
A System for Distributed Event Detection
in Wireless Sensor Networks

Georg Wittenburg, Norman Dziengel, Christian Wartenburger, and Jochen Schiller
Department of Mathematics and Computer Science

Freie Universität Berlin
Takustr. 9, 14195 Berlin, Germany

{wittenbu,dziengel,wartenbu,schiller}@inf.fu-berlin.de

ABSTRACT
Event detection is a major issue for applications of wire-
less sensor networks. In order to detect an event, a sensor
network has to identify which application-specific incident
has occurred based on the raw data gathered by individual
sensor nodes. In this context, an event may be anything
from a malfunction of monitored machinery to an intrusion
into a restricted area. The goal is to provide high-accuracy
event detection at minimal energy cost in order to maximize
network lifetime.

In this paper, we present a system for collaborative event
detection directly on the sensor nodes. The system does not
require a base station for centralized coordination or pro-
cessing, and is fully trainable to recognize different classes
of application-specific events. Communication overhead is
reduced to a minimum by processing raw data directly on
the sensor nodes and only reporting which events have been
detected. The detection accuracy is evaluated using a 100-
node sensor network deployed as a wireless alarm system on
the fence of a real-world construction site.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks Distributed Systems [distributed
applications]

General Terms
Algorithms, Experimentation, Measurement

Keywords
wireless sensor network, distributed event detection, in-net-
work data processing, pattern recognition

1. INTRODUCTION
Wireless Sensor Networks (WSNs) [1] are used in increas-

ingly complex application scenarios such as vehicle track-
ing [6], undersea monitoring [14], or classification of human

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’10, April 12–16, 2010, Stockholm, Sweden.
Copyright 2010 ACM 978-1-60558-955-8/10/04 ...$10.00.

motion sequences [19]. In all of these cases, a sensor network
is used to detect events based on the raw data sampled by the
various sensors on each sensor node. There are two predom-
inant approaches to tackle the problem of event detection in
WSNs: One option is to transmit the raw data as sampled
by the sensors to the base station for centralized evaluation.
This incurs the drawback of rapid energy depletion due to
continuous data transmissions and thus shortens the lifetime
of the WSN. Further, the time until all relevant data is trans-
mitted may be significant and cause an unacceptable delay
before an event is reported. The second option is to evalu-
ate the raw data on each sensor node, report the detection
result to the base station, and run a statistical evaluation
on all reports. In this case, the overall detection accuracy
suffers from the fact that the initial classification is based
on the data of merely a single sensor node.

In this paper, we present a system for distributed event de-
tection in WSNs that allows several sensor nodes to collabo-
rate in order to identify application-specific events. Our sys-
tem is capable of correctly identifying a configurable number
of different classes of events, which can be freely trained on
the deployed system. No formal event specification or ex-
pert knowledge about the event characteristics is necessary.
Communication cost is reduced to a minimum as raw data is
evaluated directly on the sensor nodes. Only small feature
vectors, i.e., condensed but highly descriptive “fingerprints”
of the sampled data, are locally exchanged between nodes;
only the information about which event was detected is re-
ported back to the base station.

Our general approach is to adapt algorithms from the
field of pattern recognition to WSNs and train the deployed
sensor network to recognize new events. The algorithms
presented in this paper compose the feature vector using
an automatically generated, application-specific selection of
features across multiple sensor nodes. The extraction of fea-
tures from the data samples is performed locally on each
sensor. Hence, our approach combines the energy savings of
local data processing with a distributed evaluation to yield
high detection accuracy. Further, our system is not tied
to any particular application scenario because the pattern
recognition algorithms are not specific to the type of sensor
used or the characteristics of the deployment area.

We evaluate our system on the example of a wireless alarm
system consisting of 100 sensor nodes that were attached to
the fence surrounding a real-world construction site. The
task of the WSN was to detect security relevant incidents
by recognizing four previously trained patterns in the lateral
oscillation of the fence elements.

The contribution of this paper is threefold:

• We propose a system for event detection in WSNs
based on distributed pattern recognition algorithms
that can be thought about application-specific events
by the means of supervised training.

• We quantitatively evaluate our system applied to a
real-world use case in a major WSN deployment.

• We analyze our results in the context of prior lab ex-
periments and compare our work qualitatively to sim-
ilar approaches.

We expand upon our previous work, specifically upon the
lessons learnt during a proof-of-concept deployment [18] and
upon our lab prototype [5]. In [18], we evaluated the general
validity of the concept of a WSN-based wireless alarm sys-
tem. We deployed ten sensor nodes on a fence in the patio
of our institute and programmed them with a heuristic clas-
sifier based on visual inspection of the raw data of typical
events. In [5], we presented the fundamentals of our system
and evaluated its accuracy in a small-scale lab experiment on
the distributed recognition of human gestures. The results
of this experiment encouraged us to deploy the system in a
real-world setting and serve as a baseline for the discussion
of the results obtained from the current deployment.

This paper is organized as follows: We begin with a dis-
cussion of related work in Section 2. In Section 3, we proceed
with a brief introduction to pattern recognition, introduce
the components and algorithms used in our system and de-
tail the processes of training and event detection. In Sec-
tion 4, we describe the experimental setup, introduce the
metrics used in the evaluation, and present and discuss the
experimental results. Finally, we conclude in Section 5.

2. RELATED WORK
Event detection has been a hot topic in WSN research in

recent years. In this section, we summarize representative
approaches and compare them qualitatively with our work.

2.1 Representative Approaches
In [6], Gu et al. describe the VigilNet project which has

the objective of tracking vehicles, people and people carrying
metallic objects. The sensor nodes employ threshold values
on the readings from a magnetometer, a motion sensor and
an acoustic sensor in order to classify events. The results are
sent to a dynamically assigned group leader for evaluation
and tracking. Tracking information about identified events
is reported to the base station.

