld Run Tools Options Window Help Fluginipr - [C\Dokumente und EnstelungenymsprildeaProjects] - D:\edipsetworkspaceiabar
EQ“)&‘*@Q‘|.\S|§E:S [IﬂGaI\erFrame'bi‘f@w«g@
o] ST PropertyEditorPanel.java I Kl PartSpec.java I 1 EditorLauncher java _ :
L E—— pertyl] pec.] J e
2 [) |Project x| @ AbstractPartSpec java | 0 Partspecsvalidator java a
. il =
__“Glmtelluplugmpr)) BB EventDispatchThread. java | Bl GaleryFrame.java 3
I Chpokumente und EinstellungenymsprildeaProjects = = 3
= 1 O heclpsetworkspace\abaodueb, Litsrcymaimabaxx\webipd H PartRepositoryPanel.java | H StandardPartSpec.java I SmartPartSpec.java g
2| B Dieclipsetworkspacelabax tools partsgalery — ajd 5
(%) i u
3 izlﬁ =] private class RepositoryTree extends JTree implements DropTargetlistener, Dragiourcelistener, Dragh @l
L o DropTarget dropTarget = null: z
| I schema DragSource dragSource = mull: @
@ =Edsc : . n k
o i CellRenderer cellRenderer = new CellRenderer(): g

B abax JPopuplenu popup = null:

B i tools

JMenuItem mewPart = new JMeruItem("Insert Part");
JHenuItem mewComposite = mew JMenultenm("Insert Composite'];
JHenuItem mewDesk = new JMermItem("Insert Desk');
JHenuTrem mewCategory = new JMenultem("Insert Category");

= 1 partsgalery
€ & EditorLauncher
€ & PartsgalleryPlugin

B web IMenuTren delete - new JMenuTtew('Delste Part');
B parts JHenuTtem omitPart = new JMerulten("Omit Part');
= e galery THenmIten undoOmit = new JMermIten("Undo Omit Part"):
B i
S resources =l public RepositoryTree(DefasultMutableTreeNode node) {
€ ® GalleryFrame swper (node) ?
init();:

€ & GalleryPanel
1 % OperFileListener
1 & OpenRepositoryListener

Parts Gallery =@ | =
@ {Paris Hierarchny rPart: Specification
E % g\ﬁmtcat?.1:weba|:jps\vam\la\oarts\oarmxml | General Properties | Events H Parameters |
laster [category
v B vanila [category] A B
Part Mame AddressList
] decorated [part]
=l T dummy [part] Caption AddressList
E% samples [category] Type part
= B Test [category] Model Test. AddressList
Bl Aspects [desk] iew
& [# content [composite] Controller abaxx.web aspects. test AddressController
(] deskedit [part Ciisplay Fage PWEE-INF classes/abaxx pweb/aspects/test fAddressList jsp
z Lavout
DisplayAddress [part] "
S Fitaddress [part] Layout Constraint
[mneribar [part] Drecorator caption
2 barrer [part] Scope
[# index [composits] Cescription
[# topics [composite) Extends
B PortaBuider [category]
B struts [category] -

4 Run &5 Debug = &:TODO Parts Galery
[/[305113 ||| nsert | Popup Hints: oN || 45Mof63M [T

Figure 3: The parts.xml editor tool window within the IntelliJ IDEA IDE.

Parts Gallery \EE

~Farts Hierarchy Fart Specification
! dieclipsefwarkspaceManillafwebipantsiparts xmil General Propedies | E\rentsl Parameters
] Mastar [category]
E-B5 vanilla [categony] Mame Value
...... 7] decorated [par] Part Mame Addresslist
""" g pTest [pan] Caption Addresslist
[Goodies [category] -
! Model TestAddressList
=B Test [cateqory] -
=3l Examples [dask] Viewr
_E content [composite] Caontroller ahamweb.aspects test Addre...
Dizplay Page MYEB-IMFiclassesiabaxdwel..,
Layout
DizsplayAddress [pad] i -
Edithddress [par] Layout Constraint
__:] menubar [par] Decaratar caption
% hanner [par] Scope
index [composite] -
Cescription
_E topics [composite] H
=B PortalBuilder [categon] Extends

ﬁ WyDesk [desk)]

hla [composite]

Figure 4: The parts.xml editor in its Eclipse version (where it is a separate window)

axx workflowModeler ji TestProcess.wim -0 il

File Edit Miew Experts Windows Help

! AddressList [part]
! DisplavAddress [par]
M Edithddress [par]
:] menubar [par]
:] banner [par]
@ (3] index [composite]
_E topics [composite]
@ [PortalBuilder [category]
@ [Struts [category]

Event = back

DE A = = @ <« 342 @
& | MyTestProcess.vim | | Parts Gallery | |
& alli=
sEzdas(xEe
% art Hierarchy
u Ditorncatd 1webappsanillapantsiparts aml
@ [Master [category]
o2 @ [vanilla [categon]
_:] decaorated [par]
E :] durnrmy [part]
B @] Samples [category]
e @ [Test [category)
0 @ 4 Aspects [desk
QAddreseLlst Evant = @ (2] content [composite]
=) = deskedit [part]
Event = pic) < Evgnt = back 7] [part]
-

= edit
insp\ayﬁ\ddreﬁ I
(o] Event = save QEdilAddmss

o rPart
General Properties [[Events [Parameters |
MName Value
Part Name AddressList
Caption AddressList
Type part
Model TestAddressList
Wi
Cantroller ahancweh aspecis testAddr.
Display Page MIEB-INFiclassesiabadweb. .
Layout
Layout Constraint
Decorator caption
Scope
Description
Extends

g | Kl |
=

I 507113 ;24‘ 54] [Purits = B"%"F‘ress Cirl to place mere than one part of the zame type
Figure 5: The parts.xml editor as a plugin to the abaXX Worflow Modeler.

<desk name="Examples">

<theme>
<styles>
.portal-content, .menubar a.selected { background-color: #ccccee; }
.portal-banner { color: #aaaaff; }
</styles>
</theme>

<content layout="tabbed-switch" visual="abaxx.web.parts.CompositePart">
<part name="deskedit" omit="true" />
<part name="AddressList" controller="abaxx.web.aspects.test.AddressController"
model="Test .AddressList" url=" /WEB—INF/classes/abaxx/web/aspects/test/AddressList .jsp"
decorator="caption">
<event name="pick" target="DisplayAddress" />
<event name="new" target="EditAddressé>create" type="redirect" />
<event name="delete" />
<event name="reset" />
</part>
<part name="DisplayAddress" controller="abaxx.web.aspects.test.AddressController"
model="Test.Address" url="/WEB-INF/classes/abaxx/web/aspects/test/DisplayAddress.jsp"
decorator="caption">
<event name="edit" target="EditAddress" />
<event name="back" target="AddressList" flags="populate,validate" />
</part>
[...]

Figure 6: Excerpt from the parts.xml file

