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Perceptron Learning

4.1 Learning algorithms for neural networks

In the two preceding chapters we discussed two closely related models,
McCulloch—Pitts units and perceptrons, but the question of how to find the
parameters adequate for a given task was left open. If two sets of points have
to be separated linearly with a perceptron, adequate weights for the comput-
ing unit must be found. The operators that we used in the preceding chapter,
for example for edge detection, used hand customized weights. Now we would
like to find those parameters automatically. The perceptron learning algorithm
deals with this problem.

A learning algorithm is an adaptive method by which a network of com-
puting units self-organizes to implement the desired behavior. This is done in
some learning algorithms by presenting some examples of the desired input-
output mapping to the network. A correction step is executed iteratively until
the network learns to produce the desired response. The learning algorithm
is a closed loop of presentation of examples and of corrections to the network
parameters, as shown in Figure 4.1.
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test input-output compute the
examples error
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Fig. 4.1. Learning process in a parametric system
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In some simple cases the weights for the computing units can be found
through a sequential test of stochastically generated numerical combinations.
However, such algorithms which look blindly for a solution do not qualify as
“learning”. A learning algorithm must adapt the network parameters accord-
ing to previous experience until a solution is found, if it exists.

4.1.1 Classes of learning algorithms

Learning algorithms can be divided into supervised and unsupervised meth-
ods. Supervised learning denotes a method in which some input vectors are
collected and presented to the network. The output computed by the net-
work is observed and the deviation from the expected answer is measured.
The weights are corrected according to the magnitude of the error in the way
defined by the learning algorithm. This kind of learning is also called learning
with a teacher, since a control process knows the correct answer for the set of
selected input vectors.

Unsupervised learning is used when, for a given input, the exact numerical
output a network should produce is unknown. Assume, for example, that some
points in two-dimensional space are to be classified into three clusters. For this
task we can use a classifier network with three output lines, one for each class
(Figure 4.2). Each of the three computing units at the output must specialize
by firing only for inputs corresponding to elements of each cluster. If one unit
fires, the others must keep silent. In this case we do not know a priori which
unit is going to specialize on which cluster. Generally we do not even know
how many well-defined clusters are present. Since no “teacher” is available,
the network must organize itself in order to be able to associate clusters with
units.
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Fig. 4.2. Three clusters and a classifier network

Supervised learning is further divided into methods which use reinforce-
ment or error correction. Reinforcement learning is used when after each pre-
sentation of an input-output example we only know whether the network
produces the desired result or not. The weights are updated based on this
information (that is, the Boolean values ¢rue or false) so that only the input
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vector can be used for weight correction. In learning with error correction, the
magnitude of the error, together with the input vector, determines the magni-
tude of the corrections to the weights, and in many cases we try to eliminate
the error in a single correction step.

corrective learning
supervised learning <

reinforcement learning
learning

unsupervised learning

Fig. 4.3. Classes of learning algorithms

The perceptron learning algorithm is an example of supervised learning
with reinforcement. Some of its variants use supervised learning with error
correction (corrective learning).

4.1.2 Vector notation

In the following sections we deal with learning methods for perceptrons.
To simplify the notation we adopt the following conventions. The input
(x1,22,...,2,) to the perceptron is called the input vector. If the weights
of the perceptron are the real numbers wy,ws,...,w, and the threshold is
0, we call w = (wq,wa, ..., Wy, Wpy1) With wy,41 = —0 the extended weight
vector of the perceptron and (z1, 2, ..., Ty, 1) the extended input vector. The
threshold computation of a perceptron will be expressed using scalar products.
The arithmetic test computed by the perceptron is thus

w-x>0,
if w and x are the weight and input vectors, and
w-x>0

if w and x are the extended weight and input vectors. It will always be clear
from the context whether normal or extended vectors are being used.

If, for example, we are looking for the weights and threshold needed to
implement the AND function with a perceptron, the input vectors and their
associated outputs are

0,0 ;
0,1 ;
1,0 ;
1,1 .

)



80 4 Perceptron Learning

If a perceptron with threshold zero is used, the input vectors must be extended
and the desired mappings are
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A perceptron with three still unknown weights (w1, we,ws3) can carry out this
task.

