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Abstract

Keywords:

Data-centric, distributed programming for embedded systems with harsh
resource constraints poses a heavy burden upon a developer. In this
paper, we describe how rule-based programming can alleviate these
problems by combining middleware and application at the programming
level.

We describe in detail the programming primitives and the imple-
mentation of the FACTS middleware architecture. Based on statistics
derived from three representative tasks specific to wireless sensor net-
works, we illustrate how our approach allows for aggressive optimization
as well as writing expressive application-level code. We summarize our
experience by proposing several rule-oriented programming patterns.

Wireless Sensor Networks, Programming Abstraction, Middleware
Framework, Rule-Oriented Programming Patterns
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1. Introduction

As wireless sensor networks become ever more popular even beyond
the scientific scope, the need for sophisticated programming tools is ac-
centuated more often. Support may be provided in a variety of ways,
each having different values for different tasks to accomplish. While hid-
ing network interaction from the developer may be beneficial for some
applications, one will in turn have to sacrifice deliberate control mech-
anisms for energy consumption. In this paper we will show how to
efficiently program with FACTS, a rule-based runtime environment tar-
geted at wireless sensor networks. The key to our approach is to strictly
stick to a data-centric paradigm, optimize local node behavior and hide
concurrency issues and manual stack management from the programmer.
Combining the advantages of a runtime environment with its sandboxed
execution and the possibility to obtain very dense bytecode, FACTS
offers a suitable programming abstraction for wireless sensor networks.

2. FACTS Concepts and Language

The three basic concepts of the FACTS middleware framework are
facts, the key abstraction for data within the sensor network, rules, pro-
viding means to manipulate, process and communicate data, and func-
tions, which offer an interface to the underlying hardware and software
stack of the target platform. We will first briefly introduce the architec-
tural model before we give a formal specification of the different building
blocks of the Ruleset Definition Language (RDL).

2.1 Architectural Model

The architectural model as depicted in Figure 1 gives the programmer
a very simple, yet powerful tool to design distributed algorithms. The
core of the FACTS middleware is the rule engine, the central scheduling
entity on the nodes. Whenever a fact is either received over the radio
interface targeted at the runtime environment, or an event has been
detected, the rule engine will be triggered to run. According to their
priority ordering, all rules currently deployed on the node will be checked
against the fact repository. If all conditions a rule specifies are met and
at least one of the facts involved in the satisfaction has been modified,
having thus changed its state during the last run or having been newly
added to the repository, the rule will fire and its statements will be
executed. Concurrency issues and memory management are shielded
completely from the programmer. In order to enable access to firmware
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Figure 1. Interaction between the components of the FACTS middleware architec-
ture.

functions where necessary, a special call statement can be invoked, e.g.
to have read access to sensors or toggle LEDs on the sensor board.

2.2 Language Concepts

Let F ={f1, fo, ..., fu}, F C F* denote the set of facts stored in the
fact repository, where F* corresponds to the set of all well-formed facts.
Each fact may have a set of associated properties
P ={fi.m, f1.02, -, f1-Pas ---» fn-pp} Within the domain of all well defined
properties P*, P C P*. Let R = {r1,r2,..., 7} be an arbitrary set of
rules with a priority ordering Prio = {r; > rj|rule r; has precedence over
rj}. The definition of priorities is part of the rule syntax and therefore
obligatory to the programmer. No guarantees will be given on the order
of execution of rules with the same priority assigned.

A rule r; is composed of a set of conditions C; = { rj.c1, ..., Ti.cq}
stating when a rule fires, and a set of statements S; = {r;.s1, ..., ;.S }
specifying what action will be taken. A condition can be of two possible

types:

» Cep = {(Ex, )] feF*}, the exists condition, allows to check
whether a certain type of fact is currently stored within the fact
repository.

s Cey = {(Ev, f.p)|fpeP*}, the eval condition, can be used to
investigate the properties of facts against thresholds or in relation
to other facts in the repository.

The statements of a rule r; will only be triggered if V?: 1 Tic; = true,
with d being the number of associated conditions. Furthermore, at least
one of the facts involved in condition satisfaction has to be newly added
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or updated during the last run of the rule engine for rule execution.
Whenever no modified facts are present the fact repository, the sensor
node can save energy by switching to low-power mode.

While we currently assume a static set of rules deployed on the nodes,
facts are dynamic and may change at runtime. Let S denote the set of
available fact modification statements:

» S; = {(D, f)| feF*}is a define statement, stating that a new
fact with or without specified properties is being added to the fact
repository.

= S, = {(R, f)| feF} is a retract statement to be invoked if
fact(s) shall be deleted from the fact repository.