As part of the SensIT project, Duarte and Hu [3] evaluate
several classification algorithms in a vehicle tracking deploy-
ment. Each sensor node gathers acoustic and seismic data
and classifies events using features extracted from the fre-
quency spectrum after performing a Fast Fourier Transform
(FFT). The evaluation comprises three classification algo-
rithms: k-nearest neighbor, ML and support vector machine.
The classification result is sent to a fixed cluster head for
evaluation and combined with reports received from other
nodes for tracking a vehicle.

Tavakoli et al. [14] consider a scenario in which targets
are tracked using an undersea acoustic sensor network. Sim-
ilar to the previous two approaches, the sensor nodes report
their local classification result to a cluster head which then

in turn performs an evaluation of the data and may report
the outcome to a base station. Additionally to the num-
ber of incoming reports, the cluster head also considers the
accuracy of these reports in the past.

The system proposed by Yang et al. [19] is aimed at rec-
ognizing human motions. It is a Body Area Network (BAN)
consisting of eight sensor nodes attached to the body of a
person who may perform one out of twelve actions. Features
are extracted from an accelerometer and gyroscope and and
classified on each node. If a local classification is promis-
ing, the data of all nodes is transmitted to the base station
and classified once again. The classification process identi-
fies an action by matching the linear representation of the
extracted feature vector to one of several subspaces, each of
which corresponds to one type of action.

Wang et al. [16] describe a habitat monitoring system that
is capable of recognizing and localizing animals based on
acoustics. They employ a cluster head with additional pro-
cessing capabilities that may request compressed raw data
from other nodes for centralized evaluation. Animals are
identified by the maximum cross-correlation coefficient of
an observed spectrogram with a reference spectrogram. Us-
ing reports from multiple sensor nodes, the animals are then
localized in the field.

The distributed event detection system proposed by Mar-
tincic and Schwiebert [10] groups the sensor nodes into cells
based on their location. All nodes in a cell transmit their
data samples to a cluster head which averages the results
and retrieves the averages from adjacent cells. Event de-
tection is performed on the cluster heads by arranging the
collected averages in the form of a matrix and comparing it
to a second predefined matrix that describes the event. An
event is detected if the two matrices match.

Li et al. [9] use the example of a coal mine surveillance
system to evaluate a WSN that detects events in a 3D en-
vironment without relying on threshold values in the raw
data. Their system works by aggregating data from the sen-
sor nodes on the base station into a gradient data map of the
entire deployment area. Events are detected by matching a
time series of data map values against the known properties
of certain events, e.g., a gas leakage or a water seepage.

2.2 Evaluation
A quantitative comparison of these approaches with our

own work is not feasible due to different application scenar-
ios and methodologies used in the respective evaluations.
Large-scale outdoor deployments similar to our own were
used by Gu [6] and Duarte [3], while Yang [19] and Wang [16]
conducted measurements in a more controlled environment.
Tavakoli [14], Martincic [10], and Li [9] simulate a WSN
using synthetic events.

Instead, Table 1 shows a qualitative comparison of the
approaches with our own work. The criteria we considered
are processing requirements on the sensor nodes, infrastruc-
ture requirements with regard to network services, and the
capabilities to support training and to perform distributed
classification. The first two criteria reflect how demanding
an approach is on the hard- and software of the WSN plat-
form. The remaining two criteria describe whether the sys-
tem can be trained to recognize application-specific events
and whether the classification algorithm considers feature
vectors from multiple nodes as opposed to feature vectors
gathered only on the local node.

Criterion Processing Infrastructure Training Distributed
Approach requirements requirements support classification

Gu et al. [6] + (-) - o
Tavakoli et al. [14] o o (-) -
Yang et al. [19] o (+) + +
Duarte and Hu [3] - o + -
Wang et al. [16] - o o -
Martincic [10] + - + (+)
Li [9] + o o -
Our approach + + + +

Table 1: Comparison of Approaches

Sensor nodes capable of extensive data processing, e.g.,
calculating a FFT, are required by Duarte [3] and as cluster
heads by Wang [16]. Tavakoli [14] and Yang [19] are not
as clear about their requirements, but from their approach
one can still assume that the necessary calculations are not
trivially handled by a typical sensor node.

Most approaches require the WSN platform to provide
a mechanism for cluster management and leader election.
Gu [6] even provides a service for migrating cluster heads in
order to support object tracking. Martincic [10] requires the
WSN to be partitioned into cells and assigns the nodes to
cells based on location information. Except for our own ap-
proach, Yang [19] and Li [9] are the only ones not to require
a clustering service because in their approaches all nodes
communicate directly with the base station.

Training of scenario-specific events is supported by the
approaches proposed by Yang [19], Duarte [3], and Mart-
incic [10]. Wang [16] and Li [9] can be considered to have
partial training support, since they implement a classifica-
tion based on user-defined patterns in the form of spectro-
grams or properties of time series. Gu [6] mostly relies on
pre-defined threshold values instead of event-specific train-
ing data. Tavakoli [14] discusses event detection based on
simulated event radii and hence does not focus on the as-
pect of training. It should be mentioned that support for
event-specific training is not necessarily an advantage for all
kinds of scenarios. In some cases, it may in fact be prefer-
able to classify events with a purpose-built classifier based
on expert knowledge rather than a generic classifier using
training data from sampled exemplary events. This is espe-
cially true for scenarios in which training data for all types
of events is very hard to generate.

Martincic [10], Yang [19], and Li [9] are the only ap-
proaches except ours to support classification based on fea-
ture vectors from multiple sensor nodes. However, the fea-
ture vectors used by Martincic [10] are limited to a single
dimension per node, and Li [9] relies entirely on the base
station for classification. All other approaches perform a
classification based on the features collected on the local
node and later aggregate the local classifications on a clus-
ter head. Gu [6] differs from the other approaches in that
it allows the cluster head to reevaluate a given classifica-
tion by transmitting confidence information together with
the classification result.