4.1.3 Absolute linear separability

The proof of convergence of the perceptron learning algorithm assumes that
each perceptron performs the test w - x > 0. So far we have been working
with perceptrons which perform the test w - x > 0. We must just show that
both classes of computing units are equivalent when the training set is finite,
as is always the case in learning problems. We need the following definition.

Definition 3. Two sets A and B of points in an n-dimensional space are

called absolutely linearly separable if n + 1 real numbers wy, ..., wyy1 exist
such that every point (z1,22,...,x,) € A satisfies Y | w;x; > Wypy1 and
every point (z1,%2,...,%,) € B satisfies Y | wik; < Wp41

If a perceptron with threshold zero can linearly separate two finite sets
of input vectors, then only a small adjustment to its weights is needed to
obtain an absolute linear separation. This is a direct corollary of the following
proposition.

Proposition 7. Two finite sets of points, A and B, in n-dimensional space
which are linearly separable are also absolutely linearly separable.

Proof. Since the two sets are linearly separable, weights w1, ..., wy,11 exist
for which, without loss of generality, the inequality

n
E Wi 2 Wpt1
i=1

holds for all points (aq,...,a,) € A and

n
E w;ib; < Wp+1
=1

for all points (by,...,b,) € B. Let € = max{) ;" ; wib; — wyp41](b1,...,bp) €
B}. Tt is clear that € < £/2 < 0. Let w’ = wp41 + /2. For all points in A it
holds that
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- 1
Zwiai — (' — 55) > 0.
i=1
This means that

n 1 n
Zwiaifw’ > —§€>0é2wiai > ' (4.1)

i=1 =1

For all points in B a similar argument holds since

n n

1
leZbZ — Wpt1 = leZbZ — (w’ — 55) < g,
1= 1=

and from this we deduce
n , 1
> wibi —w' < € <0. (4.2)
i=1

Equations (4.1) and (4.2) show that the sets A and B are absolutely linearly
separable. If two sets are linearly separable in the absolute sense, then they
are, of course, linearly separable in the conventional sense. O

4.1.4 The error surface and the search method

A usual approach for starting the learning algorithm is to initialize the network
weights randomly and to improve these initial parameters, looking at each step
to see whether a better separation of the training set can be achieved. In this
section we identify points (x1,x2,...,2,) in n-dimensional space with the
vector x with the same coordinates.

Definition 4. The open (closed) positive half-space associated with the n-
dimensional weight vector w is the set of all points x € R" for which w-x > 0
(w-x >0). The open (closed) negative half-space associated with w is the set
of all points x € R™ for which w-x <0 (w-x < 0).

We omit the adjectives “closed” or “open” whenever it is clear from the
context which kind of linear separation is being used.

Let P and N stand for two finite sets of points in IR which we want to
separate linearly. A weight vector is sought so that the points in P belong to its
associated positive half-space and the points in N to the negative half-space.
The error of a perceptron with weight vector w is the number of incorrectly
classified points. The learning algorithm must minimize this error function
E(w). One possible strategy is to use a local greedy algorithm which works
by computing the error of the perceptron for a given weight vector, looking
then for a direction in weight space in which to move, and updating the
weight vector by selecting new weights in the selected search direction. We
can visualize this strategy by looking at its effect in weight space.
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X1 wq

X2 Wy

Fig. 4.4. Perceptron with constant threshold

Let us take as an example a perceptron with constant threshold § = 1
(Figure 4.4). We are looking for two weights, wq and we, which transform
the perceptron into a binary AND gate. We can show graphically the error
function for all combinations of the two variable weights. This has been done
in Figure 4.5 for values of the weights between —0.5 and 1.5. The solution
region is the triangular area in the middle. The learning algorithm should
reach this region starting from any other point in weight space. In this case, it
is possible to descend from one surface to the next using purely local decisions
at each point.
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Fig. 4.5. Error function for the AND function

Figure 4.6 shows the different regions of the error function as seen from
“above”. The solution region is a triangle with error level 0. For the other
regions the diagram shows their corresponding error count. The figure illus-
trates an iterative search process that starts at wg, goes through wy, wo, and
finally reaches the solution region at w*. Later on, this visualization will help
us to understand the computational complexity of the perceptron learning
algorithm.

