
R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3

Weighted Networks – The Perceptron

3.1 Perceptrons and parallel processing

In the previous chapter we arrived at the conclusion that McCulloch–Pitts
units can be used to build networks capable of computing any logical function
and of simulating any finite automaton. From the biological point of view,
however, the types of network that can be built are not very relevant. The
computing units are too similar to conventional logic gates and the network
must be completely specified before it can be used. There are no free param-
eters which could be adjusted to suit different problems. Learning can only
be implemented by modifying the connection pattern of the network and the
thresholds of the units, but this is necessarily more complex than just adjust-
ing numerical parameters. For that reason, we turn our attention to weighted
networks and consider their most relevant properties. In the last section of this
chapter we show that simple weighted networks can provide a computational
model for regular neuronal structures in the nervous system.

3.1.1 Perceptrons as weighted threshold elements

In 1958 Frank Rosenblatt, an American psychologist, proposed the percep-
tron, a more general computational model than McCulloch–Pitts units. The
essential innovation was the introduction of numerical weights and a spe-
cial interconnection pattern. In the original Rosenblatt model the computing
units are threshold elements and the connectivity is determined stochastically.
Learning takes place by adapting the weights of the network with a numerical
algorithm. Rosenblatt’s model was refined and perfected in the 1960s and its
computational properties were carefully analyzed by Minsky and Papert [312].
In the following, Rosenblatt’s model will be called the classical perceptron and
the model analyzed by Minsky and Papert the perceptron.

The classical perceptron is in fact a whole network for the solution of cer-
tain pattern recognition problems. In Figure 3.1 a projection surface called the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

56 3 Weighted Networks – The Perceptron

retina transmits binary values to a layer of computing units in the projection
area. The connections from the retina to the projection units are deterministic
and non-adaptive. The connections to the second layer of computing elements
and from the second to the third are stochastically selected in order to make
the model biologically plausible. The idea is to train the system to recognize
certain input patterns in the connection region, which in turn leads to the
appropriate path through the connections to the reaction layer. The learning
algorithm must derive suitable weights for the connections.

retina

projection area association area
responses

random
connections

local connections

Fig. 3.1. The classical perceptron [after Rosenblatt 1958]

Rosenblatt’s model can only be understood by first analyzing the elemen-
tary computing units. From a formal point of view, the only difference between
McCulloch–Pitts elements and perceptrons is the presence of weights in the
networks. Rosenblatt also studied models with some other differences, such as
putting a limit on the maximum acceptable fan-in of the units.

Minsky and Papert distilled the essential features from Rosenblatt’s model
in order to study the computational capabilities of the perceptron under dif-
ferent assumptions. In the model used by these authors there is also a retina
of pixels with binary values on which patterns are projected. Some pixels from
the retina are directly connected to logic elements called predicates which can
compute a single bit according to the input. Interestingly, these predicates can
be as computationally complex as we like; for example, each predicate could
be implemented using a supercomputer. There are some constraints however,
such as the number of points in the retina that can be simultaneously exam-
ined by each predicate or the distance between those points. The predicates
transmit their binary values to a weighted threshold element which is in charge
of reaching the final decision in a pattern recognition problem. The question is
then, what kind of patterns can be recognized in this massively parallel man-
ner using a single threshold element at the output of the network? Are there
limits to what we can compute in parallel using unlimited processing power

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.1 Perceptrons and parallel processing 57

for each predicate, when each predicate cannot itself look at the whole retina?
The answer to this problem in some ways resembles the speedup problem in
parallel processing, in which we ask what percentage of a computational task
can be parallelized and what percentage is inherently sequential.

w1

w2

w3

w4

P1

P2

P3

P4

θ

Fig. 3.2. Predicates and weights of a perceptron

Figure 3.2 illustrates the model discussed by Minsky and Papert. The pred-
icates P1 to P4 deliver information about the points in the projection surface
that comprise their receptive fields. The only restriction on the computational
capabilities of the predicates is that they produce a binary value and the re-
ceptive field cannot cover the whole retina. The threshold element collects
the outputs of the predicates through weighted edges and computes the fi-
nal decision. The system consists in general of n predicates P1, P2, . . . , Pn

and the corresponding weights w1, w2, . . . , wn. The system fires only when
∑n

i=1 wiPi ≥ θ, where θ is the threshold of the computing unit at the output.

