

(Improved) Optimal Triangulation of Saddle Surfaces

Computational Geometric Learning (CGL) supported by EU FET-Open grant Transregio-SFB Discretization in Geometry and Dynamics (DGD)
D. Atariah G. Rote M. Wintraecken

Freie Universität Berlin, Rijksuniversiteit Groningen

SFB DGD Workshop, Schloss Schley, November 2013

Motivation

- Smooth surface is locally approximated by a quadratic patch.
- Euclidean motion transforms the quadratic patch to graph of a bi-variate polynomial.
- \rightarrow approximate graphs of quadratic polynomials!

$$
\{(x, y, z): z=F(x, y)\}
$$

- H. Pottmann, R. Krasauskas, B. Hamann, K. Joy, and W. Seibold: On piecewise linear approximation of quadratic functions. Journal for Geometry and Graphics 4 (2000), 31-53.

Introduction

Interpolating Approximation

Non-interpolating Approximation

Vertical Distance

- We are interested in a neighborhood of some point.
- Make the surface normal vertical.
- The direction in which Hausdorff distance is measured becomes almost vertical.

Definition (Vertical Distance, L_{∞} Distance)

Given two domains $D_{1}, D_{2} \subset \mathbb{R}^{2}$ and two graphs $f: D_{1} \rightarrow \mathbb{R}$ and $g: D_{2} \rightarrow \mathbb{R}$ then the vertical distance is

$$
\operatorname{dist}_{V}(f, g)=\max _{(x, y) \in D_{1} \cap D_{2}}|f(x, y)-g(x, y)|
$$

Properties of V-Distance

Lemma

Let $A, B \subset \mathbb{R}^{3}$ be two sets with equal projection to the plane. Then

$\operatorname{dist}_{H}(A, B) \leq \operatorname{dist}_{V}(A, B)$

V-Distance of Quadratic Functions

Lemma (Every two points are the same)

Let S be the graph of a quadratic function.
For every point $p \in S$, there is an affine transformation $\mathcal{T}_{p}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which satisfies the following:

- $\mathcal{T}_{p}(p)=\overrightarrow{0}$
- $\mathcal{T}_{p}(S)=$ a quadratic graph \tilde{S} with a homogeneous polynomial of the form

$$
\begin{equation*}
\tilde{F}(x, y)=a x^{2}+b x y+c y^{2} \tag{*}
\end{equation*}
$$

- For all $q, r \in \mathbb{R}^{3}$ on a vertical line,

$$
|q-r|=\left|\mathcal{T}_{p}(q)-\mathcal{T}_{p}(r)\right| .
$$

- $\mathcal{T}_{p}(p)$ on the first two coordinates is a translation in \mathbb{R}^{2}.

Vertical Distance of a Chord

If S is negatively curved, the maximum distance to a triangle never occurs in the interior.

Lemma

For a line segment $\overline{p q}$ between two points $p=\left(p_{x}, p_{y}, p_{z}\right)$ and $q=\left(q_{x}, q_{y}, q_{z}\right)$ on a quadratic graph S,

$$
\operatorname{dist}_{v}(\overline{p q}, S)=\frac{1}{4}\left|\tilde{F}\left(q_{x}-p_{x}, q_{y}-p_{y}\right)\right|
$$

- $\tilde{F}(x, y)$ is the homogeneous polynomial (*).
- The max. vertical distance is attained at the midpoint.

Setup

From now on,

$$
S=\{(x, y, z): z=x y\}
$$

(by a linear transformation of the $x-y$-plane)

Goal

Given $\varepsilon>0$, find a triangle T with vertices $p_{0}, p_{1}, p_{2} \in S$ of largest area such that

$$
\operatorname{dist}_{V}(T, S) \leq \varepsilon
$$

Translated and reflected copies of T have the same error and tile the plane:
max. AREA \Leftrightarrow min. NUMBER of triangles

Maximize the Area of Planar Triangles

Maximize the Area of Planar Triangles

Maximize the Area of Planar Triangles

Maximize the Area of Planar Triangles

Maximize the Area of Planar Triangles

Optimize the Shape of Planar Triangles

Secondary criterion: Maximize the smallest angle

Optimize the Shape of Planar Triangles

Secondary criterion: Maximize the smallest angle

Triangulate the Saddle

Lift the planar triangulation to the surface

Can We Do Better?

What do we have?

Given an $\varepsilon>0$ and a saddle surface S, we can find a family \mathcal{T} of triangles which interpolate the surface and

- have maximum area,
- maintain $\operatorname{dist}_{V}(S, T) \leq \varepsilon$ for all $T \in \mathcal{T}$.

Can We Do Better?

What do we have?

Given an $\varepsilon>0$ and a saddle surface S, we can find a family \mathcal{T} of triangles which interpolate the surface and

- have maximum area,
- maintain $\operatorname{dist}_{V}(S, T) \leq \varepsilon$ for all $T \in \mathcal{T}$.

Question. . .

- Can this be improved by allowing non-interpolating triangles?
- Pottmann et al. (2000) conjectured NO.

This question is easy for convex approximation.