= S, = {{U, f.p)| f.peP*} denotes the group of operations that
update specified facts. This can either be a set, that operates on
properties of facts, or a flush statement which will disable the
specified fact from triggering a rule in the next run of the rule
engine.

m S ={(S, f)|feF} sends addresses fact(s) over the radio interface.
Both, unicast and broadcast messages are possible.

m S. = {{(C;, fp)|iel, f.pe P} with I being the set of identi-
fiers of functions defined in the firmware interface. This statement
provides supervised access to the underlying software stack, possi-
bly enabling resource-intense computations to be implemented in
native code.

In rule-based programming, one tends to address a subset of facts for
processing or rule triggering more than once. In order to make the code
less verbose, we introduced the notion of slots. Slots are named filters
for facts, which will be introduced based on an example in Section 1.3.
Another crucial part of RDL are rulesets, specifying a set of rules inter-
acting with each other, analogous to a compilation unit in traditional
programming languages. Rulesets may therefore be used to encapsulate
services like routing, node self-inspection or application semantics.

2.3 Bytecode Structure and Optimization

Efficient use of available memory is a crucial aspect of programming
wireless sensor nodes. In order to illustrate to which extend our approach
satisfies this requirement, we will now describe how the bytecode images
of compiled rulesets are structured and in in which way they can be
optimized for size.
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# Rules | LOC Size
‘ unoptimized ‘ optimized ‘ % saved
Directed Diffusion 7 76 2,204 B 916 B 58.4 %
Generic Role Assignment 14 196 6,806 B 1,950 B 71.3 %
Coverage 7 99 5,392 B 1,064 B 80.3 %

Table 1. Code size statistics of different rulesets.

Within the bytecode, data structures corresponding to the same pro-
gramming primitives are organized as arrays to save the structural over-
head of linked lists. The arrays for facts and properties are special as
they are the only arrays that will change in size at runtime. As far as
code organization is concerned, the sequence of statements within each
rule is the only feature that rulesets share with traditional imperative
programs. Apart from this, there are no constraints on how a ruleset
can be laid out in the bytecode, thus allowing for aggressive optimiza-
tion in order to reduce the size of the bytecode image. The ruleset
compiler parses rulesets implemented in RDL and generates a tree-like
data structure to be used in the bytecode. The key to optimizing this
data structure is to find identical subtrees, merge them into one, and
adjust pointers in the remaining data structure accordingly.

In order to examine the impact of bytecode optimization in detail, we
have collected results from three major rulesets: Directed Diffusion [5],
Generic Role Assignment (GRA) [3] and a distributed network coverage
algorithm. The code size statistics of these rulesets are given in Table 1.

Figure 2 shows the percentage of memory saved through bytecode op-
timization for each type of programming construct. The total savings
achieved for each ruleset of well over 50% may seem unrealistic at first
glance. Examining the optimization in detail, we find that the savings
are to be attributed mostly to redundant expressions, variables and slots.
In fact, these three primitives are heavily used when implementing rule-
sets. However when looking at usage patterns, it becomes obvious that
there are only very few different instances of these elements, which are
repeated very often. In contrast, rules, facts and properties have not
been optimized at all because there are no redundant rules in any of the
rulesets examined and facts and properties cannot be optimized at all
even if they were identical. Contrary to other elements of a ruleset, facts
and properties may be modified at runtime, and hence even properties
that are identical at compile-time may be assigned different values at
runtime, thus needing separate memory to store them.
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Figure 2.  Percentage of memory saved through bytecode optimization for each type
of programming construct.

3. Evaluating Language Constructs: Directed
Diffusion

After formally introducing the concepts of RDL and describing the
optimization of the resulting bytecode, we will now evaluate how far the
low-level language primitives map to the requirements specific to the
WSN domain. For this purpose, we will analyze in detail an excerpt
of the rule-based implementation of the well-known directed diffusion
communication paradigm [5].

3.1 Language Constructs in Detail

Listing 1.1 shows an excerpt of the directed diffusion ruleset, specif-
ically the two major rules that deal with gradient management: Upon
reception of an interest message and depending on whether a related gra-
dient is already present, addGradient either constructs a new gradient
or reinforceGradient reinforces a previously existing gradient.

In line 3, a fact is declared with its properties taking the role of ruleset-
wide constant values in this particular case. In RDL, facts like this one
are the main programming abstraction for storing data, both constant
and variable, with limited scope or as part of the public interface of the
ruleset. In line 4, a named slot is declared in order to allow for direct
access to a property of a specific fact. In this special case however, the
property was not declared manually but is rather automatically gener-
ated by the rule engine at runtime. This mechanism is used to export
and control access to information internal to the rule engine, e.g. own-
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Listing 1.1.  Excerpt of the directed diffusion ruleset to setup and reinforce gradients.