3.1.2 Computational limits of the perceptron model

Minsky and Papert used their simplified perceptron model to investigate
the computational capabilities of weighted networks. Early experiments with
Rosenblatt’s model had aroused unrealistic expectations in some quarters, and
there was no clear understanding of the class of pattern recognition problems
which it could solve efficiently. To explore this matter the number of predicates
in the system is fixed, and although they possess unbounded computational
power, the final bottleneck is the parallel computation with a single threshold
element. This forces each processor to cooperate by producing a partial result
pertinent to the global decision. The question now is which problems can be
solved in this way and which cannot.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

58 3 Weighted Networks – The Perceptron

The system considered by Minsky and Papert at first appears to be a
strong simplification of parallel decision processes, but it contains some of the
most important elements differentiating between sequential and parallel pro-
cessing. It is known that when some algorithms are parallelized, an irreducible
sequential component sometimes limits the maximum achievable speedup. The
mathematical relation between speedup and irreducible sequential portion of
an algorithm is known as Amdahl’s law [187]. In the model considered above
the central question is, are there pattern recognition problems in which we
are forced to analyze sequentially the output of the predicates associated with
each receptive field or not? Minsky and Papert showed that problems of this
kind do indeed exist which cannot be solved by a single perceptron acting as
the last decision unit.

The limits imposed on the receptive fields of the predicates are based on
realistic assumptions. The predicates are fixed in advance and the pattern
recognition problem can be made arbitrarily large (by expanding the retina).
According to the number of points and their connections to the predicates,
Minsky and Papert differentiated between

• Diameter limited perceptrons: the receptive field of each predicate has a
limited diameter.

• Perceptrons of limited order: each receptive field can only contain up to a
certain maximum number of points.

• Stochastic perceptrons: each receptive field consists of a number of ran-
domly chosen points

Some patterns are more difficult to identify than others and this struc-
tural classification of perceptrons is a first attempt at defining something like
complexity classes for pattern recognition. Connectedness is an example of a
property that cannot be recognized by constrained systems.

Proposition 6. No diameter limited perceptron can decide whether a geomet-
ric figure is connected or not.

A B C D

Proof. We proceed by contradiction, assuming that a perceptron can decide
whether a figure is connected or not. Consider the four patterns shown above;
notice that only the middle two are connected.

Since the diameters of the receptive fields are limited, the patterns can
be stretched horizontally in such a way that no single receptive field contains
points from both the left and the right ends of the patterns. In this case

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.1 Perceptrons and parallel processing 59

we have three different groups of predicates: the first group consists of those
predicates whose receptive fields contain points from the left side of a pattern.
Predicates of the second group are those whose receptive fields cover the right
side of a pattern. All other predicates belong to the third group. In Figure 3.3
the receptive fields of the predicates are represented by circles.

group 1 group 3 group 2

Fig. 3.3. Receptive fields of predicates

All predicates are connected to a threshold element through weighted edges
which we denote by the letter w with an index. The threshold element decides
whether a figure is connected or not by performing the computation

S =
∑

Pi∈group 1

w1iPi +
∑

Pi∈group 2

w2iPi +
∑

Pi∈group 3

w3iPi − θ ≥ 0.

If S is positive the figure is recognized as connected, as is the case, for example,
in Figure 3.3.

If the disconnected pattern A is analyzed, then we should have S < 0.
Pattern A can be transformed into pattern B without affecting the output of
the predicates of group 3, which do not recognize the difference since their
receptive fields do not cover the sides of the figures. The predicates of group
2 adjust their outputs by ∆2S so that now

S +∆2S ≥ 0⇒ ∆2S ≥ −S.

If pattern A is transformed into pattern C, the predicates of group 1 adjust
their outputs so that the threshold element receives a net excitation, i.e.,

S +∆1S ≥ 0⇒ ∆1S ≥ −S.

However, if pattern A is transformed into pattern D, the predicates of group
1 cannot distinguish this case from the one for figure C and the predicates
of group 2 cannot distinguish this case from the one for figure B. Since the
predicates of group 3 do not change their output we have

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

60 3 Weighted Networks – The Perceptron

∆S = ∆2S +∆1S ≥ −2S,

and from this
S +∆S ≥ −S > 0.

The value of the new sum can only be positive and the whole system classifies
figure D as connected. Since this is a contradiction, such a system cannot
exist. 2

Proposition 6 states only that the connectedness of a figure is a global
property which cannot be decided locally. If no predicate has access to the
whole figure, then the only alternative is to process the outputs of the predi-
cates sequentially.

There are some other difficult problems for perceptrons. They cannot de-
cide, for example, whether a set of points contains an even or an odd number
of elements when the receptive fields cover only a limited number of points.