The optimization problem we are trying to solve can be understood as
descent on the error surface but also as a search for an inner point of the
solution region. Let N = {(0,0),(1,0),(0,1)} and P = {(1,1)} be two sets of
points to be separated absolutely. The set P must be classified in the positive
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wo

WD—’> Wy

2

Fig. 4.6. Iteration steps to the region of minimal error

and the set IV in the negative half-space. This is the separation corresponding
to the AND function.

Three weights wy, ws, and ws = —0 are needed to implement the desired
separation with a generic perceptron. The first step is to extend the input
vectors with a third coordinate z3 = 1 and to write down the four inequalities
that must be fulfilled:

(0, 0, 1) : (wl, wa, ’wg) <0 (43)
(1,0,1) . (wl,wg,wg) <0 (44)
(0,1,1) . (wl,wg,wg) <0 (45)
(1,1,1)-(w1,w2,w3) >0 (46)
These equations can be written in the following simpler matrix form:
0 0-1 w 0
-1 0-1 ! 0
0-1-1 Wsa > ol- (47)
11 1) \"*3 0
This can be written as
Aw > 0.

where A is the 4 x 3 matrix of Equation (4.7) and w the weight vector (written
as a column vector). The learning problem is to find the appropriate weight
vector w.

Equation (4.7) describes all points in the interior of a convex polytope.
The sides of the polytope are delimited by the planes defined by each of the
inequalities (4.3)—(4.6). Any point in the interior of the polytope represents a
solution for the learning problem.
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We saw that the solution region for the AND function has a triangu-
lar shape when the threshold is fixed at 1. In Figure 4.7 we have a three-
dimensional view of the whole solution region when the threshold (i.e., ws) is
allowed to change. The solution region of Figure 4.5 is just a cut of the so-
lution polytope of Figure 4.7 at w3 = —1. The shaded surface represents the
present cut, which is similar to any other cut we could make to the polytope
for different values of the threshold.

/ \

w3

Fig. 4.7. Solution polytope for the AND function in weight space

We can see that the polytope is unbounded in the direction of negative
ws. This means that the absolute value of the threshold can become as large
as we want and we will still find appropriate combinations of w; and ws to
compute the AND function. The fact that we have to look for interior points
of polytopes for the solution of the learning problem, is an indication that
linear programming methods could be used. We will elaborate on this idea
later on.

4.2 Algorithmic learning

We are now in a position to introduce the perceptron learning algorithm. The
training set consists of two sets, P and IV, in n-dimensional extended input
space. We look for a vector w capable of absolutely separating both sets, so
that all vectors in P belong to the open positive half-space and all vectors in
N to the open negative half-space of the linear separation.

Algorithm 4.2.1 Perceptron learning
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start: ~ The weight vector wq is generated randomly,
set t:=0
test: A vector x € PU N is selected randomly,

if x € P and w; - x > 0 go to test,
if x € P and wy - x <0 go to add,
if x € N and w; - x < 0 go to test,
if x € N and w; - x > 0 go to subtract.

add: set wiy1 =wy+x and t:=1+ 1, goto test

subtract: set wyy1 = w, —x and ¢t :=t+ 1, goto test

This algorithm [312] makes a correction to the weight vector whenever
one of the selected vectors in P or N has not been classified correctly. The
perceptron convergence theorem guarantees that if the two sets P and N are
linearly separable the vector w is updated only a finite number of times. The
routine can be stopped when all vectors are classified correctly. The corre-
sponding test must be introduced in the above pseudocode to make it stop
and to transform it into a fully-fledged algorithm.

4.2.1 Geometric visualization

There are two alternative ways to visualize perceptron learning, one more
effective than the other. Given the two sets of points P € IR* and N € IR?
to be separated, we can visualize the linear separation in input space, as in
Figure 4.8, or in extended input space. In the latter case we extend the input
vectors and look for a linear separation through the origin, that is, a plane
with equation wyx1 + wexs + ws = 0. The vector normal to this plane is the
weight vector w = (w1, we, ws). Figure 4.9 illustrates this approach.

vectors in P

P2

weight vector

P

n

vectors in N

Fig. 4.8. Visualization in input space
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weight
vector

P,

Py

Fig. 4.9. Visualization in extended input space

We are thus looking for a weight vector w with a positive scalar product
with all the extended vectors represented by the points in P and with a
negative product with the extended vectors represented by the points in N.
Actually, we will deal with this problem in a more general way. Assume that
P and N are sets of n-dimensional vectors and a weight vector w must be
found, such that w-x > 0 holds for all z € P and w - x < 0 holds for all
x €N.