To summarize, the approach proposed in this paper is
unique in that it supports training and classification based
on features from multiple sensor nodes while at the same
time only posing minimal demands on processing and in-
frastructure resources.

3. SYSTEM ARCHITECTURE
Before discussing the software components and algorithms

used in our system, we provide a brief summary of the basics
of pattern recognition. An in-depth introduction to this sub-
ject matter is available in Duda et al. [4] and Niemann [11].

3.1 Pattern Recognition
Pattern recognition is the process of classifying raw data,

i.e., assigning a set of data samples to one of multiple classes.
The process can be subdivided into the following three steps:

1. Sampling: Data describing the object of interest is
gathered by a sensor and optionally preprocessed to
eliminate background noise.

2. Feature Extraction: Features are extracted from the
data and combined into a feature vector. The goal is to
reduce the dimensionality of the data while preserving
all characteristic information.

3. Classification: Feature vectors are classified, either
using a priori knowledge from a preceding training ses-
sion or by statistical means alone.

A great variety of features can be extracted from raw data.
They range from simple statistical measures, such as mini-
mum, maximum and average, to complex signal processing
algorithms, such as computing the discrete Fourier trans-
form [11]. Figure 1 shows an exemplary feature being ex-
tracted from a time series of normalized 8-bit acceleration
values sampled at a 41.6 Hz. The event is discretized into
time intervals and for each time interval the difference be-
tween the minimal and maximal acceleration value is com-
puted. This results in a set of features that are simple to
compute and adequately capture the change of acceleration
intensity over time.

The most widely used algorithms for classification are
(among many others) decision trees, neural networks, sup-
port vector machines, and k-nearest neighbors [4]. In light
of the resource constraints on sensor nodes, we opted for a
classification employing the prototype modeler [7] in our sys-
tem. Figure 2 illustrates the classification process in a two-
dimensional feature vector space. Four prototype vectors
have been established by averaging the normalized training
data. A feature vector is classified by finding the nearest
prototype vector in terms of Euclidean distance. If the fea-
ture vector is close enough to the prototype vector, it is
recognized; if not, it is ignored.

Figure 1: Exemplary Feature Extraction from Raw
Acceleration Data

Figure 2: Classification by Finding the Nearest Pro-
totype Vector

Figure 3: System Architecture Figure 4: Stages of the Event Detection Process

3.2 System Components
The two principal components of our system are the sen-

sor nodes and the control station as shown in Figure 3. The
sensor nodes are deployed in a way that is suitable to detect
the spatial extension of the physical effects of the events.
For example, for an alarm system that detects trespassing
at a fence the nodes are equipped with accelerometers and
attached to the fence at fixed inter-node distances. Since the
fence is constructed using interconnected fence elements, the
lateral oscillation propagates along the fence and the nodes
can sample the acceleration at different distances from the
source of the event. In other application scenarios, different
deployment strategies and different types of sensors may be
used. However, all core components and algorithms are ca-
pable of general-purpose training and event detection, and
require no application-specific adaptations if the system is
deployed in different scenarios.

The information about which nodes are adjacent to each
other is relevant in our system, because the nodes combine
feature vectors from their respective neighbors in the clas-
sification. Thus, every node must know its position relative
to its neighbors, e.g., which nodes are attached to neighbor-
ing fence elements. This information can be encoded into
the unique node ID of each sensor node. For the example
of the alarm system, it is sufficient to increment the node
IDs along the fence. When receiving a packet, a node simply
compares its own ID with the sender ID and deduces the rel-
ative position of the sender on the fence. For more complex
scenarios, additional information can easily be encoded into
the node ID, e.g., to allow the node to identify neighbors
in a two-dimensional grid or to identify nodes attached to
specific parts of machinery.

The control station is required to support and coordinate
the training, but is not part of the event detection during

the deployment. The training requires considerable memory
and processing resources and is thus performed on PC-style
hardware rather than on sensor nodes. During the deploy-
ment, the control station may optionally be used to serve as
a base station for event reporting.

The system works in three distinct phases: The calibra-
tion phase begins when the user initially turns on the de-
ployed sensor nodes. In this phase, each sensor node adjusts
all attached sensors to the local environmental conditions at
the deployment site by taking a fixed number of samples to
measure the background noise of the observed physical quan-
tity. For instance, a microphone measures the noise caused
by wind or machinery operating nearby. This information
is used later on as threshold values to switch between low
and high resolution sampling when capturing an event and
to segment the signal into event-specific time series of raw
data. For sensors that have a deployment-specific default
value, e.g., accelerometers with regard to the direction of
the pull of gravity, the values for the default position are
established. The calibration procedure may be repeated at
any point in time during the deployment if deemed neces-
sary by the sensor node, e.g., after observing a continuous
drift in sampled values or an increase in background noise.

The training phase is initiated by the user via the con-
trol station, typically as soon as all sensor nodes have been
deployed in the field. The purpose of this phase is to train
the WSN to recognize application-specific events by provid-
ing a set of exemplary training events for each event class. In
training mode, the system is exposed to several exemplary
events of each class. The sensor nodes transmit feature vec-
tors extracted from sampled raw data to the control station.
The control station selects a subset of all available features
that is particularly well suited for event detection, calcu-
lates a prototype vector for each event class, and transmits

these parameters back to all sensor nodes. This process is
depicted by arrows (1) and (2) of Figure 3 and described in
more detail in Sections 3.3 and 3.4.

Once the training is complete, the system enters the de-
tection phase. Except for occasional local recalibrations
(described above), the WSN remains in this phase through-
out the deployment. In the detection phase, the sensor nodes
share their locally extracted features with other nodes in the
vicinity via broadcasts. Each node combines features from
multiple nodes into a feature vector which is then either
classified or rejected, i.e., ignored, using the prototype mod-
eler. Detected events that require logging or user interaction
are reported to the base station (or control station) of the
WSN, possibly via a gateway node. This process is depicted
in Figure 4. It corresponds to arrow (3) of Figure 3 and is
described in more detail in Sections 3.5, 3.6 and 3.7.