3.2 Implementation of logical functions

In the previous chapter we discussed the synthesis of Boolean functions using
McCulloch–Pitts networks. Weighted networks can achieve the same results
with fewer threshold gates, but the issue now is which functions can be im-
plemented using a single unit.

3.2.1 Geometric interpretation

In each of the previous sections a threshold element was associated with a
whole set of predicates or a network of computing elements. From now on, we
will deal with perceptrons as isolated threshold elements which compute their
output without delay.

Definition 1. A simple perceptron is a computing unit with threshold θ which,
when receiving the n real inputs x1, x2, . . . , xn through edges with the associ-
ated weights w1, w2, . . . , wn, outputs 1 if the inequality

∑n
i=1 wixi ≥ θ holds

and otherwise 0.

The origin of the inputs is not important, whether they come from other
perceptrons or another class of computing units. The geometric interpretation
of the processing performed by perceptrons is the same as with McCulloch–
Pitts elements. A perceptron separates the input space into two half-spaces.
For points belonging to one half-space the result of the computation is 0, for
points belonging to the other it is 1.

Figure 3.4 shows this for the case of two variables x1 and x2. A perceptron
with threshold 1, at which two edges with weights 0.9 and 2.0 impinge, tests
the condition

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.2 Implementation of logical functions 61

0. 9x1 + 2x2 ≥ 1

0. 9x1 + 2x2 < 1

x1

x2

Fig. 3.4. Separation of input space with a perceptron

0.9x1 + 2x2 ≥ 1.

It is possible to generate arbitrary separations of input space by adjusting the
parameters of this example.

In many cases it is more convenient to deal with perceptrons of thresh-
old zero only. This corresponds to linear separations which are forced to go
through the origin of the input space. The two perceptrons in Figure 3.5 are
equivalent. The threshold of the perceptron to the left has been converted
into the weight −θ of an additional input channel connected to the constant
1. This extra weight connected to a constant is called the bias of the element.

1

0

w1

wn

−θ

w1

wn

x1 x1

xn xn

θ ⇒
...

...

Fig. 3.5. A perceptron with a bias

Most learning algorithms can be stated more concisely by transforming
thresholds into biases. The input vector (x1, x2, . . . , xn) must be extended with
an additional 1 and the resulting (n+1)-dimensional vector (x1, x2, . . . , xn, 1)
is called the extended input vector. The extended weight vector associated
with this perceptron is (w1, . . . , wn, wn+1), whereby wn+1 = −θ.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

62 3 Weighted Networks – The Perceptron

3.2.2 The XOR problem

We can now deal with the problem of determining which logical functions can
be implemented with a single perceptron. A perceptron network is capable
of computing any logical function, since perceptrons are even more powerful
than unweighted McCulloch–Pitts elements. If we reduce the network to a
single element, which functions are still computable?

Taking the functions of two variables as an example we can gain some
insight into this problem. Table 3.1 shows all 16 possible Boolean functions
of two variables f0 to f15. Each column fi shows the value of the function for
each combination of the two variables x1 and x2. The function f0, for example,
is the zero function whereas f14 is the OR-function.

Table 3.1. The 16 Boolean functions of two variables

x1 x2 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Perceptron-computable functions are those for which the points whose
function value is 0 can be separated from the points whose function value is
1 using a line. Figure 3.6 shows two possible separations to compute the OR
and the AND functions.

1 1

10

0

0 0

1

OR AND

Fig. 3.6. Separations of input space corresponding to OR and AND

It is clear that two of the functions in the table cannot be computed in
this way. They are the function XOR and identity (f6 and f9). It is intuitively
evident that no line can produce the necessary separation of the input space.
This can also be shown analytically.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.3 Linearly separable functions 63

Let w1 and w2 be the weights of a perceptron with two inputs, and θ its
threshold. If the perceptron computes the XOR function the following four
inequalities must be fulfilled:

x1 = 0 x2 = 0 w1x1 + w2x2 = 0 ⇒ 0 < θ
x1 = 1 x2 = 0 w1x1 + w2x2 = w1 ⇒ w1 ≥ θ
x1 = 0 x2 = 1 w1x1 + w2x2 = w2 ⇒ w2 ≥ θ
x1 = 1 x2 = 1 w1x1 + w2x2 = w1 + w2 ⇒ w1 + w2 < θ

Since θ is positive, according to the first inequality, w1 and w2 are positive
too, according to the second and third inequalities. Therefore the inequality
w1 + w2 < θ cannot be true. This contradiction implies that no perceptron
capable of computing the XOR function exists. An analogous proof holds for
the function f9.