The perceptron learning algorithm starts with a randomly chosen vector
wy. If a vector x € P is found such that w - x < 0, this means that the angle
between the two vectors is greater than 90 degrees. The weight vector must
be rotated in the direction of x to bring this vector into the positive half-
space defined by w. This can be done by adding w and x, as the perceptron
learning algorithm does. If x € N and w - x > 0, then the angle between x
and w is less than 90 degrees. The weight vector must be rotated away from
x. This is done by subtracting x from w. The vectors in P rotate the weight
vector in one direction, the vectors in N rotate the negative weight vector in
another. If a solution exists it can be found after a finite number of steps. A
good initial heuristic is to start with the average of the positive input vectors
minus the average of the negative input vectors. In many cases this yields an
initial vector near the solution region.

In perceptron learning we are not necessarily dealing with normalized vec-
tors, so that every update of the weight vector of the form w 4+ x rotates the
weight vector by a different angle. If x € P and ||x|| >> ||w| the new weight
vector w + x is almost equal to x. This effect and the way perceptron learn-
ing works can be seen in Figure 4.10. The initial weight vector is updated
by adding xi, x3, and x; again to it. After each correction the weight vec-
tor is rotated in one or the other direction. It can be seen that the vector w
becomes larger after each correction in this example. Each correction rotates
the weight vector by a smaller angle until the correct linear separation has
been found. After the initial updates, successive corrections become smaller
and the algorithm “fine tunes” the position of the weight vector. The learning
rate, the rate of change of the vector w, becomes smaller in time and if we
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1) Initial configuration 2) After correction with x;
X X1
Wo
Wi
X
wo 2 Xy
X3 X3
3) After correction with x5 4) After correction with x,
X X
W3
P
X2 W2 X2
X3 X3

Fig. 4.10. Convergence behavior of the learning algorithm

keep on training, even after the vectors have already been correctly separated,
it approaches zero. Intuitively we can think that the learned vectors are in-
creasing the “inertia” of the weight vector. Vectors lying just outside of the
positive region are brought into it by rotating the weight vector just enough
to correct the error.

This is a typical feature of many learning algorithms for neural networks.
They make use of a so-called learning constant, which is brought to zero dur-
ing the learning process to consolidate what has been learned. The perceptron
learning algorithm provides a kind of automatic learning constant which de-
termines the degree of adaptivity (the so-called plasticity of the network) of
the weights.

4.2.2 Convergence of the algorithm

The convergence proof of the perceptron learning algorithm is easier to follow
by keeping in mind the visualization discussed in the previous section.
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Proposition 8. If the sets P and N are finite and linearly separable, the
perceptron learning algorithm updates the weight vector w; a finite number of
times. In other words: if the vectors in P and N are tested cyclically one after
the other, a weight vector w; is found after a finite number of steps t which
can separate the two sets.

Proof. We can make three simplifications without losing generality:
i) The sets P and N can be joined in a single set P’ = P U N~ , where the
set N~ consists of the negated elements of N.

ii) The vectors in P’ can be normalized, because if a weight vector w is found
so that w - x > 0 this is also valid for any other vector nx, where 7 is a
constant.

iii) The weight vector can also be normalized. Since we assume that a solution
for the linear separation problem exists, we call w* a normalized solution
vector.

Assume that after ¢ + 1 steps the weight vector w;;1 has been computed.
This means that at time t a vector p; was incorrectly classified by the weight
vector wy and so Wi = Wy + p;.

The cosine of the angle p between wy;1 and w* is

w* W
cosp = ——L (4.8)
Wi
For the expression in the numerator we know that
w'wi = w - (Wi + pi)
=w'-wy+wW' - p;
>w'wy+6

with § = min{w*-p | Vp € P’'}. Since the weight vector w* defines an absolute
linear separation of P and N we know that § > 0. By induction we obtain

w* e wipr > wewo + (6 + 1)0. (4.9)
On the other hand for the term in the denominator of (4.8) we know that

[Wesl®> = (we + i) - (We + Pi)

= [|[we|* + 2wy - pi + [|Ipil)?

