
Bachelorarbeit am Institut für Informatik der Freien Universität Berlin

Human-Centered Computing (HCC)

Analyzing Behavioural Patterns in Online Knowledge
Collaborations: A Case Study of Wikidata

Hong Zhu

Betreuerin und Erstgutachterin: Prof. Dr. C. Müller-Birn

Zweitgutachter: Prof. Dr. L. Prechelt

Berlin, den September 26, 2019

Eidesstattliche Erklärung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand anderem als meiner Person
verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte, Bücher, Internetseiten oder ähn-
liches sind im Literaturverzeichnis angegeben, Zitate aus fremden Arbeiten sind als solche kenntlich
gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungskommis-
sion vorgelegt und auch nicht veröffentlicht.

Berlin, den October 17, 2019

Hong Zhu

Abstract

Research into online knowledge ontologies like Wikidata has often overlooked the important interac-
tion patterns in exploring the collaboration temporal dynamics. This thesis outlines a step-by-step
procedure for investigating the frequent patterns of sequential behaviors in terms of data quality.
Using a dataset of 146,450 revisions to 500 Wikidata items as a case study, the thesis employs
a machine learning based tool as a proxy to evaluate the temporal item quality, and utilizes the
Jensen-Shannon distance as a metric to quantify the quality variations. Referenced from the meth-
ods already developed in fields like bio-informatics, the case study mined the revisions collected using
the PrefixSpan algorithm in a constraint-based fashion. Having identified the frequent sequential
editing patterns that satisfy specific quality constraints, the study demonstrated the impacts of
different sequence identifications regarding data quality.

Contents

1 Introduction 13

2 Relevant Topics 15
2.1 Wikidata . 15
2.2 Data Quality . 16
2.3 Sequence Pattern Mining . 20

3 Sequence Analysis Methodology 23
3.1 Identification of Sequences . 24
3.2 Schematization of Sequences . 24
3.3 Analysis of Sequences . 27
3.4 Interpretation of Sequences . 28

4 Case Study 29
4.1 Sample and Data Extraction . 29
4.2 Data Representation . 31
4.3 Sequence Mining . 35
4.4 Behavioral Patterns . 37

5 Conclusion 41

Literature 43

Appendix 47
5.1 Activity Coding Scheme . 47
5.2 Statistics of JS-distance with an Edit Focus Perspective 50
5.3 Statistics of JS-distance with an Activity Type Perspective 52

7

List of Figures

4.1 Topical categories overview of items in the data sample 30
4.2 Database schema of article sample in an ER-diagram format 31
4.3 The average JS distance value and article lifetime over each article development stage 33

9

List of Tables

2.1 ORES item-quality grading scheme . 17
2.2 Example of prediction results based on ORES item-quality model 18
2.3 Example of Wikidata event log sequences in horizontal formatting data layout 21

3.1 Example of a Wikidata event log . 24
3.2 Example of two dimensional feature selections . 25
3.3 Edit type coding scheme of Wikibase API wbsetaliases module 26
3.4 Example of constraint-based pruning with the JS distance greater than 0.01 27

4.1 Two dimensional feature selections for the case study 29
4.2 Descriptive statistics of JS distance in the data sample 32
4.3 Example of undetected article quality variations . 32
4.4 Top 10 powerful edit types . 34
4.5 Example of prefix-based projection. 35
4.6 Most frequent edit type sequences with low article quality variation 37
4.7 Most frequent edit type sequences with middle article quality variation 38
4.8 Most frequent edit type sequences with high article quality variation 39

5.2 Statistics of JS distance value with an edit focus perspective 51
5.3 Statistics of JS distance value with an activity type perspective 52

11

1 Introduction

A knowledge-base is a technology used to store complex structured data used by a computer sys-
tem. To create abundant knowledge-based goods, online knowledge collaboration, which is broadly
defined as the sharing, accumulation, transformation, and co-creation of knowledge, is becoming a
primary way as it allows distributed members self-organized to work for shared goals [4]. Online
knowledge collaborations enormously make up the insufficiency in the traditional organizational
mechanisms in consideration of the absence of stable membership, persistent interaction, or shared
goals [11]. Meanwhile, its rapid development increases the complexity of structured knowledge rep-
resentations, since no more single authority can develop all. Therefore, as Walk et al. [24] pointed
out, it is a considerable task for us to better understand and regulate the underlying co-production
processes of how users collaboratively edit the knowledge-bases.

Motivation. Existing studies investigated the structure of online knowledge collaborations of-
ten from a static perspective, yet overlooked the importance of behavioral interaction patterns
in exploring the collaborative temporal dynamics. The availability of meta-data from large-scale
collaborative ontology projects such as Wikidata could bridge the gap between the exploration of
temporal dynamics and sequence analysis theory. A conceptualization with more emphasizes on
temporal dynamics could help us better understand the complex processes in terms of contributor
relationships, co-production patterns and sequential consequences. However, instead of identifying
the sequential patterns in multiple dimensions, the studies are mostly restricted to a single perspec-
tive, e.g., that of contributors or activities [11].

Objective. Keegan et al. [11] proposed a general framework for analyzing multi-type and multi-
stage co-production routines by relying on existing approaches to sequence analysis, followed with
an empirical investigation of English Wikipedia and its communities. The goal in this work is to
employ and extend the framework by specifying it into a Wikidata domain, as well as proposing con-
ceptual and fundamental procedures to investigate which identification of sequences is most effective
in terms of data quality. To illustrate the extended methodology as well as verify its feasibility to
answer the research question, some sequence identifications were applied and investigated as a case
study.

Structure. The work is organized as follows: Chapter 2 surveys related research concerning se-
quence analysis in online knowledge collaborations, especially in the area of Wikidata. Chapter 3
describes a methodological framework of investigating Wikidata’s editing behaviours. General ap-
proaches corresponding to diverse research directions are presented explicitly in this Chapter. A
case study adopting the proposed framework is conducted in Chapter 4. Chapter 5 concludes this
study and discusses future elaborations.

13

1. Introduction

14

2 Relevant Topics

2.1 Wikidata

Wikidata, known as the sibling project of Wikipedia, is a project of peer production with a high-
quality, language-independent, open-licensed knowledge base. It stands out for its structured data
storage and considerable application potentials. By allowing more comfortable utilization of struc-
tured data that can be presented as objective facts, Wikidata enables better data quality and higher
consistency across the various Wikipedia language versions [2]. It serves as a primary data source
for Wikipedia or other Wikimedia projects, and provides data to open source development projects
such as OpenStreetMap1. Meanwhile, Wikidata increasingly demonstrated its commercial value as
it has been applied to products such as Amazon smart speaker Alexa by teaching Alexa to recognize
the pronunciation of song titles in different languages [20].
As an online knowledge collaboration, Wikidata allows individuals to share their knowledge in

the ways that benefit the community’s greater worth. Currently, Wikidata consists of 56, 767, 847
content pages which are contributed by 3, 278, 335 registered users2. Similar to Wikipedia and other
socio-technical systems, Wikidata records the complete history of changes to each article since the
first edit. The availability of the meta-data in forms of event logs, which describe the editing
histories in detail, provides substantial opportunity for a better understanding of how the work
proceeds, and how the roles are structured or transformed [11].
Like Wikipedia, Wikidata is organized in pages. Each page corresponds to an entity, which can

be divided according to different namespaces mostly into an instance knowledge item (e.g., Berlin)
or a conceptual knowledge property (e.g., instance of) [18]. Erxleben et al. [3] described the content
model of Wikidata in detail, noting that each entity is identified by an automatically assigned unique
identifier and described by the following main parts:

• Label

• Description

• Alias

• Sitelink

• Statement (Qualifier, Reference)

Label, description and alias are also known as Term, which is language-specific and used basically
to find and display entities [3]. The sitelink connects to pages about the entity on Wikipedia
and other Wikimedia projects. The statement consists of one or multiple property-value pairs
(claim), and describes the entity by their characteristics [18]. It can be enriched with qualifiers and
references, which provide additional context information and support. Wikimedia Toolforge3, whose
infrastructure is supported by a dedicated group of Wikimedia Foundation staff and volunteers, is
a hosting environment for Wiki-project contributors working on services that provide value to the
Wikimedia movement. These services enable contributors to do analysis easily, administer bots, run

1An online map with an open license, available at https://www.openstreetmap.org
2https://www.wikidata.org/wiki/Special:Statistics [Accessed: 15-Jul-2019]
3https://tools.wmflabs.org [Accessed: 28-Jul-2019]

15

https://www.wikidata.org/wiki/Special:Statistics
https://tools.wmflabs.org

2.2. Data Quality

web-services, and generally develop tools assisting other volunteers in their work. One of the critical
features of Toolforge environment is the access to replications of the Wikimedia databases. After a
successful application for a Toolforge developer account, all meta-data of Wikidata project can be
acquired by connecting to the replication database wikidatawiki_p via an SSH tunnel. There are
in total 83 tables storing contents about revisions, user information, and modules for development.
Some primary tables like Revision, User, Comment provide the crucial information for analyzing
the sequential editing behaviours4.

2.2 Data Quality

As a collaborative project, Wikidata allows everyone to edit productively, which leaves it open to
potentially disruptive contributions. Doubts about Wikidata’s long-term viability, therefore, have
been raised in terms of the quality and accuracy of statements [21]. Hence, technologies assisting
in maintaining Wikidata’s quality have been rapidly developed, from content changes tracking
such as watch-list5 to content changes reviewing like recent-changes stream6. However, a design
of scalable quality control processes, for instance, automated tools for vandalism detection, is still
quite necessary considering Wikidata’s huge editing amount7.
ORES (Objective Revision Evaluation Service) is a RESTful8 API service for automated quality

control, which can host machine learning classifiers for all Wikimedia projects, including Wikidata.
According to Sarabadani et al. [21], it is also the first published vandalism detection classifier for
Wikidata. For every edit revision, ORES generates three scores based on three machine learning
models which are independent of each other. Model damaging is designed for reviewing potentially
disruptive contributions, while model good-faith predicts whether an edit was saved in good-faith
and identifies the potentially good-faith contributors to offer them support. As both models are used
for scoring the quality of an edit, the third model item-quality serves primarily as a measurement
of the article quality.
Different from the damaging and good-faith models for focusing on the edit behaviors, model

item-quality puts more emphasis on the artifact, and predicts the assessment class of an article by
measuring the following metrics [21]:

• Number of added/removed/changed/current site links

• Number of added/removed/changed/current labels

• Number of added/removed/changed/current descriptions

• Number of added/removed/changed/current claims

• Number of added/removed/current aliases

• Number of added/removed/current badges

4More detailed descriptions about these tables can be found later in Chapter 4.1.
5Watch-list allows editors to be notified about changes made to contents in which they are interested. https:
//en.wikipedia.org/wiki/Help:Watchlist [Accessed: 31-Jul-2019]

6Recent changes stream provides an interface for reviewing all changes that have been made to Wikidata. https:
//www.mediawiki.org/wiki/API:Recent_changes_stream [Accessed: 31-Jul-2019]

7Wikidata has a huge editing amount, according to Sarabadani et al. [21] there were about 80,000 human edits and
200,000 automated edits per day in Feb. 2016.