3.3 Linearly separable functions

The example of the logical functions of two variables shows that the problem
of perceptron computability must be discussed in more detail. In this section
we provide the necessary tools to deal more effectively with functions of n
arguments.

3.3.1 Linear separability

We can deduce from our experience with the XOR function that many other
logical functions of several arguments must exist which cannot be computed
with a threshold element. This fact has to do with the geometry of the n-
dimensional hypercube whose vertices represent the combination of logic val-
ues of the arguments. Each logical function separates the vertices into two
classes. If the points whose function value is 1 cannot be separated with
a linear cut from the points whose function value is 0, the function is not
perceptron-computable. The following two definitions give this problem a
more general setting.

Definition 2. Two sets of points A and B in an n-dimensional space are
called linearly separable if n + 1 real numbers w1, . . . , wn+1 exist, such that
every point (x1, x2, . . . , xn) ∈ A satisfies

∑n
i=1 wixi ≥ wn+1 and every point

(x1, x2, . . . , xn) ∈ B satisfies
∑n

i=1 wixi < wn+1

Since a perceptron can only compute linearly separable functions, an inter-
esting question is how many linearly separable functions of n binary arguments
there are. When n = 2, 14 out of the 16 possible Boolean functions are lin-
early separable. When n = 3, 104 out of 256 and when n = 4, 1882 out of
65536 possible functions are linearly separable. Although there has been ex-
tensive research on linearly separable functions in recent years, no formula for

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

64 3 Weighted Networks – The Perceptron

expressing the number of linearly separable functions as a function of n has
yet been found. However we will provide some upper bounds for this number
in the following chapters.

3.3.2 Duality of input space and weight space

The computation performed by a perceptron can be visualized as a linear sep-
aration of input space. However, when trying to find the appropriate weights
for a perceptron, the search process can be better visualized in weight space.
When m real weights must be determined, the search space is the whole of
IRm.

x1

x2

w1

w2

•

•

− θ = w3
x3

Fig. 3.7. Illustration of the duality of input and weight space

For a perceptron with n input lines, finding the appropriate linear sep-
aration amounts to finding n + 1 free parameters (n weights and the bias).
These n+1 parameters represent a point in (n+1)-dimensional weight space.
Each time we pick one point in weight space we are choosing one combina-
tion of weights and a specific linear separation of input space. This means
that every point in (n + 1)-dimensional weight space can be associated with
a hyperplane in (n + 1)-dimensional extended input space. Figure 3.7 shows
an example. Each combination of three weights, w1, w2, w3, which represent
a point in weight space, defines a separation of input space with the plane
w1x1 + w2x2 + w3x3 = 0.

There is the same kind of relation in the inverse direction, from input to
weight space. If we want the point x1, x2, x3 to be located in the positive
half-space defined by a plane, we need to determine the appropriate weights
w1, w2 and w3. The inequality

w1x1 + w2x2 + w3x3 ≥ 0

must hold. However this inequality defines a linear separation of weight space,
that is, the point (x1, x2, x3) defines a cutting plane in weight space. Points in
one space are mapped to planes in the other and vice versa. This complemen-
tary relation is called duality. Input and weight space are dual spaces and we

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.3 Linearly separable functions 65

can visualize the computations done by perceptrons and learning algorithms
in any one of them. We will switch from one visualization to the other as
necessary or convenient.

3.3.3 The error function in weight space

Given two sets of patterns which must be separated by a perceptron, a learn-
ing algorithm should automatically find the weights and threshold necessary
for the solution of the problem. The perceptron learning algorithm can accom-
plish this for threshold units. Although proposed by Rosenblatt it was already
known in another context [10].

Assume that the set A of input vectors in n-dimensional space must be
separated from the set B of input vectors in such a way that a perceptron
computes the binary function fw with fw(x) = 1 for x ∈ A and fw(x) = 0
for x ∈ B. The binary function fw depends on the set w of weights and
threshold. The error function is the number of false classifications obtained
using the weight vector w. It can be defined as:

E(w) =
∑

x∈A

(1 − fw(x)) +
∑

x∈B

fw(x).

This is a function defined over all of weight space and the aim of perceptron
learning is to minimize it. Since E(w) is positive or zero, we want to reach the
global minimum where E(w) = 0. This will be done by starting with a random
weight vector w, and then searching in weight space a better alternative, in
an attempt to reduce the error function E(w) at each step.