Since w; - p; is negative or zero (otherwise we would have not corrected wy
using p;) we can deduce that

Iwega || < llwell* + [lps]*

< fwel® +1
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because all vectors in P have been normalized. Induction then gives us
Iwisa ] < llwoll? + (¢ + 1). (4.10)
From (4.9) and (4.10) and Equation (4.8) we get the inequality

w* - wo+ (t+1)§
[woll? + (¢ + 1)

cosp >

The right term grows proportionally to v/¢ and, since J is positive, it can
become arbitrarily large. However, since cosp < 1, t must be bounded by a
maximum value. Therefore, the number of corrections to the weight vector
must be finite. |

The proof shows that perceptron learning works by bringing the initial
vector wq sufficiently close to w* (since cos p becomes larger and p propor-
tionately smaller).

4.2.3 Accelerating convergence

Although the perceptron learning algorithm converges to a solution, the num-
ber of iterations can be very large if the input vectors are not normalized and
are arranged in an unfavorable way.

There are faster methods to find the weight vector appropriate for a given
problem. When the perceptron learning algorithm makes a correction, an in-
put vector x is added or subtracted from the weight vector w. The search
direction is given by the vector x. Each input vector corresponds to the bor-
der of one region of the error function defined on weight space. The direction
of x is orthogonal to the step defined by x on the error surface. The weight
vector is displaced in the direction of x until it “falls” into a region with
smaller error.

We can illustrate the dynamics of perceptron learning using the error sur-
face for the OR function as an example. The input (1,1) must produce the
output 1 (for simplicity we fix the threshold of the perceptron to 1). The
two weights w; and we must fulfill the inequality wq + we > 1. Any other
combination produces an error. The contribution to the total error is shown
in Figure 4.11 as a step in the error surface. If the initial weight vector lies
in the triangular region with error 1, it must be brought up to the verge of
the region with error 0. This can be done by adding the vector (1,1) to w.
However, if the input vector is, for example, (0.1,0.1), it should be added a
few times before the weight combination (wi,ws) falls to the region of error
0. In this case we would like to make the correction in a single iteration.

These considerations provide an improvement for the perceptron learning
algorithm: if at iteration ¢ the input vector x € P is classified erroneously,
then we have w; - x < 0. The error § can be defined as
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error
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Fig. 4.11. A step on the error surface

0=—w;- X
The new weight vector wy4; is calculated as follows:

0+¢
Wip1 = Wi + ——= X,
x|
where € denotes a small positive real number. The classification of x has been
corrected in one step because
0+¢
Wit X = (Wt-i-wx) X
=w;-x+ (0 +¢)
=—-0+d+¢
=e>0

The number ¢ guarantees that the new weight vector just barely skips over
the border of the region with a higher error. The constant € should be made
small enough to avoid skipping to another region whose error is higher than
the current one. When x € N the correction step is made similarly, but using
the factor § — ¢ instead of § + ¢.

The accelerated algorithm is an example of corrective learning: We do not
just “reinforce” the weight vector, but completely correct the error that has
been made. A variant of this rule is correction of the weight vector using a
proportionality constant v as the learning factor, in such a way that at each
update the vector (4 +¢)x is added to w. The learning constant falls to zero
as learning progresses.

4.2.4 The pocket algorithm

If the learning set is not linearly separable the perceptron learning algorithm
does not terminate. However, in many cases in which there is no perfect linear
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separation, we would like to compute the linear separation which correctly
classifies the largest number of vectors in the positive set P and the negative
set N. Gallant proposed a very simple variant of the perceptron learning
algorithm capable of computing a good approximation to this ideal linear
separation. The main idea of the algorithm is to store the best weight vector
found so far by perceptron learning (in a “pocket”) while continuing to update
the weight vector itself. If a better weight vector is found, it supersedes the
one currently stored and the algorithm continues to run [152].
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Algorithm 4.2.2 Pocket algorithm

start: Initialize the weight vector w randomly. Define a “stored” weight
vector wg = wW. Set hg, the history of wy, to zero.

iterate: Update w using a single iteration of the perceptron learning algo-
rithm. Keep track of the number h of consecutively successfully tested
vectors. If at any moment h > h,, substitute wg with w and hg with
h. Continue iterating.