8REST (Representational State Transfer) is a software architectural style that defines a set of constraints to be used
for creating Web services, RESTful Web services allow the requesting systems to access and manipulate textual
representations of Web resources by using a uniform and predefined set of stateless operations. More information
at https://en.wikipedia.org/wiki/Representational_state_transfer [Accessed: 31-Jul-2019]

16

https://en.wikipedia.org/wiki/Help:Watchlist
https://en.wikipedia.org/wiki/Help:Watchlist
https://www.mediawiki.org/wiki/API:Recent_changes_stream
https://www.mediawiki.org/wiki/API:Recent_changes_stream
https://en.wikipedia.org/wiki/Representational_state_transfer

Class Criteria Reader Experience

A Items containing all relevant statements with solid references,
complete translations, alias, sitelinks and a high quality image:

• All appropriate properties for this type of item have state-
ments with a plurality of external references for non-trivial
statements, appropriate ranks and qualifiers where appli-
cable
• Translations are completed for the most relevant lan-

guages: labels and descriptions
• All appropriate sitelinks to corresponding pages that exist

on other wikis
• All applicable aliases exist in most important languages
• There is a high quality image associated with the item

where applicable

All available informa-
tion is recorded with re-
liable references

B Items containing all of the most important statements, with
good references, translations, aliases, sitelinks, and an image:

• The most important properties for this type of item have
statements with external references for non-trivial state-
ments, some appropriate ranks and some qualifiers where
applicable
• Some important translations are completed: labels and

descriptions
• Most appropriate sitelinks to corresponding pages that

exist on other wikis
• Most applicable aliases exist in most important languages
• There is an image associated with the item

All of the basic informa-
tion and some extended
information with refer-
ences

C Items containing most critical statements, with some references,
translations, aliases, and sitelinks

• The critical properties for this type of item have state-
ments with references for some non-trivial statements
• A few completed translations: labels and descriptions
• Some sitelinks to corresponding pages that exist on other

wikis
• Applicable aliases exist only in some important languages

Most of the basic ex-
pected information is
available

D Items with some basic statements, but lacking in references,
translations, and aliases

• Some relevant properties for this type of item have state-
ments
• Has a label and description
• Minimal applicable aliases

The statements need to
provide enough infor-
mation to easily identify
the item

E All items that do not match grade “D” criteria

Table 2.1: ORES item-quality grading scheme.

17

2.2. Data Quality

• Number of added/removed/current qualifiers

• Number of added/removed/current internal/external9/unique references

• Number of changed identifiers

• Number of current complete/important translations

• Number of current important description translations

• Number of current important label translations

The model was initialized based on manual observations on 4, 964 randomly selected representative
articles, across Wikidata’s top-level topics such as culture and art; science and technology; geography
and position; people and personal life; and society, politics and history10. After the firsthand
classification results were collected and processed as the training sample, an iterative process was
carried out to train a predictable model. It employed the regression algorithms Random Forest
and Gradient Boosting11 as main approaches and, finally, achieved a prediction accuracy of 0.9707.
For each revision ID as input, the model item-quality takes the pre-defined grading scheme (cf.
Table 2.1) as a reference and returns a probability distribution of each quality class A, B, C, D, E
as can be seen in Table 2.2. Each value computed presents the degree of the achievement according
to the pre-defined description. As a distribution, all values are summed up to 1 and the highest
probability value decides the predicted class.
As the predicted quality classes distribution reflects a temporal state of article quality, comput-

ing the item qualities of two adjacent revisions that possess a parent-child relationship, as well as
comparing their respective distributions, provide an objective insight into the mechanism of quality
development. Moreover, analyzing the event logs in Wikidata concerning the article quality dynam-
ics may throw new light on studying the interactive behaviour patterns. For instance, Table 2.2
presents interesting item-quality dynamics of three serial revisions about an identical item, where
the probability distributions are developing along a zigzag path. It is fascinating to figure out
what exactly was done, so that the item-quality was dramatically increased for a moment and then
downgraded back to the original level.

Rev ID Parent ID A B C D E Class JS Edit Type

90357275 89561176 0.003 0.010 0.970 0.011 0.005 C 0.0 update sitelink
90389485 90357275 0.695 0.122 0.176 0.005 0.003 A 0.770 revert edit
90398504 90389485 0.012 0.073 0.921 0.003 0.002 C 0.716 remove label

Table 2.2: Example of prediction results based on ORES item-quality model (Each prob-
ability and JS distance is rounded up to 3 digits after the comma, the JS distance of the
first revision id is coincidentally a 0).

To better understand the mechanism of quality development, it is necessary to quantify the qual-
ity variations between adjacent revisions feasibly and efficiently. The Kullback-Leibler divergence
(KL-divergence) was introduced by Solomon Kullback and Richard Leibler in 1951 [13]. It is the
most commonly used non-symmetric measure of how one discrete probability distribution Q is differ-
ent from a second, reference discrete probability distribution P by calculating their relative entropy

9Internal references denotes the data resources from Wikimedia projects, external references refer correspondingly
to data sources out of Wikimedia projects sphere.

10https://www.wikidata.org/wiki/Wikidata:List_of_properties/en [Accessed: 01-Aug-2019]
11https://github.com/wikimedia/articlequality/blob/master/tuning_reports/wikidatawiki.item_quality.

md [Accessed: 01-Aug-2019]

18

https://www.wikidata.org/wiki/Wikidata:List_of_properties/en
https://github.com/wikimedia/articlequality/blob/master/tuning_reports/wikidatawiki.item_quality.md
https://github.com/wikimedia/articlequality/blob/master/tuning_reports/wikidatawiki.item_quality.md

defined as follows:

DKL(P ||Q) =
∑
x∈X

P (x) log
Q(x)

P (x)

where the log(.) is the natural logarithm. In the simple case, a KL-divergence of 0 indicates that the
two distributions in question are identical, since the divergence value grows, the difference between
two distributions increases as well. Since it was put forward, it has been applied to a wide range of
problems such as applied statistics, neuroscience [12] and machine learning [7]. However, despite the
beautiful properties of KL-divergence, there are still some limitations that deserve more attention:

• It is non-symmetric. This makes it not a true metric of measuring the distance be-
tween two probability distributions, as it does not obey the triangle inequality i.e., in general
DKL(P ||Q) 6= DKL(Q||P). For instance:12

DKL([0.8, 0.2], [0.1, 0.9]) = 1.36273775399

DKL([0.1, 0.9], [0.8, 0.2]) = 1.14572550293

• It is unbounded. Let p(x), q(x), x ∈ X be two probability mass functions, then D(p||q) ≥ 0,
with equality if and only if p(x) = q(x) for all x ∈ X. This makes it inappropriate for
comparing distributions relatively, as the KL-divergence is only defined for distributions having
compatible supports. For instance having DKL(Q||P) > DKL(R||P) does not prove that
distribution R is more similar to distribution P , compared to distribution Q.

Based on KL-divergence, the Jensen–Shannon divergence (JS-divergence, also known as information
radius or total divergence to the average) is a method in information theory for measuring the
similarity between two probability distributions, defined as follows:

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M)

where M = 1
2(P +Q). Unlike the Kullback-Leibler divergence, it is symmetric, always well-defined,

and most importantly, bounded. With the log(.) denoting base 2 logarithm, the JS-divergence is
bounded as follows [15]:

0 ≤ DJS(P ||Q) ≤ 1

A Jensen-Shannon distance is generated by computing the square root of the JS-divergence, which
can be viewed as a metric of measuring the distance between distribution P and Q :√

1

2
DKL(P ||M) +

1

2
DKL(Q||M)

Therefore, the JS-distance provides an optimal opportunity for quantifying the article quality dy-
namics, as the item-quality model returns discrete probability distributions as output, and it satisfies
the applied condition to compute the divergence value. A local approach to quantify the article
changes is calculating all distances, i.e., JS-distance values of each adjacent revision’s item quality
distribution DJS(Pparent_rev||Qrev), which works as a sliding window. Table 2.2 presents the JS-
distance value between each revision and its antecedent. As the table revealed, the item quality
12Results are calculated with help of the Python Scipy library: https://docs.scipy.org/doc/scipy/reference/

generated/scipy.stats.entropy.html [Accessed: 13-Sep-2019]

19

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html

2.3. Sequence Pattern Mining

was vastly improved from class C to A after a potential vandalism revision being reverted, only it
did not last long. Having quantified the quality variations into JS distances, it is easy to see that
the two revisions are not dragging the quality up and down to the same extent, which implies that
the third revision, where a label was removed, is potentially more effective and powerful.

2.3 Sequence Pattern Mining

The problem of (frequent) sequential pattern mining was firstly addressed and defined by Agrawal
and Srikant [1] in 1995 as follows:

Given a database of sequences, where each sequence consists of a list of transactions ordered by
transaction time and each transaction is a set of items, sequential pattern mining is to discover
all sequential patterns with a user-specified minimum support, where the support of a pattern is the
number of data-sequences that contain the pattern.

It is about discovering all frequent sequential patterns according to the number of sequences that
contain these patterns by giving a collection of chronologically ordered sequences [10]. As all events,
subsequences or substructures that frequently appear in a data-set would be captured, this problem
is described succinctly by Masseglia [16] as the discovery of all temporal relations between facts
embedded in a database.
More formally, the problem of mining sequential patterns along with its associated notation is

defined as follows (cf. [17]): Let I = {i1, i2, ..., im} be a set of literals termed items, an event E =
(i1, i2, ..., ik), ij ∈ I is a non-empty unordered collection of items, A sequence α =< α1 α2 ... αn >
,αi ∈ E is an ordered list of events, where a sequence with k-items is a k-sequence if

∑
j |αj | =

k. Table 2.3 presents the sequence database construction according to the existing event logs.
All activities belonging to the same artifact are assigned into one identical sequence, where the
consecutive edits committed by the same user are collapsed into one identical event. Furthermore,
a sequence < α1 α2 ... αn > is a sub-sequence of another sequence < β1 β2 ... βm >, i.e. sequence
< β1 β2 ... βm > is a super-sequence of < α1 α2 ... αn >, if there exist integers i1 < i2... < in,
so that α1 ⊆ βi1, α2 ⊆ βi2, ..., αn ⊆ βin. For instance, the 3-sequence < (B)(AD) > is a sub-
sequence of 7-sequence < (AB)(E)(ABCD) >. Given a database D = {α1, α2...αn}, the problem
of sequential pattern mining is about discovering all frequent sequences α and their sub-sequences
whose frequencies of occurrence are no less than a user-specified thresholdmin_support. In addition,
there are two essential concepts proposed to improve the effectiveness of results mined. A pattern
α is a closed frequent pattern in D if α is frequent and there exists no proper super-sequence β, so
that β has the same support as α in D. And a pattern α is a maximal frequent pattern in D if α
is frequent and there exists no super-sequence β, so that α ⊂ β and β is frequent in D. According
to Han et al. [10], the set of closed frequent patterns is more compact and contains the complete
information regarding its corresponding frequent patterns given the same minimum support, which
is a nice option for mining high density data.
Since sequential pattern mining was first addressed by Agrawal and Srikant [1], there have been

extensive studies on the improvements or extensions about the mining algorithms. The most rep-
resentative algorithms for mining sequential patterns can be generally divided into the following
classes:

Apriori-based algorithms. Agrawal and Srikant [1] discovered an interesting fact that among
frequent k-sequences, “a k-sequence is frequent only if all of its sub-sequences are frequent”. They

20

Activity
(edit)

Artifact
(article)

Performer
(user-id)

Order
(timestamp)

set alias Q30 69382 03-08-08:34
update description Q30 69382 03-08-12:47
add alias, remove alias Q30 22594 03-11-01:39
set label Q30 22594 03-17-00:16
set sitelink Q30 146231 03-17-00:18

add claim Q31 13 03-18-18:00
update claim Q31 13 03-18-18:20
add description Q31 13 03-18-18:21
update claim Q31 13606 03-18-18:59

Seq. ID Edit Sequence

Q30 <(set alias, update description) (add alias, remove alias, set label) (set sitelink)>
Q31 <(add claim, update claim, add description) (update claim)>

Table 2.3: Example of Wikidata event log sequences in horizontal formatting data layout
(data layout is adapted from Agrawal et al. [1]).

termed this downward closure property as Apriori. This implies the AprioriAll algorithm that
frequent sequences can be mined by scanning firstly the sequence database to obtain the frequent
1-sequences, based on which frequent 2-sequences candidates are generated. After that all candi-
dates are checked against the database to find the final frequent 2-sequences, and the whole process
repeats until no more new frequent k-sequences can be discovered [10]. Briefly, AprioriAll is a
three-phase algorithm consisting of finding all k − 1 sequences satisfying the minimum support,
generating k sequence candidates with possible pruning. In addition to the AprioriAll algorithm,
Generalized Sequential Patterns (GSP) is also a representative of Apriori-based sequential pattern
mining algorithm, which generalized the earlier notation of AprioriAll algorithm to time constraints
which specify a minimum or maximum time period between each adjacent element, sliding time
window within which the events occurred, and user-defined taxonomies allowing sequential patterns
to include items across various levels [22].

SPADE algorithm. The Sequential PAttern Discovery using Equivalence classes (SPADE) algo-
rithm was firstly proposed by Zaki [25] in 2001 for solving the problems of making repeated database
scans in Apriori-like algorithms. It creatively uses a vertical id-list database format, where a list
of objects can be associated to each occurred sequence. After that, the frequent sequences can be
efficiently found by using intersections on id-lists. This algorithm deconstructs the original problem
into smaller sub-problems, uses efficient lattice search techniques to solve them in main-memory, sig-
nificantly reduces the number of databases scans, and therefore also reduces the execution time [25].

Pattern growth algorithms. The Frequent-Pattern growth (FP-growth) algorithm proposed by
Han et al. [8] is an efficient and scalable method for mining the complete set of frequent patterns
by pattern fragment growth. It uses an extended prefix-tree structure for storing the compressed
information about frequent patterns named Frequent-Pattern tree (FP-tree). Based on this basic
idea, Han et al. [9] proposed the FreeSpan algorithm, which uses frequent items to recursively

21

2.3. Sequence Pattern Mining

project the sequence database into a set of smaller projected databases, and let the sub-sequence
fragments iteratively grow in each projected database. Later, based on FreeSpan, Pei et al. [19]
developed the PrefixSpan algorithm, which examines only the prefix sub-sequences and project only
their corresponding postfix sub-sequences into the projected database13.

13This approach will be further explained in detail in Chapter 4.3.

22

3 Sequence Analysis Methodology

Previous research has already demonstrated the applicability of discovering temporal dynamics
embedded in the online knowledge collaborations by mining and analyzing the sequences. Keegan
et al. [11] explored a particular aspect in co-production routines to yield insights regarding the
number of contributors participating in the article co-creation process by analyzing the sequential
event logs. Similarly, Cuong et al. [2] discussed the feasibility of discovering ponderable role
transitions, dominant dynamic participation patterns as well as statistical inferences deductions in
Wikidata inferred by constructing sequence analysis.
According to Keegan’s [11] proposal, the fundamental event log features that constructing se-

quences should be employed to capture the temporal relations, as they allow themselves to be
decoded into the messages in a who-what-when-how architecture, which is defined as follows:

Performer. An entity executing an activity such as a user. This describes who is responsible
for a specified revision. Depending on different performer characterizations or how a performer par-
ticipates in the co-production process, a performer can be observed from the following perspectives:

• User Group: as Keegan et al. [11] pointed out, performers are not only single anonymous
human users, but potentially: sub-users with an account, e.g., a human with developing tools,
or automated users, e.g., bots. These, moreover, could be further classified as bots with
requests and bots without requests1.

• Role of Performer: a performer may possess one or more particular roles corresponding to
different user rights such as interface-administrator, rollbacker or IP block-exempt.

Artifact. An entity in Wikidata which is operated upon, such as an item, describes what has been
edited.

• Name Space: assign each article to its respective namespace2. For instance, an article is
identified as an Wikidata item if it has a namespace ID 0, or a Wikidata property for possessing
a namespace ID 120.

• Domain: assign each article to a specific domain according to its class. For instance, Färber
et al. [5] proposed a novel evaluation of determining the coverage of domains concerning the
classes per knowledge graph by manually assigning the most used classes into the following
five domains: people, media, organizations, geography and biology.

• Development Stage: how an article is progressing and to what extent it has been completed.
Each article had an initial quality level E when it is created (cf. Chapter 2.2), and as the edits
increase, consequently the article quality changes and on the whole presents a growth trend.
Therefore, the current quality level of an article indicates its development stage.

1According to Wikidata’s policy system, every (semi-)automatic task carried out by a bot needs to be approved by
the community. It means that operators must open a request for permissions for their bots before they can run
them on Wikidata

2Name spaces allow for the organization and separation of content pages from administration pages, and each article
is assigned to exactly one name space. More information at https://www.wikidata.org/wiki/Help:Namespaces
[Accessed: 21-Aug-2019]

23

https://www.wikidata.org/wiki/Help:Namespaces

3.2. Schematization of Sequences

Performer
(user-id)

Artifact
(article)

Activity
(edit-type)

Order
(timestamp)

13 Q17 create page 2012-10-29, 17:20
3102 Q17 set label 2012-10-29, 18:05
2 Q17 set sitelink 2012-10-29, 18:28
2936 Q17 set alias 2012-10-29, 19:02

Table 3.1: Example of an Wikidata event log.

Order. An index defining a sequence such as a timestamp, this describes when a specific revision
was documented, and enables us to construct the temporal relations by restricting each adjacent
event to an explicit processor-successor relationship.

Activity. A system action such as a revision to an article, this describes how an entity has
been edited. Traditionally, in the Wikidata domain, an activity is recorded entirely in the form of
comments, based on which, according to different research directions, an activity can be extended
into the following sub-features3:

• Edit Summary: a structural activity pattern that is extracted from the original activity
description recorded in the database, for instance, wbsetsitelink-set is an edit summary ex-
traction from the HTML markups /*wbsetsitelink-set:1|dewiki*/Japan

• Edit Type: what kind of editing has been done in a regular and structural format e.g. add
claims.

3.1 Identification of Sequences

The identification of sequences is about the selecting, structuring and combining of aforementioned
features, i.e., dimensions into event logs that set the stage for the subsequent work. AWikidata event
log, featured with some of the dimensions, describes an integrated collaboration across performers.
As can be seen in Table 3.1, each horizontal row allows itself to be decoded into a who-what-how-
when message, while the whole event log can be regarded as a sub-sequence in terms of sequential
patterns with a vertical perspective, as it is single artifact related, i.e., no artifact variation. Based
on the four fundamental features according to Keegan et al. [11], there are

∑4
i=1

(
4
i

)
= 15 possible

different feature combinations, upon which an event log of multiple dimensions is constructed.
Under particular circumstances, each feature can be further extended into above mentioned sub-
features which makes this figure rise up, as shown in Table 3.2. Having constructed different
sequence identifications by combining various event log features, effectiveness of sequential patterns
discovered could be further evaluated in terms of data quality.

3.2 Schematization of Sequences

Once the sequences have been identified, it is necessary to formulate the most relevant elements, i.e.,
event log features regarding a particular research aspect into a knowledge representation scheme
[11], where the chosen features are expanded as detailed records, either according to the official

3An explanation about how is a comment extended concretely into the sub-features can be found in Chapter 3.2

24

Activity Artifact Performer Order
Activity
Artifact
Performer
Order

Activity Edit Summary
Edit Type

Artifact Namespace
Development Stage
Domain

Performer User Group
Role of Performer

Order Time Range

Table 3.2: Example of two dimensional feature selections.

documentation or based on the researcher’s own code book. Lazar et al. [14] investigated the
necessity of data pre-processing for statistical analysis. As they pointed out, the data collected
may be presented in inconsistent formats that needs first to be filtered and fixed in case of data
contamination. Furthermore, the original data may be too primitive for the readers to identify the
underlying themes. Taking one of the fundamental features, activity for instance, the pre-processing
steps are according to Lazar et al. [14] defined as follows:

Data Cleaning. It is an essential step to clean up the data due to inappropriate formatting
or descriptions. For each revision in Wikidata, there is typically a textual comment describing its
action by summarizing the change, e.g., an editor’s edit summary. Below are some representative
revision comments:

• /*wbsetsitelink-set:1|dewiki*/Japan

• /*wbcreateclaim-create:1|*/[[Property:P530]]:[[Q29999]],#distributed-game

• /*wbsetsitelink-add:1|zhwikiquote*/圆周率

The part between /* */ indicates which Wikibase API module (after the first /* symbol)4 has
been called by which operation (after the short hyphen) and from which source project the data
has been generated (after the long hyphen), while the latter half of comment (after the */ symbol
describes the detailed edit content. In addition, the tools that have been used to edit the items are
documented after the occasionally appearing # symbol. Though the original comments collected
are documented in a relative structural and consistent format, they are still required to be processed
and aggregated given their high primitiveness. More importantly, more attentions need to be paid
to the summarized editing behaviours such as edit types, rather than the concrete contents which
are relatively irrelevant to our research question. The regular expressions, which are often used to
mean the specific, standard textual syntax for representing patterns of matching text, are therefore
employed to locate, capture and extract the first part of /*...:, and which are, taking again the
aforementioned comments, for instance:

• wbsetsitelink-set

• wbcreateclaim-create
4Wikibase provides a general mechanism to store statements as structured data in Wikidata. The Wikibase API is
provided by a set of extensions that implement MediaWiki API modules, which is a mature and stable interface
that is actively supported and constantly improved. See https://www.wikidata.org/w/api.php?action=help&
modules=main [Accessed: 09-Jul-2019]

25

https://www.wikidata.org/w/api.php?action=help&modules=main
https://www.wikidata.org/w/api.php?action=help&modules=main

3.2. Schematization of Sequences

Edit Type Edit Summary Paraphrase

Add alias wbsetaliases-add Add new aliases to the existing alias list of a Wikibase
entity, won’t overwrite

Set alias wbsetaliases-set Set a new alias list for a Wikibase entity, possibly over-
write

Update alias wbsetaliases-update Update the alias list of a Wikibase entity

Remove alias wbsetaliases-remove Remove aliases from the existing alias list of a Wik-
ibase entity

Update alias wbsetaliases-add-remove Add new aliases to the alias list as well as remove
aliases from the list

Table 3.3: Edit type coding scheme of Wikibase API wbsetaliases module.