3.3.4 General decision curves

A perceptron makes a decision based on a linear separation of the input space.
This reduces the kinds of problem solvable with a single perceptron. More
general separations of input space can help to deal with other kinds of problem
unsolvable with a single threshold unit. Assume that a single computing unit
can produce the separation shown in Figure 3.8. Such a separation of the input
space into two regions would allow the computation of the XOR function with
a single unit. Functions used to discriminate between regions of input space
are called decision curves [329]. Some of the decision curves which have been
studied are polynomials and splines.

In statistical pattern recognition problems we assume that the patterns to
be recognized are grouped in clusters in input space. Using a combination of
decision curves we try to isolate one cluster from the others. One alternative
is combining several perceptrons to isolate a convex region of space. Other
alternatives which have been studied are, for example, so-called Sigma-Pi
units which, for a given input x1, x2, . . . , xn, compute the sum of all or some
partial products of the form xixj [384].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

66 3 Weighted Networks – The Perceptron

1

1

0

0

Fig. 3.8. Non-linear separation of input space

In the general case we want to distinguish between regions of space. A
neural network must learn to identify these regions and to associate them
with the correct response. The main problem is determining whether the free
parameters of these decision regions can be found using a learning algorithm.
In the next chapter we show that it is always possible to find these free
parameters for linear decision curves, if the patterns to be classified are indeed
linearly separable. Finding learning algorithms for other kinds of decision
curves is an important research topic not dealt with here [45, 4].

3.4 Applications and biological analogy

The appeal of the perceptron model is grounded on its simplicity and the
wide range of applications that it has found. As we show in this section,
weighted threshold elements can play an important role in image processing
and computer vision.

3.4.1 Edge detection with perceptrons

A good example of the pattern recognition capabilities of perceptrons is edge
detection (Figure 3.9). Assume that a method of extracting the edges of a
figure darker than the background (or the converse) is needed. Each pixel in
the figure is compared to its immediate neighbors and in the case where the
pixel is black and one of its neighbors white, it will be classified as part of
an edge. This can be programmed sequentially in a computer, but since the
decision about each point uses only local information, it is straightforward to
implement the strategy in parallel.

Assume that the figures to be processed are projected on a screen in which
each pixel is connected to a perceptron, which also receives inputs from its
immediate neighbors. Figure 3.10 shows the shape of the receptive field (a
so-called Moore neighborhood) and the weights of the connections to the
perceptron. The central point is weighted with 8 and the rest with −1. In the
field of image processing this is called a convolution operator, because it is

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.4 Applications and biological analogy 67

Fig. 3.9. Example of edge detection

used by centering it at each pixel of the image to produce a certain output
value for each pixel. The operator shown has a maximum at the center of the
receptive field and local minima at the periphery.

-1

-1

-1

-1

-1

-1

-1

 8

-1

Fig. 3.10. Edge detection operator

Figure 3.11 shows the kind of interconnection we have in mind. A percep-
tron is needed for each pixel. The interconnection pattern repeats for each
pixel in the projection lattice, taking care to treat the borders of the screen
differently. The weights are those given by the edge detection operator.

0.5

Fig. 3.11. Connection of a perceptron to the projection grid

For each pattern projected onto the screen, the weighted input is com-
pared to the threshold 0.5. When all points in the neighborhood are black
or all white, the total excitation is 0. In the situation shown below the total
excitation is 5 and the point in the middle belongs to an edge.

There are many other operators for different uses, such as detecting hor-
izontal or vertical lines or blurring or making a picture sharper. The size of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

68 3 Weighted Networks – The Perceptron

the neighborhood can be adjusted to the specific application. For example,
the operator

−1 0 1
−1 0 1
−1 0 1

can be used to detect the vertical edges between a white surface to the left
and a dark one to the right.

3.4.2 The structure of the retina

The visual pathway is the part of the human brain which is best understood.
The retina can be conceived as a continuation of this organ, since it consists
of neural cells organized in layers and capable of providing in situ some of
the information processing necessary for vision. In frogs and other small ver-
tebrates some neurons have been found directly in the retina which actually
fire in the presence of a small blob in the visual field. These are bug detectors
which tell these animals when a small insect has been sighted.

Researchers have found that the cells in the retina are interconnected in
such a way that each nerve going from the eyes to the brain encodes a summary
of the information detected by several photoreceptors in the retina. As in the
case of the convolution operators discussed previously, each nerve transmits
a signal which depends on the relative luminosity of a point in relation to its
immediate neighborhood.