3.3 Training
The first step required to extract a feature from the raw

data generated by a training event is to preprocess sampled
data points to remove noise from the data stream. The data
stream is then segmented into chunks that correspond to
event candidates by using the threshold values with hystere-
sis that were established during the calibration phase. For
features whose values are known to fit into a fixed range,
the segment is normalized to the value range of the word
size of the WSN platform in order to achieve the highest
possible accuracy in subsequent calculations. Finally, fea-
tures are extracted from the normalized segments of raw
data. Depending on the algorithm corresponding to each
feature, this can be computationally cheap (e.g., average) or
expensive (e.g., discrete Fourier transform).

As all machine learning-based approaches, the overall ac-
curacy of the event detection increases with the number of
training events per class. The process of teaching the system
for a specific application scenario may be too time consum-
ing for end users. However, for a hypothetical commercial
version of our system, we consider it save to assume that it
would be part of the business model of the manufacturers
of the WSNs to support their costumers with pre-trained,
high-quality training data for major application scenarios.
This corresponds to the current practices in the industry,
e.g., regarding the provisioning of training data for hand
writing or speech recognition applications.

All training events are carried out at the same location
and observed from the perspective of a particular fixed sen-
sor node. This fixed node should ideally be the node that
is closest to the physical source of the event. As the nodes
in the vicinity respond to the training events and send their
features to the control station, the position of the nodes in
relation to the fixed node is stored as an attribute of the
features. The recorded features are thus no longer tied to
particular nodes, but rather to nodes with a specific rela-
tive position to the fixed node. The intuition behind this
approach is that each node together with its neighboring
nodes has its own unique view of the physical effects related
to an event. If the observed effects match those recorded
at the fixed node during the training, the classification suc-
ceeds even if the effects are observed by a different node
at a different position. It is thus possible to detect events
independently of their position in the field.

Our approach relies on two basic assumptions about the
setup of the deployed WSN: 1) the sensor nodes must be

Figure 5: Composition of Prototype Vector using
Feature Vectors from Multiple Sensor Nodes

placed uniformly within the deployment area, and 2) the
physical effects of the events to be observed must propagate
evenly in all parts of this area. The first assumption can
be achieved easily in most application scenarios of our sys-
tem. For the scenario evaluated in this work, the condition is
naturally satisfied by attaching one sensor node per equally-
sized fence element. Other common types of deployment,
such as deploying sensor nodes in a line or in a grid on the
ground, also meet this requirement. If a uniform deployment
of the sensor nodes is not possible, the event detection can
be be adapted to operate on features related to relative co-
ordinates in the deployment area. However, this additional
abstraction complicates the evaluation, and hence we focus
on a scenario in which the assumption holds.

The second assumption is strongly related to which classes
of events are to be detected. Generally, the assumption is
valid for those scenarios in which the physical effects of an
event are transmitted naturally via the environment. This is
the case for events with a descriptive noise, temperature, or
vibration patterns as found in use cases such as sniper detec-
tion [13], wild fire monitoring [2], or volcano monitoring [17].
Other classes of events require an appropriate deployment of
the WSN. For example, when monitoring the movement of
a fence as in our scenario, we have to ensure that the fence
elements are physically interconnected for the acceleration
patterns of an event to propagate from one fence element to
the next. However, having to ensure the propagation char-
acteristics as part of the deployment has certain drawbacks
which we discuss in Section 4.4.

The parameters required for the classification component
of our system, the prototype modeler, are the prototype vec-
tors that correspond to the different classes of events and the
size of the prototype regions surrounding the prototype vec-
tors. The latter are necessary to discard the feature vectors
that correspond to untrained events (cf. Fig. 2). In ad-
dition to this set of standard parameters, we also need to
consider the special constraints present in WSNs: Features
from certain sensor nodes may be inadequate for classifica-
tion purposes because a node may only sporadically register
the physical effects due to its distance to the source of the
event. Additionally, it is not advisable to use all available
features for classification because of the processing overhead
incurred by each additional feature. Hence, the system needs
to select a set of suitable features to be used in the classifi-
cation before calculating prototype vectors.

3.4 Feature Selection
Once the training is complete, the control station consid-

ers how many feature vectors were received from each node.
If this value is below a configurable threshold for more than

Figure 6: Event Classification and Rejection based on the Physical Location of the Sensor Nodes

one of the events, the algorithm discards all features from
this node, because the physical effects of the event are not
pronounced enough at this relative position to reliably trig-
ger the segmentation. The remaining features are evaluated
with regard to their potential to differentiate between the
trained classes of events. The goal is to find the set of fea-
tures that is the most suitable one to form a distinct proto-
type vector for each event class.

In order to evaluate the quality of a feature set we employ
the Leave-one-out Cross Validation (LOOCV) algorithm [8].
Like all cross validation algorithms it divides the set of fea-
ture vectors into two subsets. The training vectors contained
the first subset are averaged to calculate prototype vectors.
The second set is used as input to check the classification er-
ror of the prototype vectors. The strategy used by LOOCV
to subdivide the set is to only have a single element in the
second set. LOOCV iterates over all possible subdivision
and averages the classification errors. This average serves
as quality metric for feature sets.

To find the optimal selection of features S, we iteratively
select a feature f from the set of available features F and
calculate the quality metric LOOCV(S∪{f}). If the quality
is superior to any other choice of f , f is moved from F to
S, otherwise it remains in F . We repeat this process until
no addition to S can significantly improve the quality. The
resulting selection of features S is stored in a bitmask that
describes which feature from which node is to be used for
event detection.