• wbsetsitelink-add

Data Coding. Though the original comments are highly structured into edit summaries con-
taining information of the API, there are still some unambiguous parts that need to be further
processed, e.g., a clear distinction between setsitelink-set and setsitelink-add. Therefore, developing
representative descriptions of edit summaries with help of the content analysis is necessary before
the statistical analysis can be conducted. Content analysis, as Stemler [23] stated “is a systematic,
applicable technique for compressing many words of text into fewer content categories based on ex-
plicit rules of coding.”, which enables researchers to “sift through large volumes of data with relative
ease in a systematic fashion.” The coding process is to analyze the content of a text by assigning
categories as well as descriptions to the text. According to Stemler [23], this process can be divided
into Emergent coding and a Priori coding.

Different from emergent coding, where the text content is needed to be more broadly under-
stood without any particular starting point, analyzing the content with a priori coding approach is
commonly based on theoretical frameworks, i.e., taxonomies, which guide the researchers in under-
standing the data collected through existing contributions. This approach becomes our choice for
schematizing edit summaries, as coding the edit content in Wikidata has already been conducted
in previous studies. Müller-Birn et al. [18] investigated the contextual information about edit
comments in detail and applied several steps to identify the edit types, where the edit comments
are categorized and aligned into consistent verb-noun pairs that indicate which actions have edited
which content model.
Furthermore, ensuring the reliability of qualitative coding is a crucial yet challenging task in terms

of coding objectivity as a series of decisions regarding text interpretations are often made by human
researchers. Hence, all related information should be taken into account to assign each raw data
into the designed codes. For instance, the edit summary contains the module information as well
as the operations being called, therefore the API documentation of MediaWiki would potentially
be a primary reference for understanding the edit summary context. As can be seen in Table 3.3,
information retrieved from the MediaWiki API is documented under the paraphrase column as an
interpretation to edit summaries, depending on which the edit types are coded. This ensures the
evolving nature of coding scheme construction, as the organization of scheme components expands
and constantly changes during the coding process.

26

3.3 Analysis of Sequences

After the extracted sequences are schematized, quantitative methods for analyzing sequential be-
haviors will be employed to capture the most representative editing behaviors. Keegan et al. [11]
classified the following three categories of quantitative approach according to various study focuses:

• Pattern mining, using intersected methods of statistics, data base systems and machine
learning to discover frequent patterns of different sequences in large data sets.

• Sequence similarity, which provides a reliable, applicable strategy for characterizing the
newly determined sequences.

• Probability analysis, some stochastic models likeMarkov chain are used for sequence predic-
tions under a specific probability, where a sequence of possible events in which the probability
of each event depends only on the state attained in the previous event.

As one of the most representative methods for analyzing sequential behaviours, sequence pattern
mining is about discovering all sequential patterns weighted according to the number of sequences
that contain these patterns [24] (cf. Chapter 2.3). Having employed the sequence mining algorithms,
quantitative investigations can be conducted in order to discover the actual frequent patterns re-
sponsible for the regularities in the event logs.

Sequence ID Editor ID Timestamp Edit Type JS Distance

114 56389 10-29-17:30 set sitelink 0.0181

114 56389 10-29-17:31 set sitelink 0.0037

114 3232667 10-29-17:44 set sitelink 0.0216

114 780221 10-29-18:05 set label 0.0037

114 25876 10-29-18:13 set sitelink 0.0004

114 25876 10-29-18:14 set label 0.0439

114 4251 10-30-15:42 set description 0.0310

114 4251 10-30-15:43 set sitelink 0.0012

State Activity Sequence

Before Pruning

<(set sitelink, set sitelink)
(set sitelink)
(set label)
(set sitelink, set label)
(set description, set sitelink)>

After Pruning

<(set sitelink)
(set sitelink)
(set label)
(set description)>

Table 3.4: Example of constraint-based pruning with the JS-distance greater than 0.01.

To investigate which identification of sequences is most effective in terms of data quality, one
of the most significant yet challenging tasks is to integrate the topic of sequential pattern mining

27

3.4. Interpretation of Sequences

with data quality, i.e., to conduct the mining process with a data quality perspective. However,
the conventional mining systems provide only a very restricted mechanism, primarily the minimum
support for specifying patterns of interest. Garofalakis et al. [6] argues in their work the significance
of user-controlled focus to be incorporated in the pattern mining process. As they pointed out,
without taking user-specified constraints into consideration, the system may execute an appropriate
mining algorithm and return a large number of sequences, most of which the users are not interested
in at all. Therefore, some mechanisms like Constraint-based mining can be used to deal with the
process, which efficiently mine only the patterns satisfying the user-specified constraints. Succinct
constraints, as one of the representative constraints, can be pushed into the initial data selection
process at the start of mining, which significantly reduces the size of original dataset [10]. Garofalakis
et al. [6] explored the context of sequential pattern mining by setting a flexible, user-specified regular
expression constraint for selecting the data to be mined. This was used in their work for mining of
the World Wide Web (WWW) user access logs and determined the most frequently accessed topic
paths.
Inspired by their work, this study conducts the mining process in a constraint-based fashion,

where the aforementioned JS-distance (cf. Chapter 2.2) would be employed as a succinct constraint
to be pushed at the start of mining. As discussed, the finite property and symmetrical characteristic
of JS distance make it an optimal metric for measuring the quality dynamics. Table 3.4 shows an
example of the initial data selection with a JS-distance constraint of 0.01, where all event logs not
satisfying this constraint (below 0.01) are pruned before the activity sequences are constructed. It
is worth noting that the temporal order, which is the cornerstone of mining sequential patterns, is
preserved as the remaining event logs still hold the processor-successor relationships.

3.4 Interpretation of Sequences

As the final step, this work in this phase is about enriching the results obtained through previous
quantitative investigations by employing qualitative methods. In order to obtain various patterns
to be used for evaluating the effectiveness, the data collected will be mined by adjusting the user-
specified constraints, which in our case are the JS distance and minimum support thresholds. As
a core part to be investigated in this phase, once the patterns are obtained, different metrics for
measuring the effectiveness will be employed to get a better observation and evaluation, such as:

• Frequency of the pattern

• Length of the pattern

• Diversity of the pattern set in terms of edit focus and activity type

The observed patterns will be further illustrated by applying the descriptive statistics on sequences
provided and analyzing the contextual factors that may affect the results.

28

4 Case Study

In this case study, an empirical investigation of the quality dynamics in Wikidata and the corre-
sponding editing behaviours will be conducted using sequential pattern mining. This case study
is a detailed examination of one or more specific situations and can be seen as a pilot study for
investigating the effectiveness of sequence identifications in terms of data quality. As discussed
before, the identification of sequences is primarily about the selecting, structuring and combining
of the event log features (cf. Chapter 3.1). Therefore, the case study will focus on the features of
Activity and Artifact, representing activity in the forms of edit type and expending artifact into
sub-features namespace and development stages (cf. Table 4.1).

Activity Artifact Performer Order
Activity
Artifact ×
Performer
Order

Activity Edit Summary
Edit Type

Artifact Namespace
Development Stage
Domain

Performer User Group
Role of Performer

Order Time Range

Table 4.1: Two dimensional feature selections for the case study.

4.1 Sample and Data Extraction

Using the aforementioned Wikidata Toolforge database wikidatawiki_p (cf. Chapter 2.1), a sample
including 500 randomly chosen articles is collected. All articles are restricted to the namespace 0
and 120 (items and properties) as they represent a structured dataset that consists of conceptual
and instance knowledge, which Wikidata stands for [18]. In order to investigate the correlation
between data quality and the development stage of artifacts, for each ORES quality class i among
A, B, C, D and E, the dataset is determined in the following two steps:

1. Get all item numbers for which the current quality level is i.

2. Randomly select 100 items by using a random generator.

In general, the entire dataset was selected based on randomization and covers diverse Wikidata
topical categories including culture, science, geography, people and history. Figure 4.1 presents the
category distribution in detail, and for each item the content domain is classified according to its
English label, description and values of the instance of property, which is extracted by querying
in Wikidata Query Service1. As the chart shows, the distribution is relatively balanced across
different category clusters, which makes it representative as the results can be less influenced by

1The Wikidata Query Service provides a way for tools to access Wikidata data, via a SPARQL API. See https://
www.mediawiki.org/wiki/Wikidata_Query_Service and https://query.wikidata.org [Accessed: 20-Jul-2019]

29

https://www.mediawiki.org/wiki/Wikidata_Query_Service
https://www.mediawiki.org/wiki/Wikidata_Query_Service
https://query.wikidata.org

4.1. Sample and Data Extraction

item domains. There are primarily three tables in the wikidatawiki_p database (cf. Chapter 2.1)
used for collecting the information corresponding articles and activities, which is essential for mining
the interaction patterns with a data quality perspective:

• Page2. Considered as the "core of the wiki", each page stored in the page table has an entry
which is identified by the title and contains some essential meta-data.

• Revision3. This table contains significant meta-data for every edit done to a page, especially
the information about who made the edit and at which time the edit was made.

• Comment4. The edits, blocks and other actions for each revision are described as a textual
comment and stored in this table, which makes it a primary source for extracting concrete
edit information.

According to the tables above, all activities in the sample are tracked from each article’s inception
until March 31, 2019. In addition to the Toolforge database, ORES API (cf. Chapter 2.2) is used
as a primary source to capture the article quality. On the basis of revision ids, quality results are
recorded as a series of discrete distributions, representing quality level classifications (cf. Table 2.1).
As the investigation focuses on the influence of edit activities to article quality dynamics, 3410
revisions without any comment records and 5 revisions, of which the comments are semantically
ambiguous, are excluded. This results in a dataset including 146,450 editing activities of 499 item
articles made by 5,756 distinct contributors.

30.7%
22.6%

16.2%

14% 8.33%

8.1%

Geography and Places
Nature
Human and Self
Life and Society

Science and Technology
Culture, Art and History

Figure 4.1: Topical categories overview of items in the data sample (n = 420, the 80 items
without an English label are excluded).

2https://www.mediawiki.org/wiki/Manual:Page_table [Accessed: 21-Jul-2019]
3https://www.mediawiki.org/wiki/Manual:Revision_table [Accessed: 21-Jul-2019]
4https://www.mediawiki.org/wiki/Manual:Comment_table [Accessed: 21-Jul-2019]

30

https://www.mediawiki.org/wiki/Manual:Page_table
https://www.mediawiki.org/wiki/Manual:Revision_table
https://www.mediawiki.org/wiki/Manual:Comment_table

article

PK id int
item_id int
item_title varchar(15)
label varchar(50)
category varchar(50)

edit_summary

PK rev_id int
edit_type_id int
comment text
edit_summary varchar(50)
paraphrase varchar(50)

item_quality

PK rev_id int
prediction char(5)
class_A float
class_B float
class_C float
class_D float
class_E float
js_distance float

editor

PK id int
user_id int
user_name varchar(20)
user_group varchar(20)
user_editcount int
user_registration timestamp

revision

PK rev_id int
parent_id int
editor_id int
article_id int
rev_timestamp timestamp

rev_id:rev_id

id:article_id editor_id:id

rev_id:rev_id

edit_type

PK id int
edit_type varchar(20)
edit_summary varchar(10)
activity_type varchar(10)

edit_type_id:id

Figure 4.2: Database schema of article sample in an ER-diagram format.