The algorithm can occasionally change a good stored weight vector for an
inferior one, since only information from the last run of selected examples is
considered. The probability of this happening, however, becomes smaller and
smaller as the number of iterations grows. If the training set is finite and the
weights and vectors are rational, it can be shown that this algorithm converges
to an optimal solution with probability 1 [152].

4.2.5 Complexity of perceptron learning

The perceptron learning algorithm selects a search direction in weight space
according to the incorrect classification of the last tested vector and does not
make use of global information about the shape of the error function. It is a
greedy, local algorithm. This can lead to an exponential number of updates
of the weight vector.

1 iterations
ZETo error

Ty

1 Wo

Wi

Fig. 4.12. Worst case for perceptron learning (weight space)

Figure 4.12 shows the different error regions in a worst case scenario. The
region with error 0 is bounded by two lines which meet at a small angle.
Starting the learning algorithm at point wq, the weight updates will lead to a
search path similar to the one shown in the figure. In each new iteration a new
weight vector is computed, in such a way that one of two vectors is classified
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correctly. However, each of these corrections leads to the other vector being
incorrectly classified. The iteration jumps from one region with error 1 to the
other one. The algorithm converges only after a certain number of iterations,
which can be made arbitrarily large by adjusting the angle at which the lines
meet.

Figure 4.12 corresponds to the case in which two almost antiparallel vec-
tors are to be classified in the same half-space (Figure 4.13). An algorithm
which rotates the separation line in one of the two directions (like perceptron
learning) will require more and more time when the angle between the two
vectors approaches 180 degrees.

X

X1

Fig. 4.13. Worst case for perceptron learning (input space)

This example is a good illustration of the advantages of visualizing learning
algorithms in both the input space and its dual, weight space. Figure 4.13
shows the concrete problem and Figure 4.12 illustrates why it is difficult to
solve.

4.3 Linear programming

A set of input vectors to be separated by a perceptron in a positive and a
negative set defines a convex polytope in weight space, whose inner points
represent all admissible weight combinations for the perceptron. The percep-
tron learning algorithm finds a solution when the interior of the polytope is
not void. Stated differently: if we want to train perceptrons to classify pat-
terns, we must solve an inner point problem. Linear programming can deal
with this kind of task.

4.3.1 Inner points of polytopes

Linear programming was developed to solve the following generic problem:
Given a set of n variables x1, zs, . .., T, a function ¢; 1 +coxo+- - - +cpx, must
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be maximized (or minimized). The variables must obey certain constraints
given by linear inequalities of the form

1121 + a12%2 + -+ a1p Ty < by

a21T1 + a22%2 + -+ + a2n Ty < b

Am1T1 + Am2X2 + ++* + AmpTn S bm

All m linear constraints can be summarized in the matrix inequality Ax < b,
in which x and b respectively represent n-dimensional and m-dimensional
column vectors and A is a m X n matrix. It is also necessary that x > 0,
which can always be guaranteed by introducing additional variables.

As in the case of a perceptron, the m inequalities define a convex polytope
of feasible values for the variables x1,x3, ..., Z,. If the optimization problem
has a solution, this is found at one of the vertices of the polytope. Figure 4.14
shows a two-dimensional example. The shaded polygon is the feasible region.
The function to be optimized is represented by the line normal to the vector c.
Finding the point where this linear function reaches its maximum corresponds
to moving the line, without tilting it, up to the farthest position at which it
is still in contact with the feasible region, in our case . It is intuitively clear
that when one or more solutions exist, one of the vertices of the polytope is
one of them.

EY)

Fig. 4.14. Feasible region for a linear optimization problem

The well-known simplex algorithm of linear programming starts at a ver-
tex of the feasible region and jumps to another neighboring vertex, always
moving in a direction in which the function to be optimized increases. In the
worst case an exponential number of vertices in the number of inequalities
m has to be traversed before a solution is found. On average, however, the
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simplex algorithm is not so inefficient. In the case of Figure 4.14 the optimal
solution can be found in two steps by starting at the origin and moving to the
right. To determine the next vertex to be visited, the simplex algorithm uses
as a criterion the length of the projection of the gradient of the function to
be optimized on the edges of the polytope. It is in this sense a gradient algo-
rithm. The algorithm can be inefficient because the search for the optimum is
constrained to be carried out moving only along the edges of the polytope. If
the number of delimiting surfaces is large, a better alternative is to go right
through the middle of the polytope.