Now that we have established which features are to be
used for classification, we calculate the final prototype vec-
tors for each event class by averaging the training vectors
and projecting the averaged vectors to the selected features
as depicted in Figure 5. The prototype vectors are then
transmitted to the sensor nodes together with information
about the respective prototype regions and the bitmask that
describes which features from which node were selected. As
only a subset of the original features is used in the proto-
type vectors, the sensor nodes can omit the calculation of all
unused features and reduce processor and memory usage.

3.5 Distributed Event Detection
The initial steps of the distributed event detection resem-

ble those used during the training: The sensors gather sam-
ples at a preset frequency and the data is preprocessed, seg-
mented, and – depending on the feature – normalized. Only
features used in the prototype vectors are extracted.

The extracted feature vector is transmitted via broadcast
to all sensor nodes in the 1-hop neighborhood. Forwarding
the feature vectors to more distant nodes is usually not re-
quired because for most scenarios the radio range of a sensor
node is significantly larger than the spatial expansion of the

physical effects caused by an event. For those rare cases in
which this assumption does not hold, the system needs to
be configured to distribute the extracted feature vector in
the n-hop neighborhood (for a scenario-specific n known to
all nodes) via limited flooding.

The process of extracting and broadcasting feature vectors
upon measuring the effects of an event runs in parallel on
all sensor nodes (cf. Fig. 4). Different sensor nodes may
transmit their feature vectors at different times depending
on when the physical effects drop below the threshold of the
segmentation algorithm on each particular node. Hence, if
one node broadcasts its feature vector while another node
is still processing the raw data, the transmission of feature
vectors may fail. To solve this problem, every node that
currently has a feature vector available rebroadcasts its own
feature vector upon receiving a previously unknown feature
vector from another node. Feature vectors are discarted
after a successful classification or after a timeout.

Once all required feature vectors have been received, each
node performs a feature fusion by combining the feature vec-
tors based on the bitmask and the relative position of the
sender (cf. Fig. 5). In other words, each node builds its own
view of the event using feature vectors from its neighboring
nodes. Obviously, the combined feature vector is different
for each node, because the respective neighboring nodes per-
ceive the event differently depending on their location. Ide-
ally, only the prototype modeler running on the node whose
view of the event matches the view trained at the fixed node
will classify the event correctly, while the event is rejected
on the other nodes.

3.6 Event Rejection
Since the WSN may be exposed to unknown events, our

system needs a mechanism to reject feature vectors which
cannot be matched to a prototype vector with a sufficient
level of confidence. In fact, the rejection of feature vectors
can be expected to be the rule rather than the exception. If a
trained event occurs anywhere in the deployment area, only
the node whose relative position to the source of the event
matches that of the fixed node during the training should
ideally classify the event as belonging to one of the trained
classes. All other nodes that were exposed to the physical
effects of the event but are located at different relative posi-
tions should reject the event, because their view of the event
differs from the trained pattern. In case a misdetection oc-
curs and a node falsely reports an event, it is up to the base
station to gracefully handle the situation. In our system, we
implemented the classification fusion by adding information
about the distance between feature and prototype vectors
to the data that is reported by each node and only counting
the result with the smallest distance at the base station.

Figure 7: Construction Site with
Highlighted Run of Construction
Fence

Figure 8: ScatterWeb MSB
Sensor Node Attached to a
Construction Fence

Figure 9: Four Different Classes of
Events

Event rejection works by checking whether a feature vec-
tor is located within a prototype region as established during
the training (cf. Fig. 2). Feature vectors that are located
within a prototype region are classified as matching the cor-
responding prototype vector; feature vectors that are not
located within any prototype region are rejected. The key
parameter to the event rejection algorithm is thus the size of
the prototype regions. If the region is too small, events will
be rejected incorrectly; if it is too big, untrained events will
be falsely classified as a trained one. In preliminary experi-
ments, we evaluated several options, and decided to use the
distance between the prototype vector and the most distant
training feature vector of the same event class as the radius
of the prototype region.

3.7 Event Reporting
Once a feature vector has been successfully classified as

belonging to an event class, it needs to be reported to the
base station of the WSN for logging or to alert the user.
Most routing protocols are suitable for accomplishing this
task, each with a different level of communication overhead.
We decided against running the event detection system with
routing and instead opted for simply flooding the network
with notifications about the detected events. Compared to
reactive routing protocols this is no disadvantage as they
have to flood the network anyway to setup a route. Com-
pared to proactive protocols it is only a disadvantage if the
rate of detected events is high in relation to the maintenance
traffic of the routing protocol. Furthermore, additional en-
ergy can be saved by configuring the WSN to only report
high priority events, e.g., security breaches in case of an
alarm system.

3.8 Example
With all the components in place, we now give a brief

example encompassing the entire event detection process:
Let’s consider a small sensor network consisting of seven
nodes deployed equidistantly along a straight line as illus-
trated in Figure 6. For simplicity, each sensor only extracts
a single feature from the sampled raw data. The nodes have
been programmed to recognize a previously selected three-
dimensional prototype vector. The corresponding node se-
lection bitmask is configured in such a way that the features
of the node itself and its left and right neighbors (as identi-

fied by the node ID) are part of the prototype vector. Let’s
now assume that the previously trained event occurs in the
center of the deployment area and that its physical effects
are registered by the sensors on the five central nodes. Each
node extracts the feature from the raw data, the value of
which differs depending on the physical location of the sen-
sor node (illustrated by the different colors of the squares
next to each node). As the nodes proceed to broadcast the
features, each node stores the features indicated by the node
selection bitmask, i.e., those of its left and right neighbor.
Once all features are present, each node compares the com-
bined feature vector of the indicated features with the stored
prototype vector. The comparison results in a match only
on the central node which is deployed at the location of the
event. At all other nodes, the combined features vector and
the prototype vector do not match and the event is rejected.
Finally, the central node reports the detected event to the
base station of the network.