4.2 Data Representation

In order to analyze the correlation between sequences of activities and article quality dynamics, it is
necessary to devise a consistent way for representing the data. As described above (cf. Chapter 3.2),
the collected raw data of activity edit records, i.e., comments, are first extracted into edit summaries,
then collapsed on a basis of semantic categorization to aggregated edit types. The edit types are
aligned in consistent verb-noun pairs, and represent content models edit focus and concrete edit
actions activity type. Consequently, 54 edit summaries are aggregated into 35 distinct edit types,
regarding 10 edit focuses and 10 activity types as schematized in Appendix 5.1.
After the data collection and processing, the case study creates a relational SQLite database to

represent and store the data5, which is capable of handling abundant complicated queries, database
transactions and routine analyses. Figure 4.2 presents the database schema in an ER-diagram: the
substance table revision is the central table, which connects all properties and composites represent-
ing the basic who-when-what-how event log features, while the branch tables connected to the centre
are responsible for expanding the core features into their respective sub-features. By conducting
SQL queries6, activity sequences could be efficiently built with desired identifications. However, as
a previous step, a number of descriptive statistical tests are being conducted to better understand
the nature of the dataset, as they provide essential guidelines for identifying the sequences, and, in
particular, interpreting the later resulting patterns.
Table 4.2 presents a few descriptive statistics in terms of JS-distance value in the sample data.

As can be seen from the results, although the quality variation triggered by a single edit activity
could be up to 0.9879, which, to some extent, can be considered as the power of this edit to affect

5The database dump is published and located in: https://github.com/Felihong/wikidata-sequence-analysis/
tree/master/data.

6SQL is a standardized computer language for relational databases, addressing functionality such as searching for,
updating, creating and deleting data.

7Here refers to the revisions, of which the JS distances are not calculated as 0.

31

https://github.com/Felihong/wikidata-sequence-analysis/tree/master/data
https://github.com/Felihong/wikidata-sequence-analysis/tree/master/data

4.2. Data Representation

Average Maximum Minimum
All 0.0098 (σ2 = 0.003) 0.9879 0.0
Significant Only7 0.0197 (σ2 = 0.006) 0.9879 0.0

Table 4.2: Descriptive statistics of JS distance in the data sample (n = 146, 450, all JS
values are rounded up to 4 digits after the comma, the original minimum JS value of
significant revisions is 0.000000020022106750032484).

the article quality, the average quality variation is rather small (0.0098). This is not surprising,
given that the vast majority (80.74%) of JS-distances are less than 0.005.

Moreover, it is noticeable that a half (50, 56%) of editing activities are not considered as respon-
sible for the quality changes: There are 74, 046 revisions of the whole dataset (146, 450) holding a
JS distance value of 0, among which the predicted quality distribution between each adjacent edits
is identical. This indicates that the article quality variations of these revisions are not significant
enough to be captured by ORES classifier, or, in other words, the sensitivity of ORES item-quality
model is yet to be improved enough to detect all subtle changes, as the involved edit focuses are
covered in the model training features (cf. Chapter 2.2).

Edit Focus Edit Type Item Content Variation Quality Variation

Alias
set alias Q698 https://is.gd/JJttJA https://is.gd/geWFXM
add alias Q312 https://is.gd/irLaJD https://is.gd/42vhvL
remove alias Q198 https://is.gd/lNKPIa https://is.gd/hdUaPS

Claim
set claim Q34 https://is.gd/evgxPQ https://is.gd/92Y8JN
add claim Q71 https://is.gd/2Qd1Om https://is.gd/8GczcT
remove claim Q526 https://is.gd/8RvPOk https://is.gd/tX3ocn

Description set description Q4759 https://is.gd/NYVdM6 https://is.gd/z9IBsS
remove description Q2 https://is.gd/r0mtam https://is.gd/HSRxI7

Edits revert edits Q355 https://is.gd/DtNIZg https://is.gd/Jtqd1y

Item

set item Q17 https://is.gd/eyeGom https://is.gd/Dioa2I
merge item Q22 https://is.gd/zK7uE2 https://is.gd/hZtQvB
update item Q747 https://is.gd/ST32Lv https://is.gd/KSWlRI
protect item Q312 https://is.gd/zeiF0Q https://is.gd/oacVsy

Reference
set reference Q549 https://is.gd/ZEIpfz https://is.gd/vjHCJV
add reference Q633 https://is.gd/qvpnpI https://is.gd/5dJasC
remove reference Q183 https://is.gd/aYjOO1 https://is.gd/16d3T2

Sitelink
set sitelink Q30 https://is.gd/XA3iYd https://is.gd/W3eCQp
update sitelink Q22 https://is.gd/5nH6yU https://is.gd/jY4JTD
remove sitelink Q377 https://is.gd/J8r0xC https://is.gd/pE39Ux

Term remove term Q83 https://is.gd/i1wI1b https://is.gd/GKrCxa

Table 4.3: Example of undetected article quality variations (n = 20, the URLs of difference
pages are shortened due to the length limit8, the list is ordered alphabetically according
to the edit focuses).

32

https://is.gd/JJttJA
https://is.gd/geWFXM
https://is.gd/irLaJD
https://is.gd/42vhvL
https://is.gd/lNKPIa
https://is.gd/hdUaPS
https://is.gd/evgxPQ
https://is.gd/92Y8JN
https://is.gd/2Qd1Om
https://is.gd/8GczcT
https://is.gd/8RvPOk
https://is.gd/tX3ocn
https://is.gd/NYVdM6
https://is.gd/z9IBsS
https://is.gd/r0mtam
https://is.gd/HSRxI7
https://is.gd/DtNIZg
https://is.gd/Jtqd1y
https://is.gd/eyeGom
https://is.gd/Dioa2I
https://is.gd/zK7uE2
https://is.gd/hZtQvB
https://is.gd/ST32Lv
https://is.gd/KSWlRI
https://is.gd/zeiF0Q
https://is.gd/oacVsy
https://is.gd/ZEIpfz
https://is.gd/vjHCJV
https://is.gd/qvpnpI
https://is.gd/5dJasC
https://is.gd/aYjOO1
https://is.gd/16d3T2
https://is.gd/XA3iYd
https://is.gd/W3eCQp
https://is.gd/5nH6yU
https://is.gd/jY4JTD
https://is.gd/J8r0xC
https://is.gd/pE39Ux
https://is.gd/i1wI1b
https://is.gd/GKrCxa

To further verify this observation, this case study conducted an investigation by reviewing the
article differences before and after a particular edit activity, and observing the triggered quality
variations. For each typical edit type among the non-significant revisions, one representative revision
is randomly chosen to be compared with its preceding revision by reviewing Wikidata’s page history
and the quality distributions predicted by ORES (cf. Table 4.3). Remarkable changes can be seen
by filtering out the non-significant revisions, that is to say, the revisions calculated with JS distances
of 0. As shown in Table 4.2, the average value of quality variation is increased to 0.0197 by ignoring
the non-significant revisions, leaving 30.18% of revisions holding a JS-distance less than 0.005.

0.008

0.044

0.016

0.010

0.003

E D C B A0

0.01

0.02

0.03

0.04

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

Stage

A
ve

ra
ge

 JS
 V

al
ue

Stage
(class)

Lifetime
(revision)

E 53
D 13
C 141
B 67
A 585

Figure 4.3: The average JS distance value and lifetime over each article development
stage (n = 146, 450, each JS distance is rounded up to 3 digits after the comma, the
life time is measured by the average number of revisions at each developing stage).

A more telling statistic calculates the quality variation with a dynamic perspective. It is shown
that the degree of quality variation in an article is closely related to the article’s current development
stage (cf. Chapter 3). As can be seen in Figure 4.3, the average quality variation is quite different at
each development stage. Surprisingly, developing articles in their D stage appear more susceptible
than any other time, as the quantified quality variations significantly outnumbered the other stages
(0.044). On the contrary, articles at the A stage are considered as robust, as the quality variation
triggered by a single edit is merely 0.003. This also explained the long lifetime of articles at this
stage (avg = 585, revisions) compared to the brief stopping at the phase D (avg = 13, revisions).

8https://is.gd/index.php [Accessed: 03-Jul-2019]

33

https://is.gd/index.php

4.2. Data Representation

Overall, the power of a single edit to affect the article quality becomes weaker as the articles become
more and more complete.
Table 4.4 below presents the most significant (highest JS distance value on average) single edit

types. While few of the significant edit types are highly common, it is noticeable that all edit
types concerning edit focus edits are listed (cf. Appendix 5.1), where the edits are detected either
as vandalisms or improper reverts of vandalisms so that are rolled-back to the preceding version.
Moreover, all edit types in regard to edit focus reference appear in the list as well, which reflects
the large proportion placed on reference in the training features (cf. Chapter 2.2). To get a deeper
understanding of the factors affecting quality development, the correlation between quality change
and edit types is further investigated from the following perspectives: edit focus and activity type.

Edit Type Count % Average Maximum Minimum

unrevert edits 1 n/a 0.672 (σ2 = 0) 0.672 0.672
set reference 1,486 1.01% 0.136 (σ2 = 0.543) 0.901 0.0
merge item 512 0.35% 0.055 (σ2 = 0.024) 0.988 0.0
remove reference 311 0.21% 0.051 (σ2 = 0.013) 0.865 0.0
set term 314 0.21% 0.043 (σ2 = 0.006) 0.879 0.0
remove description 105 0.07% 0.042 (σ2 = 0.015) 0.906 0.0
revert edits 3,425 2.34% 0.040 (σ2 = 0.007) 0.985 0.0
protect item 33 0.02% 0.032 (σ2 = 0.001) 0.096 0.0
set description 6,692 4.57% 0.028 (σ2 = 0.002) 0.961 0.0
add reference 10,960 7.48% 0.026 (σ2 = 0.004) 0.925 0.0

Table 4.4: Top 10 powerful edit types (n = 23839, the list is sorted by the average JS distance
value in a descending order).

The edit focus term involves simultaneous edits regarding label, alias and description, which
makes its influence upon quality variation most significant (avg = 0.043), followed by reference
(avg = 0.041) and edits (avg = 0.040), with their weights exhibited again as discussed above. It
is worth noting that single activity regarding claim and sitelink contribute less then expected to
the quality dynamics in spite of their huge amount being edited (56.82%). Similarly, Appendix 5.3
investigates the statistical behaviour with an activity type perspective. The most significant activity
type merge (avg = 0.055) is performed when two or more items exist in Wikidata on the same
object9. It is achieved by first pooling the collective data of various items together in a so-called
recipient item, then conducting a redirection of the obsolete page to recipient item10. As this multi-
step process normally requires consecutive activities as delete and redirect, it could be immensely
influential according to the amount of contents deleted.
In addition, the last two columns of both tables demonstrate again the correlation of quality

variation with article’s current development stage. Although most of the peaks occurred at the
stage D or E, activity protect reached its ceiling value at stage A, which can be explained by its
edit nature that protecting a highly completed page is more valuable11.