Figure 3.12 shows the interconnection pattern found in the retina [205,
111]. The cones and rods are the photoreceptors which react to photons by
depolarizing. Horizontal cells compute the average luminosity in a region by
connecting to the cones or rods in this region. Bipolar and ganglion cells fire
only when the difference in the luminosity of a point is significantly higher
than the average light intensity.

Although not all details of the retinal circuits have been reverse-engineered,
there is a recurrent feature: each receptor cell in the retina is part of a roughly
circular receptive field. The receptive fields of neighboring cells overlap. Their
function is similar to the edge processing operators, because the neighborhood
inhibits a neuron whereas a photoreceptor excites it, or conversely. This kind
of weighting of the input has a strong resemblance to the so-called Mexican
hat function.

David Marr tried to summarize what we know about the visual pathway
in humans and proposed his idea of a process in three stages, in which the
brain first decomposes an image into features (edges, blobs, etc.), which are
then used to build an interpretation of surfaces, depth relations and groupings
of tokens (the “2 1

2 sketch”) and which in turn leads to a full interpretation
of the objects present in the visual field (the primal sketch) [293]. He tried
to explain the structure of the retina from the point of view of the compu-
tational machinery needed for vision. He proposed that at a certain stage of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.4 Applications and biological analogy 69

receptors

bipolar cells

ganglion cell

horizontal cells

Fig. 3.12. The interconnection pattern in the retina

pattern

weights

1

1

1

1

1111

1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

Fig. 3.13. Feature detector for the pattern T

the computation the retina blurs an image and then extracts from it contrast
information. Blurring an image can be done by averaging at each pixel the
values of this pixel and its neighbors. A Gaussian distribution of weights can
be used for this purpose. Information about changes in darkness levels can be

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

70 3 Weighted Networks – The Perceptron

extracted using the sum of the second derivatives of the illumination function,
the so-called Laplace operator ∇2 = ∂2/∂x2 + ∂2/∂y2. The composition of
the Laplace operator and a Gaussian blurring corresponds to the Mexican hat
function. Processing of the image is done by computing the convolution of the
discrete version of the operator with the image. The 3× 3 discrete version of
this operator is the edge detection operator which we used before. Different
levels of blurring, and thus feature extraction at several different resolution
levels, can be controlled by adjusting the size of the receptive fields of the
computing units. It seems that the human visual pathway also exploits fea-
ture detection at several resolution levels, which has led in turn to the idea of
using several resolution layers for the computational analysis of images.

3.4.3 Pyramidal networks and the neocognitron

Single perceptrons can be thought of as feature detectors. Take the case of
Figure 3.13 in which a perceptron is defined with weights adequate for rec-
ognizing the letter ‘T’ in which t pixels are black. If another ‘T’ is presented,
in which one black pixel is missing, the excitation of the perceptron is t− 1.
The same happens if one white pixel is transformed into a black one due to
noise, since the weights of the connections going from points that should be
white are −1. If the threshold of the perceptron is set to t − 1, then this
perceptron will be capable of correctly classifying patterns with one noisy
pixel. By adjusting the threshold of the unit, 2, 3 or more noisy pixels can be
tolerated. Perceptrons thus compute the similarity of a pattern to the ideal
pattern they have been designed to identify, and the threshold is the minimal
similarity that we require from the pattern. Note that since the weights of
the perceptron are correlated with the pattern it recognizes, a simple way to
visualize the connections of a perceptron is to draw the pattern it identifies
in its receptive field. This technique will be used below.

The problem with this pattern recognition scheme is that it only works
if the patterns have been normalized in some way, that is, if they have been
centered in the window to which the perceptron connects and their size does
not differ appreciably from the ideal pattern. Also, any kind of translational
shift will lead to ideal patterns no longer being recognized. The same happens
in the case of rotations.

An alternative way of handling this problem is to try to detect patterns
not in a single step, but in several stages. If we are trying, for example,
to recognize handwritten digits, then we could attempt to find some small
distinctive features such as lines in certain orientations and then combine our
knowledge about the presence or absence of these features in a final logical
decision. We should try to recognize these small features, regardless of their
position on the projection screen.

The cognitron and neocognitron were designed by Fukushima and his col-
leagues as an attempt to deal with this problem and in some way to try to
mimic the structure of the human vision pathway [144, 145]. The main idea of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.4 Applications and biological analogy 71

level 1

level 2

level 3

level 4

Fig. 3.14. Pyramidal architecture for image processing

the neocognitron is to transform the contents of the screen into other screens
in which some features have been enhanced, and then again into other screens,
and so on, until a final decision is made. The resolution of the screen can be
changed from transformation to transformation or more screens can be in-
troduced, but the objective is to reduce the representation to make a final
classification in the last stage based on just a few points of input.

