$$w(\mathscr{T}) := \sum_{i=0}^d 2^i v_i,$$

where v_i is the number of leaves of \mathcal{J} at level i. At first we change \mathcal{J} by applying the following two transformations, as long as they are possible (d always denotes the height of the current tree \mathcal{J}):

Transformation I (cf. Figure 4): If there is a node y at some level $i \le d - 2$, which has at most one successor, then we remove an arbitrary node x from level d and make it a successor of y.

By transformation I, w decreases by 2^d by removing x and increases by at most 2^{d-1} by inserting x. Moreover, w may additionally increase by 2^{d-1} , if the predecessor of x becomes a leaf in τ' . Thus we get in any case

$$w(\tau') \leq w(\tau)$$
.

Transformation II (cf. Figure 5): If there is a node z at level d-1 with two successors x and y and another node u at level d-1 which is a leaf, then we make y a successor of u.

By transformation II $w(\tau)$ decreases by 2^{d-1} , because u ceases to be a leaf. When we perform these two transformations as long as they are possible, we arrive finally at a tree $\hat{\tau}$ with the following properties:

- τ and $\hat{\tau}$ have the same number of nodes;
- $w(\hat{\tau}) \leq w(\tau)$;
- $v_i(\hat{\tau}) = 0$ for $i \leq d 2$;
- every node of $\hat{\tau}$ at level $i, i \leq d 2$, has exactly two successors;
- there are two cases:
 - (a) all nodes at level d-1 have at most one successor, or
 - (b) all nodes at level d-1 have one or two successors.

Since we consider from now on only the tree $\hat{\tau}$, we abbreviate $d = d(\hat{\tau})$ and $v_i = v_i(\hat{\tau})$. The nodes in $\hat{\tau}$ from level 0 to d-1 form a complete binary tree with 2^d-1 nodes. At level d-1 there are exactly 2^{d-1} nodes and there remain $(n-1)-(2^d-1)=n-2^d$ nodes for level d.

Figure 4. Illustration of transformation I.