9Please note that the JS value distribution of merge is relative discrete (σ2 = 0.024) compared to others, more
details can be seen in Appendix 5.3

10https://www.wikidata.org/wiki/Help:Merge [Accessed: 06-Aug-2019]
11Users belonging to a specific user-group such as admins can protect pages for a short time to prevent vandalism

or spam detected which repeatedly occurs on them. More information at https://www.wikidata.org/wiki/
Wikidata:Page_protection_policy [Accessed: 06-Aug-2019]

34

https://www.wikidata.org/wiki/Help:Merge
https://www.wikidata.org/wiki/Wikidata:Page_protection_policy
https://www.wikidata.org/wiki/Wikidata:Page_protection_policy

ID Sequence

1 <(set item) (set sitelink, set label) (add label)>
2 <(set sitelink) (set label) (set description)>

Length Prefix Projection DB Occurrence

1 set item <(set sitelink, set label) (add label)> 1

set sitelink <(_, set label) (add label)>
<(set label) (set description)> 2

set label <(add label)>
<(set description)> 2

2 set sitelink, set label <(add label)>
<(set description)> 2

Table 4.5: Example of prefix-based projection.

4.3 Sequence Mining

With a better understanding now of the dataset nature, given the observations made in preceding
chapters, quantitative investigations employing sequential pattern mining are conducted in order to
discover the actual frequent patterns responsible for the regularities in the event logs. As introduced
before, there exist a variety of algorithms mining the frequent sequential patterns in time-related
data (cf. Chapter 2.3), from which the PrefixSpan (prefix-projected sequential pattern mining)
algorithm is chosen for mining our dataset. As a representative of pattern growth algorithms,
PrefixSpan first scans the sequence databases and denotes the number of occurrences for all prefixes
with length 1, where the prefixes as well as suffixes, i.e., the remainder of sequences are stored in
a so-called projected database. It then uses the most frequently occurred sequence patterns as the
prefix for the next iteration, and the whole process will continue as the prefix length grows until a
threshold (minimum support) is reached (cf. Table 4.5). Compared with its opponent, Apriori-like
algorithms, the PrefixSpan is selected based on the following properties (cf. [19]):

• Avoid the huge set of candidate sequences. Apriori-based algorithms operate in a join-
prune fashion, where candidate sequences of all possible lengths are required to be generated.
This means that the set of candidate sequences includes all permutations of activities that
took place in an article, which could be huge even for a moderate seed set. According to
Pei et al. [19], if there are 1, 000 frequent sequences of length 1, an Apriori-based algorithm
will generate 1000× 1000 + 1000×999

2 = 1, 499, 500 candidate sequences. This time-consuming
phase is retrenched in PrefixSpan as no candidate sequence needs to be generated as it grows
longer sequential patterns from the shorter frequent ones.

• Reduce the scan volume of databases. An Apriori-based algorithm grows the length of
each candidate sequence by one at each database scan, to find a sequential pattern of length 10,
and the whole database must be scanned at least 10 times. In contrast to this, the projected
databases generated in PrefixSpan algorithm keep shrinking as the postfix sub-sequences are
the only ones to be further projected into a projection database, which significantly reduces
the database volume to be scanned.

• Superiority of mining long sequential patterns. According to Pei et al. [19], the number
of candidate sequences in Apriori-based algorithms is exponential to the length of sequential

35

4.3. Sequence Mining

patterns to be mined. For a length 10 sequential pattern, the number of candidate sequences
to be generated is

∑10
i=1

(
10
i

)
= 210 − 1 ≈ 103, which again, will be avoided by means of

PrefixSpan as there will be no candidate sequence needed.

A pseudo-code representing the procedure for mining frequent sequential patterns with a data
quality perspective is presented in Algorithm 1. The entire process is mainly composed of two
parts: Class SequenceGenerator converts the raw dataset inputted into a sequence database, and
insufficient edits, i.e., those not satisfying the JS-distance constraint, are pruned in this phase;
Class PrefixSpan mines the sequence database converted by means of the PrefixSpan algorithm
(cf. [19]), and frequency constraint is set-up with user-specified minimum support, along with the
requirements of mining closed/maximal frequent patterns being taken into consideration in this
phase (cf. Chapter 2.3).

Algorithm 1 Mining sequential patterns of Wikidata editing activities.

Input:
• Original csv dataset D
• List of sequence identification L
• Minimum frequency support min_support
• Minimum data variation threshold js_threshold
• (optional) Mine closed frequent patterns closed=True
• (optional) Mine maximal frequent patterns maximal=True

Output: The complete set of sequential patterns
Method:

1. Call SequenceGenerator(D, L, js_threshold):

a) Create new dataset D′ by selecting the respective columns according to L.
b) Scan D′ once, prune the rows not satisfying the js_threshold.
c) Collapse the consecutive edits e committed by the same editor into one event α then

aggregate each article’s edits into one sequence Si =< α1, α2...αm >.
d) Create sequence database S = [S1, S2...Sn].

2. Call PrefixSpan(S, min_support, [optional]closed=True, [optional]maximal=True):

a) Set frequent pattern α =<> with length l = 0 as initialization.
b) For each frequent pattern α, create a α-projected database S|α.
c) Scan S|α once, for each frequent pattern α find the set of frequent events b such that

i. b can be assembled to the last element of α to form a sequential pattern, or
ii. < b > can be appended to α to form a sequential pattern.

d) Append each frequent event b to α to form a new frequent pattern α′ with length l + 1.
e) Construct α′-projected database S|α′ for each α′, repeat the same process with the new

frequent pattern α′ until no more frequent patterns can be discovered.
f) Convert the patterns resulted into closed frequent patterns or maximal frequent patterns

if necessary.

36

4.4 Behavioral Patterns

In this section, we analyze the pattern discovered between all article sequences, across different
quality variation levels, and across different frequency constraints. Since one of the goals of this
research is using sequences to identify the effectiveness in terms of data quality, it would be valuable
to use the JS threshold to identify which patterns more or less affect the quality and use the frequency
constraint to support this identification.
The patterns discovered are the results of sequential pattern mining, where each article is consid-

ered as a sequence containing all edit activities that have been carried out on this article. Analyzing
these patterns enables us to study the editing sessions from a global perspective by discovering the
common patterns reoccurring frequently across multiple articles. The length of patterns is an es-
sential metric to evaluate the mining results, as more valuable sequential details are embedded in
such consecutive editing sessions. Thus, both constraints of data quality variation and frequency
support will be adjusted so that patterns with appropriate size and length are being discovered.

Edit Type Count
1st 2nd 3rd 4th 5th

add description set description 268
update item set claim 292
update item set description 274
add reference add description 266
add reference add reference 273
set claim set claim add description 279
set claim set claim update item 274
set claim set claim add reference 272
set claim add description set claim 274
set claim set label set claim 272
set claim set label set description 267
set claim add reference set claim 276
set claim add reference set description 264
set description set claim set description 267
add reference set claim set claim 275
add reference set claim set description 265
set claim set claim set claim set label 267
set claim set claim set description set label 266
set claim set description set description set description 281
set claim set claim set claim set description set description 271
set claim set claim set description set description set claim 265
set claim set claim set claim set description set claim 264

Table 4.6: Most frequent edit type sequences with low article quality variation (n = 439,
js_threshold = 0.01, min_support = 0.6. The list is ordered first by sequence length
then by edit focus alphabetically).

Table 4.6 presents the most frequent patterns with low-quality variations in lengths of 2-5 edit
types. As can be seen from these results, a significant majority (82%) of patterns represent sequences
with edit focus claim (set claim), sometimes followed or interrupted by editing sessions with edit

37

4.4. Behavioral Patterns

focuses term12 or reference. This is not surprising, given that 36% of single edit activity focuses on
the claim. A more interesting fact is the high ratio of claim and description coming in pairs (50%),
as there is merely 8% of single edit activity focusing on description (cf. Table 5.2). Moreover, we
notice that most of the frequent patterns in this phase (86%) are purely adding or setting new
contents into articles.

Edit Type Count
1st 2nd 3rd

remove claim 55
set claim set claim 134
set claim add description 51
set claim set description 54
set claim update item 77
set claim set label 54
set claim add reference 115
set claim set reference 42
update item set claim 57
add reference add description 47
add reference update item 60
set reference update item 60
add reference add reference 97
add reference set reference 56
set reference add reference set claim 46

Table 4.7: Most frequent edit type sequences with middle article quality variation (n =
418, js_threshold = 0.1, min_support = 0.1. The list is ordered first by sequence length
then by edit focus alphabetically).

A more telling statistic in terms of data quality is presented by increasing the JS distance thresh-
old from 0.01 to 0.1 as well as relaxing the frequency restriction from 0.6 to 0.1. Table 4.7 presents
the most frequent patterns with middle-quality variations in lengths of 1-3 edit types. As Table 4.7
reveals, the sequential patterns with a higher quality ensurance are much shorter than those de-
scribed in Table 4.6 with a lower one. The majority of patterns represent sequences with edit focus
claim (60%), sometimes followed by editing sessions focusing on term, reference or item. Different
from before, there are more patterns discovered in this phase focusing on reference (53%) and the
activity types are becoming more diverse, given the occurrence of activity type remove (4 distinct
activity types).
With modulating the JS distance threshold up to 0.5, the pattern discovered generated quite

powerful article quality variations. Table 4.8 presents the most frequent patterns with high-quality
variations in lengths of 1-2 edit types. As can be seen from the results, the identified patterns are
becoming shorter once more, and instead of edit focus claim (42%), most of the sequences contain
patterns focusing on reference (58%), and the activity types are becoming more diverse (5 distinct
activity types) compared to those with moderate quality constraints. It is worth noting that the
frequency restriction has to be adjusted to a very low level (0.01) to guarantee the appropriate
pattern lengths, as highly frequent sequences leading to high quality variations are not able to be
sustained for a long time.
12Edit focus term includes multiple edit focuses of label, alias or description.

38

Edit Type Count
1st 2nd

set label 11
remove claim set claim 7
set claim set claim 10
set claim add reference 9
add description add description 6
update item update item 18
add reference remove claim 6
add reference set claim 6
set reference set claim 18
set reference add description 14
set reference revert edits 8
set reference update item 7

Table 4.8: Most frequent edit type sequences with high article quality variation (n = 376,
js_threshold = 0.5, min_support = 0.01. The list is ordered first by sequence length
then by edit focus alphabetically).

