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with length T - 27'. Thus Lemma 2.1 yields
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_ 4¢
h=(t) — h*(t) > - = —,

Therefore we get for M > 2 (i.e., T nonempty)

ho(b) ~ k@2 X [FE) - Rl

lcaves of 1

since the intervals corresponding to the leaves are disjoint (except for common
endpoints); the one-sided derivatives are nondecreasing and A~ (t) = h*(¢) for

all ¢.
Hence, by Lemma 2.2, we get
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Thus we have shown the following theorem for the interval bisection rule.

THEOREM 2.3: The number M of evaluations of h(t), h*(t), and h~(¢)
needed to obtain an upper and lower ¢ approximation of h(r) by the sandwich
algorithm with interval bisection or with slope bisection is bounded as follows:

M= max(Z, B \/52 . (h~(b) — h+(a))]).

by saying: If we use M evaluations of A(¢),
the largest error to be

tions /(¢) and u(r) fulfill

We can express this conversely
h*(t), and A-(¢) and always choose the interval with

partitioned next, then the lower and upper approxima
I(t) < h(t) = u(t) and

max (u(t) — I(t)) = %

astsh

(M = 1)

K

=M = 1 K constant.

In case of the slope bisection rule, we simply have to exchange the role of

h~(1) — h*(1) with I, — t. The proof is then completely analogous: We know

that the slope difference at level i is at most (h~(t) — h*(t))/2, and Lemma

2.1.gwe§ us then a lower bound for 7; — ;. We then sum t; — fover all leaves,

which gives T = b — a, and the theorem follows in the same way as above.
What remains to be shown is Lemma 2.2.