The general structure of the neural system proposed by Fukushima is a
kind of variant of what is known in the image processing community as a
pyramidal architecture, in which the resolution of the image is reduced by a
certain factor from plane to plane [56]. Figure 3.14 shows an example of a
quad-pyramid, that is, a system in which the resolution is reduced by a factor
of four from plane to plane. Each pixel in one of the upper planes connects to
four pixels in the plane immediately below and deals with them as elements of
its receptive field. The computation to determine the value of the upper pixel
can be arbitrary, but in our case we are interested in threshold computations.
Note that in this case receptive fields do not overlap. Such architectures have
been studied intensively to determine their capabilities as data structures for
parallel algorithms [80, 57].

The neocognitron has a more complex architecture [280]. The image is
transformed from the original plane to other planes to look for specific fea-
tures.

Figure 3.15 shows the general strategy adopted in the neocognitron. The
projection screen is transformed, deciding for each pixel if it should be kept
white or black. This can be done by identifying the patterns shown for each
of the three transformations by looking at each pixel and its eight neighbors.
In the case of the first transformed screen only horizontal lines are kept;
in the second screen only vertical lines and in the third screen only diagonal
lines. The convolution operators needed have the same distribution of positive

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

72 3 Weighted Networks – The Perceptron

patterns

transformation

1 11

1

1

1

1

1

1

convolution
operators

Fig. 3.15. Feature extraction in the neocognitron

weights, as shown for each screen. The rest of the weights is 0. Note that these
special weights work better if the pattern has been previously ‘skeletonized’.

Strictly speaking Fukushima’s neocognitron uses linear computing units
and not perceptrons. The units compute their total weighted input and this
is interpreted as a kind of correlation index with the patterns that each unit
can identify. This means that black and white patterns are transformed into
patterns with shadings of gray, according to the output of each mapping unit.
Figure 3.16 shows the general structure of the neocognitron network. The
input layer of the network is called UC0. This input layer is processed and
converted into twelve different images numbered US1

0 to US1
11 with the same

resolution. The superindex in front of a name is the layer number and the
subindex the number of the plane in this layer. The operators used to trans-
form from UC0 to each of the US1

i planes have a receptive field of 3×3 pixels
and one operator is associated with each pixel in the US1

i planes. In each
plane only one kind of feature is recognized. The first plane US1

1 , for example,
could contain all the vertical edges found in UC0, the second plane US1

2 only
diagonal edges, and so forth. The next level of processing is represented by
the UC1

j planes. Each pixel in one of these planes connects to a receptive field

in one or two of the underlying US1
i planes. The weights are purely excitatory

and the effect of this layer is to overlap the activations of the selected US1
i

images, blurring them at the same time, that is, making the patterns wider.
This is achieved by transforming each pixel’s value in the weighted average of
its own and its neighbor’s values.

In the next level of processing each pixel in a US2
i plane connects to a

receptive field at the same position in all of the UC1
j images. At this level

the resolution of the US2
i planes can be reduced, as in standard pyramidal

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.4 Applications and biological analogy 73

UC

US planes

UC planes

.

.

. .
.
.

1

1

0

i

j

Fig. 3.16. The architecture of the neocognitron

architectures. Fig 3.16 shows the sizes of the planes used by Fukushima for
handwritten digit recognition. Several layers of alternating US and UC planes
are arranged in this way until at the plane UC4 a classification of the hand-
written digit in one of the classes 0, . . . , 9 is made. Finding the appropriate
weights for the classification task is something we discuss in the next chap-
ter. Fukushima has proposed several improvements of the original model [147]
over the years.

The main advantage of the neocognitron as a pattern recognition device
should be its tolerance to shifts and distortions. Since the UC layers blur
the image and the US layers look for specific features, a certain amount of
displacement or rotation of lines should be tolerated. This can happen, but the
system is highly sensitive to the training method used and does not outperform
other simpler neural networks [280]. Other authors have examined variations
of the neocognitron which are more similar to pyramidal networks [463]. The
neocognitron is just an example of a class of network which relies extensively
on convolution operators and pattern recognition in small receptive fields. For
an extensive discussion of the neocognitron consult [133].

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

74 3 Weighted Networks – The Perceptron

3.4.4 The silicon retina

Carver Mead’s group at Caltech has been active for several years in the field
of neuromorphic engineering, that is, the production of chips capable of em-
ulating the sensory response of some human organs. Their silicon retina, in
particular, is able to simulate some of the features of the human retina.