39

4.4. Behavioral Patterns

40

5 Conclusion

Event log data in large-scale collaborative ontology projects like Wikidata contain a variety of
meta-data about who is contributing what, when and how. Investigating the sequential patterns in
such event log data provides a richer description of the temporal dynamics underlying the online
knowledge collaborations. This research adopts Keegan’s [11] definition of event logs, specifies the
process of identifying, schematizing, analyzing and interpreting sequences into the Wikidata domain,
and, in addition, introduces data quality variation as a new event log feature, so that an event log
can be encoded into a message not only about who-what-when-how, but also how much.
As a conceptual and methodological contribution, this research took ORES as a proxy to evaluate

the temporal article quality and utilized the Jensen-Shannon distance as a metric for measuring the
quality variations across event logs. To demonstrate the usability of the extended methodology,
this research outlined through a case study a step-by-step procedure for employing sequence anal-
ysis in context of Wikidata. The case study illustrates the impact of sequential editing activities
on data quality using a sequential pattern mining approach. The study collected and processed
the meta-data of 500 randomly chosen Wikidata articles, classified the raw revision comments into
highly-structured edit types, used the JS distance to capture the quality dynamics between adjacent
edit types, and finally, identified frequent sequential editing patterns satisfying a specified quality
constraint. With analysis of the impacts of different sequence identifications in terms of quality vari-
ations, this empirical case study can be seen as a pilot study for investigating sequential behaviour
patterns with a focus of data quality. In the meantime, it provides some remarkable findings that
deserve more discussion and elaboration in the future:

Quality measurement and ORES. The case study quantified the quality development by means
of JS distance and this performs well. As the JS distance is bounded between 0 and 1, the whole
dataset presents a wide variation range from 0 to 0.9876. However, with more than a half of all
revisions holding JS distances of 0 (identical item quality distribution between adjacent revisions),
the average quality variation is rather insignificant (0.0098). Moreover, this questioned the ability
of ORES item-quality model to identify the subtle quality changes, since the contents involved exist
in the model features.

The power of a single edit. Having conducted elementary statistical tests on the sample dataset,
the study found that instead of an absolute value, the average power of a single edit type is rather
context-dependent. The JS value of a particular edit type changes accordingly with edit focus,
activity type and the current development stage of the article. Edits in regard to focuses Term and
Reference triggered higher quality variations on average. Similarly, activity types such as Merge
and Revert generate on average higher quality changes. The article quality variation triggered by a
single edit appears variously susceptible according to different developing stages. Overall, the power
of a single edit becomes increasingly weaker as the articles are being completed.

Frequent sequential patterns. Frequent sequential patterns between article sequences are dis-
covered by adjusting the constraints of quality and frequency so that patterns with appropriate size
and length are identified. In increasing the threshold of quality variation, the frequency constraint
has to be strongly compromised to ensure consecutive edit type sequences. This indicates that

41

5. Conclusion

frequent sequences leading to high quality variations are not able to be sustained for a long time.
Having investigated the identified patterns from both edit focus and activity type perspectives, as
the quality variation threshold increases, editing activities related to Reference are occurring more
frequently (from 32% to 58%), and the activity types are becoming more diverse.
In effect, in the future there is a necessity to cross test the identified results by scaling up the

data collected. To investigate the effectiveness of different sequence identifications in terms of data
quality, this research chose Artifact and Activity as the fundamental features of event logs, extended
them with sub-features like Name Space and Edit Type, and tested the effectiveness regarding data
quality by setting Development Stage as a variable. This can be seen as a call to extend the sequence
identifications with Performer for examining the temporal participation patterns, or with Order to
capture an overall development process, both with a data quality perspective. More importantly, the
JS distance approach has a rich potential for measuring quality improvement in the context of ORES
by setting a desired probability distribution as null hypothesis. Knowing the sequential patterns
that lead frequently to a higher article quality, a recommendation system could be constructed to
complement the work of high-quality maintenance in online knowledge collaborations.

42

Literature

[1] Rakesh Agrawal and Ramakrishnan Srikant. “Mining Sequential Patterns”. In: Proceedings
of the Eleventh International Conference on Data Engineering. ICDE ’95. Washington, DC,
USA: IEEE Computer Society, 1995, pp. 3–14. isbn: 0-8186-6910-1. url: http://dl.acm.
org/citation.cfm?id=645480.655281.

[2] To Tu Cuong and Claudia Müller-Birn. “Applicability of Sequence Analysis Methods in An-
alyzing Peer-Production Systems: A Case Study in Wikidata”. In: Social Informatics - 8th
International Conference, SocInfo 2016, Bellevue, WA, USA, November 11-14, 2016, Pro-
ceedings, Part II. 2016, pp. 142–156. doi: 10.1007/978-3-319-47874-6_11. url: https:
//doi.org/10.1007/978-3-319-47874-6%5C_11.

[3] Fredo Erxleben et al. “Introducing Wikidata to the Linked Data Web”. In: The Semantic
Web – ISWC 2014. Ed. by Peter Mika et al. Cham: Springer International Publishing, 2014,
pp. 50–65. isbn: 978-3-319-11964-9.

[4] Samer Faraj, Sirkka L. Jarvenpaa, and Ann Majchrzak. “Knowledge Collaboration in Online
Communities”. In: Organization Science 22.5 (Sept. 2011), pp. 1224–1239. issn: 1526-5455.
doi: 10.1287/orsc.1100.0614. url: https://doi.org/10.1287/orsc.1100.0614.

[5] Michael Färber et al. “Linked Data Quality of DBpedia, Freebase, OpenCyc, Wikidata, and
YAGO”. In: Semantic Web Journal (2017), pp. 1–53.

[6] Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim. “SPIRIT: Sequential Pattern Min-
ing with Regular Expression Constraints”. In: Proceedings of the 25th International Conference
on Very Large Data Bases. VLDB ’99. San Francisco, CA, USA: Morgan Kaufmann Publish-
ers Inc., 1999, pp. 223–234. isbn: 1-55860-615-7. url: http://dl.acm.org/citation.cfm?
id=645925.671514.

[7] Goldberger, Gordon, and Greenspan. “An efficient image similarity measure based on ap-
proximations of KL-divergence between two gaussian mixtures”. In: Proceedings Ninth IEEE
International Conference on Computer Vision. Oct. 2003, 487–493 vol.1. doi: 10.1109/ICCV.
2003.1238387.

[8] Jiawei Han, Jian Pei, and Yiwen Yin. “Mining Frequent Patterns Without Candidate Gener-
ation”. In: SIGMOD Rec. 29.2 (May 2000), pp. 1–12. issn: 0163-5808. doi: 10.1145/335191.
335372. url: http://doi.acm.org/10.1145/335191.335372.

[9] Jiawei Han et al. “FreeSpan: Frequent Pattern-projected Sequential Pattern Mining”. In: Pro-
ceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’00. Boston, Massachusetts, USA: ACM, 2000, pp. 355–359. isbn: 1-58113-
233-6. doi: 10.1145/347090.347167. url: http://doi.acm.org/10.1145/347090.347167.

[10] Jiawei Han et al. “Frequent pattern mining: current status and future directions”. In: Data
Mining and Knowledge Discovery 15.1 (Aug. 2007), pp. 55–86. issn: 1573-756X. doi: 10.
1007/s10618-006-0059-1. url: https://doi.org/10.1007/s10618-006-0059-1.

43

http://dl.acm.org/citation.cfm?id=645480.655281
http://dl.acm.org/citation.cfm?id=645480.655281
https://doi.org/10.1007/978-3-319-47874-6_11
https://doi.org/10.1007/978-3-319-47874-6%5C_11
https://doi.org/10.1007/978-3-319-47874-6%5C_11
https://doi.org/10.1287/orsc.1100.0614
https://doi.org/10.1287/orsc.1100.0614
http://dl.acm.org/citation.cfm?id=645925.671514
http://dl.acm.org/citation.cfm?id=645925.671514
https://doi.org/10.1109/ICCV.2003.1238387
https://doi.org/10.1109/ICCV.2003.1238387
https://doi.org/10.1145/335191.335372
https://doi.org/10.1145/335191.335372
http://doi.acm.org/10.1145/335191.335372
https://doi.org/10.1145/347090.347167
http://doi.acm.org/10.1145/347090.347167
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.1007/s10618-006-0059-1

Literature

[11] Brian C. Keegan, Shakked Lev, and Ofer Arazy. “Analyzing Organizational Routines in Online
Knowledge Collaborations: A Case for Sequence Analysis in CSCW”. In: Proceedings of the
19th ACM Conference on Computer-Supported Cooperative Work & Social Computing. CSCW
’16. San Francisco, California, USA: ACM, 2016, pp. 1065–1079. isbn: 978-1-4503-3592-8. doi:
10.1145/2818048.2819962. url: http://doi.acm.org/10.1145/2818048.2819962.

[12] S. Kim et al. “Dynamic and Succinct Statistical Analysis of Neuroscience Data”. In: Proceedings
of the IEEE 102.5 (May 2014), pp. 683–698. issn: 0018-9219. doi: 10.1109/JPROC.2014.
2307888.

[13] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: The Annals of Math-
ematical Statistics 22.1 (1951), pp. 79–86. issn: 00034851. url: http://www.jstor.org/
stable/2236703.

[14] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Research Methods in Human-
Computer Interaction. Wiley Publishing, 2010. isbn: 0470723378, 9780470723371.

[15] J. Lin. “Divergence measures based on the Shannon entropy”. In: IEEE Transactions on In-
formation Theory 37.1 (Jan. 1991), pp. 145–151. issn: 0018-9448. doi: 10.1109/18.61115.

[16] Florent Masseglia, Pascal Poncelet, and Maguelonne Teisseire. “Web Usage Mining: How to
Efficiently Manage New Transactions and New Clients”. In: PKDD. Vol. 1910. Lecture Notes
in Computer Science. Springer, 2000, pp. 530–535.

[17] Carl H. Mooney and John F. Roddick. “Sequential Pattern Mining – Approaches and Al-
gorithms”. In: ACM Comput. Surv. 45.2 (Mar. 2013), 19:1–19:39. issn: 0360-0300. doi: 10.
1145/2431211.2431218. url: http://doi.acm.org/10.1145/2431211.2431218.

[18] Claudia Müller-Birn et al. “Peer-production System or Collaborative Ontology Engineering
Effort: What is Wikidata?” In: Proceedings of the 11th International Symposium on Open
Collaboration. OpenSym ’15. San Francisco, California: ACM, 2015, 20:1–20:10. isbn: 978-
1-4503-3666-6. doi: 10.1145/2788993.2789836. url: http://doi.acm.org/10.1145/
2788993.2789836.

[19] Jian Pei et al. “PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth”. In:
Proceedings of the 17th International Conference on Data Engineering. Washington, DC, USA:
IEEE Computer Society, 2001, pp. 215–224. isbn: 0-7695-1001-9. url: http://dl.acm.org/
citation.cfm?id=645484.656379.

[20] Lev Ratinov and Dan Roth. “Design Challenges and Misconceptions in Named Entity Recog-
nition”. In: Proceedings of the Thirteenth Conference on Computational Natural Language
Learning. CoNLL ’09. Boulder, Colorado: Association for Computational Linguistics, 2009,
pp. 147–155. isbn: 978-1-932432-29-9. url: http://dl.acm.org/citation.cfm?id=1596374.
1596399.

[21] Amir Sarabadani, Aaron Halfaker, and Dario Taraborelli. “Building Automated Vandalism
Detection Tools for Wikidata”. In: Proceedings of the 26th International Conference on World
Wide Web Companion. WWW ’17 Companion. Perth, Australia: International World Wide
Web Conferences Steering Committee, 2017, pp. 1647–1654. isbn: 978-1-4503-4914-7. doi:
10.1145/3041021.3053366. url: https://doi.org/10.1145/3041021.3053366.