4. PERFORMANCE EVALUATION
In order to evaluate our system, we conducted a three-

day real-world field test. Our application scenario was to
deploy a WSN as a wireless alarm system on the fence of a
construction site. This section contains a description of the
experimental setup followed by a brief introduction to the
metrics that we considered and finally presents and discusses
the results of the experiment.

4.1 Experimental Setup
We attached 100 ScatterWeb MSB sensor nodes [12] to the

fence elements of a construction site. The exact run of the
fence is depicted in Figure 7. At the time of the deployment,
the construction of a four-story hotel building was nearing
its completion.

As shown in Figure 8, we attached one sensor node to the
left-hand metal tube of each 3.5 m × 2 m fence element us-
ing wheather-proof junction boxes. ScatterWeb MSBs are
equipped with a Texas Instruments MSP430 16-bit micro-
controller with 5 KB of RAM and 55 KB of FLASH memory,
a ChipCon 1020 radio transceiver operating at 868 MHz and
a Freescale Semiconductor MMA7260Q 3-axis accelerometer
that we used to measure the movement of the fence elements.
We took special care to attach the sensor nodes to the fence
elements uniformly in order to ensure that all of them are

Figure 10: Node Selection by Reliability of Event Reporting

Figure 11: Expected Error against Number of Fea-
tures

Figure 12: Comparison of Prototype Vectors

exposed to comparable acceleration values. Based on the
experience from previous experiments, we set the sensitivity
of the accelerometer to 2 G and the threshold for the feature
selection to consider a node as sufficiently reliable to 85%.

We exposed the WSN to four different classes of events
depicted in Figure 9. The events were shaking the fence,
kicking against the fence, slightly leaning against the fence,
and climbing over the fence. For legal reasons we were not
actually allowed to climb over the fence, so we climbed up
and down on the outer side instead. For the training, we
chose a region of the fence that was free of any external
obstructions and trained the WSN with 15 events of each
class. The fixed node during the training was node #7.
Afterwards we carried out 15 events of each class at the
location where the training took place and another 15 events
of each class at two other locations.

We collected the following metrics while exposing the sys-
tem to the different classes of events (with TP = True Pos-
itive, TN = True Negative, FP = False Positiv, FN = False
Negative):

• Sensitivity = #TP
#TP+#FN

, also called recall, corresponds
to the proportion of correctly detected events.

• Specificity = #TN
#TN+#FP

, corresponds to the proportion
of correctly ignored events.

• Positive Predictive Value (PPV) = #TP
#TP+#FP

, also re-
ferred to as precision, corresponds to the probability

that correctly detecting an event reflects the fact that
the system was exposed to a matching event.

• Negative Predictive Value (NPV) = #TN
#TN+#FN

, corre-
sponds to the probability that correctly ignoring an
event reflects the fact that the system was not exposed
to a matching event.

• Accuracy = #TP+#TN
#TP+#TN+#FP+#FN

, corresponds to the
proportion of true results in the population, i.e., the
sum of all correctly detected and all correctly ignored
events.

4.2 Results
We begin with a close look at the training process before

proceeding to evaluate the classification accuracy. Figure 10
shows the per-node reliability of reporting training events for
each event class. We observe that seven nodes were repro-
ducibly affected by the events and reported feature vectors
to the control station with a reliability above 85%. We also
note that the events do not propagate equally in both direc-
tions on the fence. Events were carried out next to the fixed
node #7 (arrow) and we observed the propagation charac-
teristic to be uneven, with five affected nodes to the left and
two affected nodes on the right. From this diagram follows
that features from the nodes #3 to #9 are candidates for
the feature selection.

Figure 11 depicts the cross validation error as calculated
by the LOOCV algorithm against the number of selected

Figure 13: Detection Accuracy by Event Class after
Feature Fusion

Figure 14: Detection Accuracy by Event Class after
Classification Fusion

Figure 15: Comparison with Proof of Concept and
Lab Prototype

Figure 16: ROC Analysis of All Discussed Systems

features. The diagram shows how the cross validation er-
ror decreases and hence the quality of the selected features
improves as the feature selection iteratively adds the best
possible features to the set of selected features. While the
cross validation error is still above 10% for two features, it
drops rapidly and is negligible for more than four features.
Hence, the quality of the selected features cannot be im-
proved for more than four features. Adding more features
beyond this point would merely increase the cost of the event
detection process in terms energy consumption and resource
usage. Thus, exactly these four features are used to create
the prototype vectors for classification.

The prototype vectors for each event class are depicted
in Figure 12 with their values normalized to an 8-bit range.
Each of the four prototype vectors consists of four selected
features. The four features are from four different nodes
and of two different types: Feature #1 is a histogram-based
feature (cf. [5]) from node #5; features #2 to #4 are in-
tensity features (cf. Fig. 1) from nodes #7, #8 and #9.
Each prototype vector differs from any other one in at least
one feature. Hence, they span the entire four dimensional
feature space and provide a good basis for the classification
algorithm. Furthermore, it is noteworthy that the selected
nodes (highlighted with stars in Fig. 10) are close to the
location of the event. As we can assume that events are
more pronounced in the vicinity of their source, this is an
indication that our feature selection algorithm is able to se-

lect significant features, in spite of the unevenness in the
propagation characteristics.

With the prototype vectors in place, we can now proceed
to evaluate the accuracy of the event detection. Figure 13
shows the metrics for each type of event as reported by the
feature fusion on node #7 which was the fixed node in the
training. The shake and kick events are detected reliably
with all metrics above 80% and accuracies of 93.3%. Detect-
ing lean or climb events is not as accurate as the previous
two events. Sensitivity is comparatively low for these two
event classes, while specificity remains high. This is an indi-
cation that too many events are falsely rejected due to the
prototype regions being too small. We conclude that our 15
training runs for each of these two classes were too similar
to each other and thus the prototype regions only enclose
part of the required space. Looking at the averages of all
four events, the overall accuracy of the system after feature
fusion is 87.1%.