ruleset DirectedDiffusion

fact system [broadcast = 0, tx-power = 255]
slot systemID = {system ownerl}

slot systemBroadcast = {system broadcast}
slot systemTxPower = {system tx-power}

rule addGradient 100

<- exists {interest}

-> define gradient [sink = {interest sink}, type = {interest typel},
interval = {interest intervall]

-> set {interest sinkl} = systemID

-> send systemBroadcast systemTxPower {interest}

-> retract {interest}

rule reinforceGradient 120

<- exists {interest}

<- exists {gradient
<- eval ({this sink} == {interest sink})
<- eval ({this typel} == {interest typel)
<- eval ({this interval} > {interest intervall})

}

-> set {gradient weight
<- eval ({this sink} ==
<- eval ({this typel} ==

} = {interest interval}

-> retract {interest}

interest sink})

{
{interest typel})

ership of facts. In line 12, an interest message, as represented by an
interest fact, is sent to all sensor nodes in radio range. Two named slots
are used to easily access the information about broadcast address and
transmit power, another slot defines which facts are to be enqueued for
sending. As a slot can match multiple facts, it is straightforward to send
several related facts with just one send statement, thus allowing them
to be aggregated into the same packet for energy conservation. Finally
in lines 17-21, the condition is shown that states that gradients are only
to be reinforced if the new interval is smaller than the previous inter-
val. This condition illustrates how elaborate slots can be used by the
developer to control very precisely when a rule should fire. The firing
decision is made based on the facts present in the fact repository at that
time, thereby explicitly supporting the implementation of data-driven
algorithms. For readability, complex slots can be declared as named
slots and then reused wherever applicable.
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4. Evaluating Programming Patterns

We will now concentrate on the big picture of rule-based program-
ming rather than on specific features of RDL or the FACTS runtime.
Rule-based programs differ significantly from the traditionally used im-
perative programs. There is no explicit flow of control and ,thus, there
are no loops or conditionals. Instead of this single-chip focussed ap-
proach, we propose a data-driven and event-centric programming model
as a superior programming model for WSNs. The conditions of the
rules define which data items or events, both represented as facts, are to
be processed, and the priorities of rules define the order in which rules
react to events, possibly consuming them and thus preventing further
processing.

Based on the experience gained during the aforementioned implemen-
tations of directed diffusion, GRA, and coverage, we have identified the
following patterns in rule-based programming:

Event-Centric Divide & Conquer: The processing of external
events is central to the area of application of WSNs. The more
semantical information a single event conveys, the more relevant
it is to the user. Further, aggregated events conserve energy by
avoiding network traffic. When developing applications, complex
events need to be broken down iteratively into simpler subevents.
We refer to this process of mapping application-specific events to
the actual sensor as event-centric divide & conquer.

In FACTS, this programming pattern maps to a hierarchy of rules:
At the bottom of the hierarchy, rules fire as a result of new sen-
sor readings and generate facts if the reading satisfies application-
dependant specifications. As a second step and further up the
hierarchy, a rule fires as soon as multiple of the previously gener-
ated facts are present, possibly retracting these facts and defining
a new fact that represents the aggregated event.

Chaining of Filters: When information is transmitted across a WSN,
each node needs to decide whether the piece of information con-
tained in a particular packet is relevant to its current task. Drop-
ping unnecessary information as early as possible saves both pro-
cessing time and memory on each sensor node. A newly received
packet is thus subjected to a series of checks, a programming pat-
tern which we call chaining of filters.

FACTS supports these chain of filters by evaluating rules according
to their priority: Several rules are written to fire when the same
fact, which in this case may represent information that was sent
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over the network, is present. Each rule decides whether the fact
satisfies one particular condition, e.g. whether or not it has been
received previously, and retracts the fact if the condition matches.
Rules that cover the most common cases are given a higher priority
in order to avoid unnecessary evaluation of other rules.

State Machines: Finite state machines (FSMs) are a programming
concept that is used frequently in the area of network protocols.
Further, FSMs map nicely to the problem of role selection for in-
dividual sensor nodes.

Implementing FSMs in FACTS is straightforward: The current
state of the FSM is stored in one or more properties of one specific
state fact. Several state transition rules evaluate this fact and each
one fires if the fact holds a different state. As part of the statements
of the firing rule, a new state is stored in the fact, thus causing
the next rule to fire. In order to model I/O, the state transition
rules may additionally evaluate whether an external input fact is
present, or define external output facts when firing.

Producers & Consumers: In data-driven WSN applications, there
commonly is a large set of sensor nodes that gather environmen-
tal data and only a small set of sensor nodes that interface with
external applications. Concentrating on the data items, they are
produced at the first type of nodes and consumed by the second
type of nodes.

Additionally to the automatic properties of facts provided by the
runtime environment, e.g. ownership and modification time, we
found it useful to add properties to facts that describe exactly un-
der which application-specific circumstances they were produced
and, if in transit through the network, how to locate their con-
sumer. Producer information may contain node ID and sensor
type, while consumer information also includes identifying the ap-
plication in question.