[22] Ramakrishnan Srikant and Rakesh Agrawal. “Mining sequential patterns: Generalizations and
performance improvements”. In: Advances in Database Technology — EDBT ’96. Ed. by Pe-
ter Apers, Mokrane Bouzeghoub, and Georges Gardarin. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 1–17. isbn: 978-3-540-49943-5.

44

https://doi.org/10.1145/2818048.2819962
http://doi.acm.org/10.1145/2818048.2819962
https://doi.org/10.1109/JPROC.2014.2307888
https://doi.org/10.1109/JPROC.2014.2307888
http://www.jstor.org/stable/2236703
http://www.jstor.org/stable/2236703
https://doi.org/10.1109/18.61115
https://doi.org/10.1145/2431211.2431218
https://doi.org/10.1145/2431211.2431218
http://doi.acm.org/10.1145/2431211.2431218
https://doi.org/10.1145/2788993.2789836
http://doi.acm.org/10.1145/2788993.2789836
http://doi.acm.org/10.1145/2788993.2789836
http://dl.acm.org/citation.cfm?id=645484.656379
http://dl.acm.org/citation.cfm?id=645484.656379
http://dl.acm.org/citation.cfm?id=1596374.1596399
http://dl.acm.org/citation.cfm?id=1596374.1596399
https://doi.org/10.1145/3041021.3053366
https://doi.org/10.1145/3041021.3053366

Literature

[23] Steve Stemler. “An overview of content analysis”. In: Practical Assessment, Research & Eval-
uation 7.17 (2001). issn: 1531-7714. url: http://pareonline.net/getvn.asp?v=7&n=17.

[24] Simon Walk, Philipp Singer, and Markus Strohmaier. “Sequential Action Patterns in Collabo-
rative Ontology-Engineering Projects: A Case-Study in the Biomedical Domain”. In: Proceed-
ings of the 23rd ACM International Conference on Conference on Information and Knowledge
Management, CIKM 2014, Shanghai, China, November 3-7, 2014. 2014, pp. 1349–1358. doi:
10.1145/2661829.2662049. url: https://doi.org/10.1145/2661829.2662049.

[25] Mohammed J. Zaki. “SPADE: An Efficient Algorithm for Mining Frequent Sequences”. In:Ma-
chine Learning 42.1 (Jan. 2001), pp. 31–60. issn: 1573-0565. doi: 10.1023/A:1007652502315.
url: https://doi.org/10.1023/A:1007652502315.

45

http://pareonline.net/getvn.asp?v=7&n=17
https://doi.org/10.1145/2661829.2662049
https://doi.org/10.1145/2661829.2662049
https://doi.org/10.1023/A:1007652502315
https://doi.org/10.1023/A:1007652502315

Appendix

5.1 Activity Coding Scheme

Edit Focus Edit Type Edit Summary Paraphrase

Alias

set alias wbsetaliases-set Set a new alias list for a Wik-
ibase entity, possibly over-
write

add alias wbsetaliases-add Add new aliases to the exist-
ing alias list of a Wikibase en-
tity, won’t overwrite

update alias wbsetaliases-add-remove Add new aliases to the alias
list as well as remove aliases
from the list

wbsetaliases-update Update the alias list of a Wik-
ibase entity

Claim

set claim
wbsetclaim-create Create an entire statement or

claim
wbcreateclaim Create Wikibase claims
wbcreateclaim-create Create Wikibase claims

add claim wbsetclaimvalue Set the value of a Wikibase
claim

update claim

wbsetclaim-update Update an entire statement or
claim

wbremoveclaims-update Update Wikibase claims by
removing claim value

wbsetclaim-update-qualifiers Update the value of an exist-
ing qualifier

wbsetclaim-update-rank Update the value of an exist-
ing rank

remove claim wbremoveclaims Remove Wikibase claims
wbremoveclaims-remove Remove Wikibase claims

Description
set description wbsetdescription-set Set a description for a sin-

gle Wikibase entity, possibly
overwrite

add description wbsetdescription-add Set a description for a single
Wikibase entity, won’t over-
write

remove description wbsetdescription-remove Set a new description for a
single Wikibase entity, remove
the old one

47

5.1. Activity Coding Scheme

Edits revert edits
undo Undo the edits made by the

most recent editor of any item
or page which are potential
vandalisms

reverted edits Revert the edits made by the
most recent editor of any item
or page which are potential
vandalisms

restored edits Restore the edits made by the
most recent editor of any item
or page which are potential
vandalisms

unrevert edits unrevert edits Set the potentially wrongly re-
verted edits back

Item

set item

created page Create a new page as new
Wikibase entity

wbsetentity Create a new Wikibase entity,
possibly overwrite

wbeditentity-create Create a single new Wikibase
entity, possibly overwrite

wbeditentity-override Create a new Wikibase entity,
possibly overwrite

add item wbeditentity Add a single new Wikibase en-
tity and modifies it with seri-
alized information

update item wbeditentity-update Update existing Wikibase en-
tity, possibly overwrite

merge item wbmergeitems Merge multiple items
redirect item wbcreateredirect Create entity redirects
protect item protected item Protect an item page
unprotect item remove protection Unprotect an item page

Label
set label wbsetlabel-set Set a label for a single Wik-

ibase entity, possibly over-
write

add label wbsetlabel-add Set a label for a single Wik-
ibase entity, won’t overwrite

remove label wbsetlabel-remove Set a new label for a single
Wikibase entity, remove the
old one

Qualifier
add qualifier wbsetqualifier-add Create a qualifier or sets the

value of an existing one to the
claim, won’t overwrite

update qualifier wbsetqualifier-update Update the value of existing
qualifier

48

remove qualifier wbremovequalifiers-remove Remove one or more qualifiers
from the claim

Reference

set reference wbsetreference Create a reference or set the
value of an existing one

wbsetreference-set Set a new reference
add reference wbsetreference-add Add value of existing reference

remove reference wbremovereferences Remove one or more refer-
ences of the same statement

wbremovereferences-remove Remove one or more refer-
ences of the same statement

Sitelink

set sitelink

wbsetsitelink-set Associate a page on a wiki
with a Wikibase item

wbsetsitelink-set-badges Associate a page on a wiki
with a Wikibase item, set
badges

wbsetsitelink-set-both Associate a page on a wiki
with aWikibase item, set both
link-title and badges

wblinktitles-connect Associate two pages on two
different Wikis with a Wik-
ibase item

add sitelink wbsetsitelink-add Add a sitelink to the item, if
the sitelink does not exist

wbsetsitelink-add-both Add a sitelink to the item, if
the sitelink does not exist, add
both link-title and badges

update sitelink clientsitelink-update Update the existing link to a
page from an item

remove sitelink wbsetsitelink-remove Change the link to a page from
an item, remove the link

clientsitelink-remove Change the link to a page from
an item, remove the link (old
version)

Term set term wbsetlabeldescriptionaliases Set a new label, alias and de-
scription for a single Wikibase
entity

remove term remove terms Remove labels, aliases, and
descriptions from an existing
entity

49

5.2. Statistics of JS-distance with an Edit Focus Perspective

5.2 Statistics of JS-distance with an Edit Focus Perspective

Focus Count % Max./Min. Average Dev. Stage Average

C 0.074
B 0.112Term 315 0.21% 0.879/0.0 0.043 (σ2 = 0.006)
A 0.009

E 0.192
D 0.230
C 0.071
B 0.031

Reference 12,757 8.71% 0.925/0.0 0.041 (σ2 = 0.011)

A 0.009

E 0.081
D 0.074
C 0.046
B 0.032

Edits 3,426 2.33% 0.985/0.0 0.040 (σ2 = 0.007)

A 0.029

E 0.036
D 0.043
C 0.019
B 0.033

Item 9,568 6.53% 0.988/0.0 0.024 (σ2 = 0.007)

A 0.014

E 0.066
D 0.157
C 0.018
B 0.020

Description 11,879 8.11% 0.952/0.0 0.023 (σ2 = 0.007)

A 0.021

E 0.024
D 0.028
C 0.016
B 0.018

Label 7,915 5.41% 0.937/0.0 0.021 (σ2 = 0.002)

A 0.026

E 0.089
D 0.103
C 0.017
B 0.013

Claim 52,343 35.75% 0.941/0.0 0.020 (σ2 = 0.003)

A 0.008

E 0.010
D 0.019
C 0.011
B 0.008

Alias 7,133 4.87% 0.873/0.0 0.010 (σ2 = 0.001)

A 0.007

E 0.011
D 0.020

50

C 0.006
B 0.007

Qualifier 10,270 7.01% 0.161/0.0 0.006 (σ2 = 0.001)

A 0.005

E 0.002
D 0.014
C 0.009
B 0.010

Sitelink 30,844 21.07% 0.898/0.0 0.004 (σ2 = 0.001)

A 0.007

Table 5.2: Statistics of JS distance value with an edit focus perspective (n = 146450, focus
term is a combination of multiple focuses label, alias and description, and focus edits
refers to previous edits detected as potential vandalism edits, often appears with activity
revert. The list is sorted by the average JS-distance value in a descending order).

51

5.3. Statistics of JS-distance with an Activity Type Perspective

5.3 Statistics of JS-distance with an Activity Type Perspective

Activity Count % Max./Min. Average Dev. Stage Average

E 0.261
D 0.008
C 0.024
B 0.052

Merge 512 0.35% 0.988/0.0 0.055 (σ2 = 0.024)

A 0.027

E 0.081
D 0.061
C 0.046
B 0.032

Revert 3,425 2.34% 0.985/0.0 0.040 (σ2 = 0.007)

A 0.029

E 0.113
D 0.070
C 0.017
B 0.018

Remove 8,133 5.55% 0.932/0.0 0.022 (σ2 = 0.004)

A 0.007

E 0.037
D 0.069
C 0.021
B 0.021

Set 70,862 48.39% 0.985/0.0 0.019 (σ2 = 0.004)

A 0.009

E 0.012
D 0.079
C 0.029
B 0.013

Add 39,596 27.04% 0.952/0.0 0.019 (σ2 = 0.002)

A 0.011

E 0.017
D 0.033
C 0.017
B 0.024

Update 23,838 16.28% 0.941/0.0 0.017 (σ2 = 0.002)

A 0.010

C 0.0
B 0.001Protect 33 0.02% 0.096/0.0 0.032 (σ2 = 0.001)
A 0.048

Redirect 49 0.03% 0.001/0.0 0.001(σ2 = 0.001) E 0.001

Table 5.3: Statistics of JS distance value with an activity type perspective (n = 146448,
activity type unprotect and unrevert with a size of 1, i.e. standard deviation of 0 are
excluded. The list is sorted by the average JS-distance value in a descending order).

52

	Introduction
	Relevant Topics
	Wikidata
	Data Quality
	Sequence Pattern Mining

	Sequence Analysis Methodology
	Identification of Sequences
	Schematization of Sequences
	Analysis of Sequences
	Interpretation of Sequences

	Case Study
	Sample and Data Extraction
	Data Representation
	Sequence Mining
	Behavioral Patterns

	Conclusion
	Literature
	Appendix
	Activity Coding Scheme
	Statistics of JS-distance with an Edit Focus Perspective
	Statistics of JS-distance with an Activity Type Perspective