Figure 14 shows the same metrics for the classification
fusion that is required to filter out false positives from the
neighboring nodes. While specificity, NPV and accuracy re-
main more or less stable, sensitivity and PPV decrease con-
siderably. This decrease results from two separate effects:
First, whenever a correct classification is falsely rejected on
the node #7 while an incorrect classification is reported from
another node, the incorrect classification is counted at the
base station. Second, a few nodes report an incorrect clas-

sification with a distance metric that is smaller than that
of the correct classification. In spite of these problems, the
system achieves an overall accuracy of 74.8%.

The results based on the measurements at the other two
locations exhibit similar trends as the previous ones, how-
ever, at a lower overall level of accuracy. We attribute these
results to problems with the setup of the experiment and
omit a quantitative evaluation. Instead, we discuss the prob-
lems separately in Section 4.4.

4.3 Discussion
The results presented in the previous section indicate that

both the training including the feature selection and the
event detection work as intended. Event rejection suffers
slightly from the uniformity of the training data for two
event classes and would have benefited from a more exhaus-
tive training. Event detection accuracy is acceptable for
events that are carried out at the same location as during
the training.

In order to verify the results from this experiment, we
compare them to our previous results from [18] and [5]. In
our proof-of-concept work [18], we exposed ten sensor nodes
attached to a fence to six different events. The system did
not support autonomous training at that time. Instead, we
relied on a custom-built heuristic classifier implemented in
the FACTS middleware [15] which was manually configured
to classify events based on visible patterns in the raw data.
For the initial evaluation of our current system in a con-
trolled lab setting [5], we trained three sensor nodes to co-
operatively recognize four different geometric shapes based
on the acceleration data measured by the sensor. The four
shapes, comprising a square, a triangle, a circle and the cap-
ital letter U, were drawn on a flat surface by physically mov-
ing the sensor nodes and classified using a cooperative fusion
classifier. We had three persons move one sensor nodes each
along these shapes for a total of 160 runs.

From Figure 15 we can see that the current results do not
reach the same level of accuracy as measured under lab con-
ditions. Compared to the proof-of-concept implementation,
whose results correspond to those of the feature fusion of
the current system, we achieve a 28.8% higher accuracy with
the supervised training and automated feature selection in
place. Figure 16 highlights the relation between sensitivity
and specificity in our experiments. It shows a comparison
of the current system and our two prior experiments. Un-
der lab conditions, our system performs almost perfectly,
followed by our current results recorded after feature fusion.

It would certainly be beneficial for the evaluation to have
more data points available to ensure the statistical relevance
of our findings. Unfortunately, the experiments require a
great amount of time to conduct and cannot be automated
because real persons are required to create events. However,
as the findings of our experiment follow those from prior
small-scale tests as well as those from our lab experiments,
we feel that the evaluation is reasonable well suited to judge
the performance of our system.

4.4 Lessons Learned
While evaluating the data gathered from the experiments,

we observed two factors that had a negative impact on the
accuracy of the event detection process.

We trained the sensor network with 15 sample events of
each class. One class was trained after the other starting

Figure 17: External Influences on Event Patterns

with the shake and kick events and then followed by the
lean and climb events. As the training progressed, our test
subjects became more and more familiar with the setup and
with generating events on the fence for the sensor nodes to
detect. This resulted in the sample events growing more
and more similar to each other, which in turn decreased
the size of the prototype regions of the latter two classes of
events. This in turn resulted in the lower sensitivity in the
experiments of the lean and climb events as discussed in the
previous section.

There are two possibilities to work around this problem:
One is to significantly increase the numbers of test subjects
and/or sample events. This has the drawback that the cal-
ibration requires more time to conduct. Alternatively, we
can change the training process to train one sample event of
each class and then repeat this step several times. This way,
we can avoid any bias in the size of the prototype regions
without having to commit any additional resources to the
training phase.

The second factor that had a negative impact on our re-
sults were irregularities in the construction of the fence itself.
Figure 17 illustrates how several external factors change the
way in which the physical effects of the events propagate
along the fence, e.g., the oscillation of the fence elements
is dampened or interrupted by the way the fence is set up.
Furthermore, some sections of the fence were deployed with
an inclination or in a non-linear configuration. This violates
the assumption built into our algorithms that the physical
effects of the events to be observed propagate evenly in all
parts of the deployment area. Given the highly accurate re-
sults in our prior lab experiments, we underestimated the
effects that these heterogeneous conditions would have on
the results.

Again, there are two possibilities to deal with this prob-
lem: The first possibility is to make it a constraint of the
system to only be deployed in scenarios in which uniform
propagation characteristics can be guaranteed. In a fence
monitoring scenario, this would imply that greater care than
usual must be taken by the construction workers to properly
connect the fence elements to each other. However, this con-
straint is unpractical for a production-level system as it may
require additional training of the workers. A better alterna-
tive would be to train the sample events on several locations
of the deployed system and combine the data reported by
sensor nodes in different parts of the deployment area when
calculating the prototype vectors.

We were unable to repeat these parts of the experiment
with our current deployment because no additional time in
the construction schedule could be allocated to us. However,
we believe that both issues can be addressed with only mi-
nor changes to our system, and we plan to incorporate the
necessary adaptations in our next deployment.

5. CONCLUSIONS
In this paper, we have presented a system for distributed

event detection in WSNs that allows for several sensor nodes
to collaborate in order to identify which application-specific
event has occurred. Our approach is unique in that it strikes
a compromise between classification accuracy and resource
requirements. It makes use of a dynamic subset of the nodes
for event detection and does not rely on any services pro-
vided by more powerful nodes or a central base station. Us-
ing a large-scale deployment in a realistic setting, we have
shown that our system is a viable option for correctly iden-
tifying different classes of previously trained events.