4.3.2 Linear separability as linear optimization

The simplex algorithm and its variants need to start at a point in the feasible
region. In many cases it can be arranged to start at the origin. If the feasible
region does not contain the origin as one of its vertices, a feasible point must
be found first. This problem can be transformed into a linear program.

Let A represent the m x n matrix of coefficients of the linear constraints
and b an m-dimensional column vector. Assume that we are looking for an
n-dimensional column vector x such that Ax < b. This condition is fulfilled
only by points in the feasible region. To simplify the problem, assume that
b > 0 and that we are looking for vectors x > 0. Introducing the column
vector y of m additional slack variables (y1,...,ym), the inequality Ax < b
can be transformed into the equality Ax+Iy = b, where I denotes the m xm
identity matrix. The linear program to be solved is then

min{ZyﬂAx +Iy =b,x >0,y > 0}.

i=1

An initial feasible solution for the problem is x = 0 and y = b. Starting from
here an iterative algorithm looks for the minimum of the sum of the slack
variables. If the minimum is negative the original problem does not have a
solution and the feasible region of Ax < b is void. If the minimum is zero, the
value of x determined during the optimization is an inner point of the feasible
region (more exactly, a point at its boundary).

The conditions x > 0 and b > 0 can be omitted and additional transfor-
mations help to transform the more general problem to the canonical form
discussed here [157].

Inner points of convex polytopes, defined by separating hyperplanes, can
thus be found using linear programming algorithms. Since the computation
of the weight vector for a perceptron corresponds to the computation of inner
points of convex polytopes, this means that perceptron learning can also be
handled in this way. If two sets of vectors are not linearly separable, the linear
programming algorithm can detect it. The complexity of linearly separating
points in an input space is thus bounded by the complexity of solving linear
programming problems.
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The perceptron learning algorithm is not the most efficient method for
perceptron learning, since the number of steps can grow exponentially in the
worst case. In the case of linear programming, theoreticians have succeeded in
crafting algorithms which need a polynomial number of iterations and return
the optimal solution or an indication that it does not exist.

4.3.3 Karmarkar’s algorithm

In 1984 a fast polynomial time algorithm for linear programming was proposed
by Karmarkar [236]. His algorithm starts at an inner point of the solution
region and proceeds in the direction of steepest ascent (if maximizing), taking
care not to step out of the feasible region.

Figure 4.15 schematically shows how the algorithm works. The algorithm
starts with a canonical form of the linear programming problem in which
the additional constraint x; + x2 + --- + x,, = 1 is added to the basic con-
straints Ax > 0, where x1,...,z, are the variables in the problem. Some
simple transformations can bring the original problem into this form. The
point e = %(1, 1,...,1) is considered the middle of the solution polytope and
each iteration step tries to transform the original problem in such a way that
this is always the starting point.

X

.

Fig. 4.15. Transformation of the solution polytope

An initial point ag is selected in the interior of the solution polytope and
then brought into the middle e of the transformed feasible region using a
projective transformation 7. A projective transformation maps each point x
in the hyperplane x1 + 22 + - - -+ x, = 1 to a point X’ in another hyperplane,
whereby the line joining x and x’ goes through a predetermined point p.
The transformation is applied on the initial point ag, the matrix A of linear
constraints and also to the linear function ¢”x to be optimized. After the
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transformation, the radius of the largest sphere with center aj and inside
the transformed feasible region is computed. Starting at the center of the
sphere a new point in the direction of the transformed optimizing direction
¢’ is computed. The step length is made shorter than the computed maximal
radius by a small factor, to avoid reaching the surface of the solution polytope.
The new point a} computed in this way is a feasible point and is also strictly
in the interior of the solution polytope. The point a} is transformed back
to the original space using the inverse projective transformation 7~! and a
new iteration can start again from this point. This basic step is repeated,
periodically testing whether a vertex of the polytope is close enough and
optimal. At this moment the algorithm stops and takes this vertex as the
solution of the problem (Figure 4.16). Additionally, a certain checking must be
done in each iteration to confirm that a solution to the optimization problem
exists and that the cost function is not unbounded.