Mead and his collaborators modeled the first three layers of the retina:
the photoreceptors, the horizontal, and the bipolar cells [303, 283]. The hor-
izontal cells are simulated in the silicon retina as a grid of resistors. Each
photoreceptor (the dark points in Figure 3.17) is connected to each of its six
neighbors and produces a potential difference proportional to the logarithm
of the luminosity measured. The grid of resistors reaches electric equilibrium
when an average potential difference has settled in. The individual neurons of
the silicon retina fire only when the difference between the average and their
own potential reaches a certain threshold.

Fig. 3.17. Diagram of a portion of the silicon retina

The average potential S of n potentials Si can be computed by letting each
potential Si be proportional to the logarithm of the measured light intensity
Hi, that is,

S =
1

n

n∑

i=1

Si =
1

n

n∑

i=1

logHi.

This expression can be transformed into

S =
1

n
log(H1H2 · · ·Hn) = log(H1H2 · · ·Hn)1/n.

The equation tells us that the average potential is the logarithm of the ge-
ometric mean of the light intensities. A unit only fires when the measured
intensity Si minus the average intensity lies above a certain threshold γ, that
is,

log(Hi)− log(H1H2 · · ·Hn)1/n ≥ γ,

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

3.5 Historical and bibliographical remarks 75

and this is valid only when

log
Hi

(H1H2 · · ·Hn)1/n
≥ γ.

The units in the silicon retina fire when the relative luminosity of a point
with respect to the background is significantly higher, such as in a human
retina. We know from optical measurements that when outside on a sunny
day, the black letters in a book reflect more photons on our eyes than white
paper does in a room. Our eyes adjust automatically to compensate for the
luminosity of the background so that we can recognize patterns and read
books inside and outside.

3.5 Historical and bibliographical remarks

The perceptron was the first neural network to be produced commercially,
although the first prototypes were used mainly in research laboratories. Frank
Rosenblatt used the perceptron to solve some image recognition problems
[185]. Some researchers consider the perceptron as the first serious abstract
model of nervous cells [60].

It was not a coincidence that Rosenblatt conceived his model at the end of
the 1950s. It was precisely in this period that researchers like Hubel and Wiesel
were able to “decode” the structure of the retina and examine the structure
of the receptive fields of neurons. At the beginning of the 1970s, researchers
had a fair global picture of the architecture of the human eye [205]. David
Marr’s influential book Vision offered the first integrated picture of the visual
system in a way that fused biology and engineering, by looking at the way the
visual pathway actually computed partial results to be integrated in the raw
visual sketch.

The book Perceptrons by Minsky and Papert was very influential among
the AI community and is said to have affected the strategic funding decisions
of research agencies. This book is one of the best ever written on its subject
and set higher standards for neural network research, although it has been
criticized for stressing the incomputability, not the computability results. The
Dreyfus brothers [114] consider the reaction to Perceptrons as one of the mile-
stones in the permanent conflict between the symbolic and the connectionist
schools of thought in AI. According to them, reaction to the book opened the
way for a long period of dominance of the symbolic approach. Minsky, for his
part, now propagates an alternative massively parallel paradigm of a society
of agents of consciousness which he calls a society of mind [313].

Convolution operators for image processing have been used for many years
and are standard methods in the fields of image processing and computer
vision. Chips integrating this kind of processing, like the silicon retina, have
been produced in several variants and will be used in future robots. Some
researchers dream of using similar chips to restore limited vision to blind

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

76 3 Weighted Networks – The Perceptron

persons with intact visual nerves, although this is, of course, still an extremely
ambitious objective [123].

Exercises

1. Write a computer program that counts the number of linearly separable
Boolean functions of 2, 3, and 4 arguments. Hint: Generate the perceptron
weights randomly.

2. Consider a simple perceptron with n bipolar inputs and threshold θ = 0.
Restrict each of the weights to have the value −1 or 1. Give the smallest
upper bound you can find for the number of functions from {−1, 1}n to
{−1, 1} which are computable by this perceptron [219]. Prove that the
upper bound is sharp, i.e., that all functions are different.

3. Show that two finite linearly separable sets A and B can be separated by
a perceptron with rational weights. Note that in Def. 2 the weights are
real numbers.

4. Prove that the parity function of n > 2 binary inputs x1, x2, . . . , xn cannot
be computed by a perceptron.

5. Implement edge detection with a computer program capable of processing
a computer image.

6. Write a computer program capable of simulating the silicon retina. Show
the output produced by different pictures on the computer’s screen.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