The programming patterns described above are the result of the ex-
perience gained while implementing only three rule-based applications.
It is noteworthy that especially the knowledge about chain of filters and
producers & consumers helped us speed up the development process of
the third application. We expect more patterns to emerge once further
applications have been implemented.



10

5. Related Work

A reasonable level of abstraction from the underlying hardware and
networking issues of wireless sensor networks has to be provided to allow
for mature deployments in the future. This level of abstraction is ver-
satile, ranging from complete middleware implementations [8], library
functionalities [2], support for scoping and collaborative tasks [10] or
dedicated runtime environments [11] up to language support for event-
centric programming or so called macroprogramming primitives. All of
these flavors aim at simplifying application development for a potentially
large, distributed network of embedded sensors.

The work that has the most resemblance to ours is the Token Machine
Language (TML) as described in [9]. Just as in FACTS, the authors
argue that a 'unified abstraction for communication, execution and net-
work state management’ will be of great benefit for the developer. Hence,
they provide tokens as a means to disseminate information in a network,
and corresponding token handlers which will automatically be scheduled
for execution upon reception. While in TML a token handler is concep-
tually a part of a token, and while it therefore provides a one-to-one
mapping of tokens to handlers, our rule-based approach allows for more
degrees of freedom with its many-to-many concept. A fact can trigger
an arbitrary set of rules, or a rule may fire only after the system reached
a certain state, expressed as a combination of several facts. Memory
management in TML is divided into two sections: a fixed size shared
memory is reserved for interaction between tokens while token objects
(being the persistent portion of a token) will be held in a token store.
In contrast, any data has to be represented as a fact in our model, mak-
ing the fact repository the only means to allocate memory. FACTS is
a runtime environment for rules, thus it sacrifices computational perfor-
mance for a type-safe, sandboxed execution of rules optimized bytecode.
Rather then providing such a runtime environment, TML is a compiled
intermediate language that other high-level languages may target, and
thus make use of its communication and execution semantics.

Kasten et al. address a major drawback of event-driven programming
in [6]: They observe that event-centric implementations suffer from hav-
ing to pass extra information between the code fragments that react to
events. Specifically, there are two distinct cases referred to as manual
stack management and manual control flow. Manual stack management
is the use of global variables instead of automatic local variables, which
are not available for sharing between event handlers. Manual control flow
is code that implements different behavior of event handlers depending
on a global state. This code may be duplicated in several event handlers,
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which results in more difficult maintenance. To solve this problem, the
Object State Model (OSM) is proposed. It enhances Harel’s statecharts
with the option to store typed data as part of each state in so-called
state variables. The scope of state variables includes, apart from obvi-
ously the state itself, all other states that are recursively embedded into
it, as well as entry and exit functions of the state. As event handlers run
to completion, there can be no race conditions in accessing state vari-
ables. In order to allow for this concept to be used in applications, the
OSM specification language is proposed. FACTS in contrast does not
allow a programmer to specify local variables at all. State is captured
as a fact in the fact repository that is globally accessable by all rules.
On the other hand, this will prevent a node from suffering from mem-
ory leak, since memory access is completely supervised by the FACTS
runtime, and thus memory consumption on the stack can be determined
at compile time. Control flow in FACTS can be easily archived with
filtering strategies as described in section 1.4.

Macroprogramming, which evolves around the idea of tasking a com-
plete network while writing a single, global program, has been explored
quite early in the sensor network domain with systems like TinyDB [7]
and Cougar [1]. Instead of providing such a complete, integrated in-
frastructure based on query processing, Kairos [4]aims at achieving a
leaner support for macroprogramming. Basically, the authors extend a
language with three Kairos constructs, enabling a simplified node alloca-
tion, an easy access to the one-hop neighborhood of a node and support
for loosely synchronized remote data access. These extension will be an-
notated by a preprocessor and managed during execution on the nodes
by the Kairos runtime. While Kairos optimizes for global behavior, the
FACTS programming primitives have been designed for local decisions
on the nodes. Global interaction may be incorporated in our model by
defining a set of rules stating the desired behavior.

6. Conclusion

Rule-based programming offers a new perspective on application and
middleware development for WSNs. As can be derived from the exam-
ples discussed in this paper, it provides a very concise means of leveraging
the data-centric nature of this particular application domain. It allows
the developer to focus on the event-driven nature of distributed algo-
rihtms running on a highly embedded platform, rather than having to
cope with machine-specific issues such as flow-control, memory manage-
ment or error recovery. By introducing rule-oriented patterns, we intend
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to make this programming paradigm more accessible to the developer
communinity.

In the future, we plan to investigate ruleset interaction with the goal to
support component-based software development and optimize the run-
time performance of the FACTS rule engine.
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