X
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Fig. 4.16. Example of a search path for Karmarkar’s algorithm

In the worst case Karmarkar’s algorithm executes in a number of iterations
proportional to n3-%, where n is the number of variables in the problem and
other factors are kept constant. Some published modifications of Karmarkar’s
algorithm are still more efficient but start beating the simplex method in
the average case only when the number of variables and constraints becomes
relatively large, since the computational overhead for a small number of con-
straints is not negligible [257].

The existence of a polynomial time algorithm for linear programming and
for the solution of interior point problems shows that perceptron learning
is not what is called a hard computational problem. Given any number of
training patterns, the learning algorithm (in this case linear programming)
can decide whether the problem has a solution or not. If a solution exists, it
finds the appropriate weights in polynomial time at most.
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4.4 Historical and bibliographical remarks

The success of the perceptron and the interest it aroused in the 1960s was a
direct product of its learning capabilities, different from the hand-design ap-
proach of previous models. Later on, research in this field reached an impasse
when a learning algorithm for more general networks was still unavailable.

Minsky and Papert [312] analyzed the features and limitations of the per-
ceptron model in a rigorous way. They could show that the perceptron learning
algorithm needs an exponential number of learning steps in the worst case.
However, perceptron learning is in the average case fairly efficient. Mansfield
showed that when the training set is selected randomly from a half-space, the
number of iterations of the perceptron learning algorithm is comparable to
the number of iterations needed by ellipsoid methods for linear programming
(up to dimension 30) [290]. Baum had previously shown that when the learn-
ing set is picked by a non-malicious adversary, the complexity of perceptron
learning is polynomial [46].

More recently the question has arisen of whether a given set of nonlin-
early separable patterns can be decomposed in such a way that the largest
linearly separable subset can be detected. Amaldi showed that this is an NP-
complete problem, that is, a problem for which presumably no polynomial
time algorithm exists (compare Chap. 10).

The conditions for perfect perceptron learning can be also relaxed. If the
set of patterns is not linearly separable, we can look for the separation that
minimizes the average quadratic error, without requiring it to be zero. In this
case statistical methods or the backpropagation algorithm (Chap. 7) can be
used.

After the invention of the simplex algorithm for linear programming there
was a general feeling that it could be proven that one of its variants was of
polynomial complexity in the number of constraints and of variables. This
was due to the fact that the actual experience with the algorithm showed
that in the average case a solution was found in much less than exponential
time. However, in 1972 Klee and Minty [247] gave a counterexample which
showed that there were situations in which the simplex method visited 2!
vertices of a feasible region with 2" vertices. Later it was rigorously proven
that the simplex method is polynomial in the average case [64]. The question
of the existence of a polynomial time algorithm for linear programming was
settled by Khachiyan in 1979, when he showed that a recursive construction
of ellipsoids could lead to finding the optimal vertex of the feasible region
in polynomial time [244]. His algorithm, however, was very computationally
intensive for most of the average-sized problems and could not displace the
simplex method. Karmarkar’s algorithm, a further development of the ellip-
soid method including some very clever transformations, aroused much inter-
est when it was first introduced in 1984. So many variations of the original
algorithm have appeared that they are collectively known as Karmarkar-type
algorithms. Minimization problems with thousands of constraints can now be
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dealt with efficiently by these polynomial time algorithms, but since the sim-
plex method is fast in the average case it continues to be the method of choice
in medium-sized problems.

Interesting variations of perceptron learning were investigated by Fonta-
nari and Meir, who coded the different alternatives of weight updates accord-
ing to the local information available to each weight and let a population of
algorithms evolve. With this kind of “evolution strategy” they found compet-
itive algorithms similar to the standard methods [140].

Exercises

1. Implement the perceptron learning algorithm in the computer. Find the
weights for an edge detection operator using this program. The input-
output examples can be taken from a digitized picture of an object and
another one in which only the edges of the object have been kept.

2. Give a numerical example of a training set that leads to many iterations
of the perceptron learning algorithm.

3. How many vectors can we pick randomly in an n-dimensional space so
that they all belong to the same half-space? Produce a numerical estimate
using a computer program.

4. The perceptron learning algorithm is usually fast if the vectors to be
linearly separated are chosen randomly. Choose a weight vector w for a
perceptron randomly. Generate p points in input space and classify them
in a positive or negative class according to their scalar product with w.
Now train a perceptron using this training set and measure the number
of iterations needed. Make a plot of n against p for dimension up to 10

and up to 100 points.
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