Pseudo-Euclidean Transformations

- A λ-pseudo Euclidean map is given by:

$$
(x, y) \mapsto\left(\lambda x, \frac{1}{\lambda} y\right)
$$

- Vertical distance is preserved.
- Area (projected) is preserved.
- Surface $S=\{z=x y\}$ is preserved.

Pseudo-Euclidean Transformations

- A λ-pseudo Euclidean map is given by:

$$
(x, y) \mapsto\left(\lambda x, \frac{1}{\lambda} y\right)
$$

- Vertical distance is preserved.
- Area (projected) is preserved.
- Surface $S=\{z=x y\}$ is preserved.

Pseudo-Euclidean Transformations

- A λ-pseudo Euclidean map is given by:

$$
(x, y) \mapsto\left(\lambda x, \frac{1}{\lambda} y\right)
$$

- Vertical distance is preserved.
- Area (projected) is preserved.
- Surface $S=\{z=x y\}$ is preserved.

Pseudo-Euclidean Transformations

- A λ-pseudo Euclidean map is given by:

$$
(x, y) \mapsto\left(\lambda x, \frac{1}{\lambda} y\right)
$$

- Vertical distance is preserved.
- Area (projected) is preserved.
- Surface $S=\{z=x y\}$ is preserved.

Pseudo-Euclidean Transformations

- A λ-pseudo Euclidean map is given by:

$$
(x, y) \mapsto\left(\lambda x, \frac{1}{\lambda} y\right)
$$

- Vertical distance is preserved.
- Area (projected) is preserved.
- Surface $S=\{z=x y\}$ is preserved.

Pseudo-Euclidean Transformations

- A λ-pseudo Euclidean map is given by:

$$
(x, y) \mapsto\left(\lambda x, \frac{1}{\lambda} y\right)
$$

- Vertical distance is preserved.
- Area (projected) is preserved.
- Surface $S=\{z=x y\}$ is preserved.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \varepsilon$.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \varepsilon$.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \varepsilon$.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \varepsilon$.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \varepsilon$.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \varepsilon$.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \varepsilon$.

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \varepsilon$.

- one-parameter family of area preserving triangles

In the Plane

Fact

The area of the (interpolating) optimal triangles in the plane is $2 \sqrt{5} \varepsilon$.

- one-parameter family of area preserving triangles
- How should they be lifted?

Vertical Perturbed Lifting

- Lift the triangle vertically such that the distance to S is minimized.

Vertical Perturbed Lifting

- Lift the triangle vertically such that the distance to S is minimized.
- Lift vertices off the surface by α :

$$
S_{\alpha}=\{(x, y, z): z=x y+\alpha\}
$$

Vertical Perturbed Lifting

- Lift the triangle vertically such that the distance to S is minimized.
- Lift vertices off the surface by α :

$$
S_{\alpha}=\{(x, y, z): z=x y+\alpha\}
$$

- Vertical distance is attained at midpoints.

Vertical Perturbed Lifting (Cont.)

- Vertical distances from edges to S are

$$
\begin{aligned}
& \frac{\xi \eta}{4}+\alpha>0 \\
& \frac{1}{4}(\xi-\eta)^{2}-\alpha>0
\end{aligned}
$$

and have to be equal.

Vertical Perturbed Lifting (Cont.)

- Vertical distances from edges to S are

$$
\begin{aligned}
& \frac{\xi \eta}{4}+\alpha>0 \\
& \frac{1}{4}(\xi-\eta)^{2}-\alpha>0
\end{aligned}
$$

and have to be equal.

- $\alpha=\frac{1}{8}\left(\xi^{2}-3 \xi \eta+\eta^{2}\right)$

Vertical Perturbed Lifting (Cont.)

- The vertical distance is

$$
\left|\frac{1}{8}\left(\xi^{2}-\xi \eta+\eta^{2}\right)\right|
$$

Vertical Perturbed Lifting (Cont.)

- The vertical distance is

$$
\left|\frac{1}{8}\left(\xi^{2}-\xi \eta+\eta^{2}\right)\right|
$$

- Minimum is attained for

$$
\xi_{0}=\sqrt{2 \sqrt{5} \varepsilon \frac{2+\sqrt{3}}{\sqrt{3}}}
$$

Vertical Perturbed Lifting (Cont.)

- The vertical distance is

$$
\left|\frac{1}{8}\left(\xi^{2}-\xi \eta+\eta^{2}\right)\right|
$$

- Minimum is attained for

$$
\xi_{0}=\sqrt{2 \sqrt{5} \varepsilon \frac{2+\sqrt{3}}{\sqrt{3}}}
$$

- and the vertical distance is

$$
\frac{\sqrt{15}}{4} \varepsilon \approx 0.968246 \varepsilon
$$

Picture in Space

The Planar Super-Optimal Triangle

- Pseudo-euclidean motions give a one-parameter family of optimal triangles.

The Planar Super-Optimal Triangle

- Pseudo-euclidean motions give a one-parameter family of optimal triangles.
- Note the tangency property

The Planar Super-Optimal Triangle

- Pseudo-euclidean motions give a one-parameter family of optimal triangles.
- Note the tangency property

OPEN:
 Lift vertices by different amounts?