Since fall 2009, our research on distributed event detec-
tion in WSNs continues as part of the project“AVS-Extrem”
funded by the German Federal Ministry of Education and
Research. We are currently in the process of redesigning our
sensor node platform in order to reduce energy consump-
tion during periods of continuous, low-frequency sampling.
Our overall goal in this project is to refine our system to
achieve lifetimes and levels of accuracy that are suitable for
production-level deployments in the context of construction
site and freight terminal monitoring.

6. ACKNOWLEDGMENTS
This work was funded in part by the German Federal

Ministry of Education and Research (BMBF, Project “AVS-
Extrem”). We gratefully acknowledge the support of Se-
minaris Hotel- & Kongressstätten-Betriebsgesellschaft mbH
and Hermann Kirchner Hoch- und Ingenieurbau GmbH.

7. REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci. A Survey on Sensor Networks. IEEE
Communications Magazine, 40(8), Aug. 2002.

[2] D. M. Doolin and N. Sitar. Wireless Sensors for
Wildfire Monitoring. In Proc. of SPIE Symp. on
Smart Structures & Materials / NDE ’05, San Diego,
CA, USA, Mar. 2005.

[3] M. F. Duarte and Y. H. Hu. Vehicle Classification in
Distributed Sensor Networks. Journal of Parallel and
Distributed Computing, 64(7), July 2004.

[4] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. Wiley-Interscience, 2nd edition, Nov.
2000.

[5] N. Dziengel, G. Wittenburg, and J. Schiller. Towards
Distributed Event Detection in Wireless Sensor
Networks. In Adjunct Proc. of 4th IEEE/ACM Intl.
Conf. on Distributed Computing in Sensor Systems
(DCOSS ’08), Santorini Island, Greece, June 2008.

[6] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo,
A. Tirumala, Q. Cao, T. He, J. A. Stankovic,
T. Abdelzaher, and B. H. Krogh. Lightweight
Detection and Classification for Wireless Sensor
Networks in Realistic Environments. In Proc. of 3rd

Intl. Conf. on Embedded Networked Sensor Systems
(SenSys ’05), San Diego, CA, USA, Nov. 2005.

[7] A. Kalton, P. Langley, K. Wagstaff, and J. Yoo.
Generalized Clustering, Supervised Learning, and
Data Assignment. In Proc. of 7th ACM Intl. Conf. on
Knowledge Discovery and Data Mining, San Francisco,
CA, USA, 2001.

[8] R. Kohavi. A Study of Cross-validation and Bootstrap
for Accuracy Estimation and Model Selection. In
Proc. of 14th Intl. Joint Conf. on Artificial
Intelligence (IJCAI ’95), San Mateo, USA, 1995.

[9] M. Li, Y. Liu, and L. Chen. Non-Threshold based
Event Detection for 3D Environment Monitoring in
Sensor Networks. In Proc. of 27th Intl. Conf. on
Distributed Computing Systems (ICDCS ’07),
Toronto, Canada, June 2007.

[10] F. Martincic and L. Schwiebert. Distributed Event
Detection in Sensor Networks. In Proc. of Intl. Conf.
on Systems and Networks Communications (ICSNC
’06), Tahiti, French Polynesia, Oct. 2006.

[11] H. Niemann. Klassifikation von Mustern. Springer, 1st
edition, July 1983.

[12] J. Schiller, A. Liers, and H. Ritter. ScatterWeb: A
Wireless Sensornet Platform for Research and
Teaching. Computer Communications, 28, Apr. 2005.

[13] G. Simon, M. Maróti, Ákos Lédeczi, G. Balogh,
B. Kusy, A. Nadas, G. Pap, J. Sallai, and
K. Frampton. Sensor Network-Based Countersniper
System. In Proc. of the 2nd Intl. ACM Conf. on
Embedded Networked Sensor Systems (SenSys ’04),
Baltimore, MD, USA, Nov. 2004.

[14] A. Tavakoli, J. Zhang, and S. H. Son. Group-Based
Event Detection in Undersea Sensor Networks. In
Proc. of 2nd Intl. Workshop on Networked Sensing
Systems (INSS ’05), San Diego, CA, USA, June 2005.

[15] K. Terfloth, G. Wittenburg, and J. Schiller. FACTS -
A Rule-Based Middleware Architecture for Wireless
Sensor Networks. In Proc. of the 1st Intl. Conf. on
COMmunication System softWAre and MiddlewaRE
(COMSWARE ’06), New Delhi, India, Jan. 2006.

[16] H. Wang, J. Elson, L. Girod, D. Estrin, and K. Yao.
Target Classification and Localization in Habitat
Monitoring. In Proc. of IEEE Intl. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP ’03), Hong
Kong, China, Apr. 2003.

[17] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and Yield in a Volcano Monitoring
Sensor Network. In Proc. of the 7th USENIX Symp.
on Operating Systems Design and Implementation
(OSDI ’06), Seattle, WA, USA, Nov. 2006.

[18] G. Wittenburg, K. Terfloth, F. L. Villafuerte,
T. Naumowicz, H. Ritter, and J. Schiller. Fence
Monitoring - Experimental Evaluation of a Use Case
for Wireless Sensor Networks. In Proc. of 4th
European Conf. on Wireless Sensor Networks (EWSN
’07), Delft, The Netherlands, Jan. 2007.

[19] A. Yang, S. Iyengar, S. S. Sastry, R. Bajcsy,
P. Kuryloski, and R. Jafari. Distributed Segmentation
and Classification of Human Actions Using a Wearable
Motion Sensor Network. In Proc. of IEEE Conf. on
Computer Vision and Pattern Recognition Workshops
(CVPRW ’08), Anchorage, AK, USA, June 2008.

	Introduction
	Related Work
	Representative Approaches
	Evaluation

	System Architecture
	Pattern Recognition
	System Components
	Training
	Feature Selection
	Distributed Event Detection
	Event Rejection
	Event Reporting
	Example

	Performance Evaluation
	Experimental Setup
	Results
	Discussion
	Lessons Learned

	Conclusions
	Acknowledgments
	References

