Triangulations with Circular Arcs

Oswin Aichholzer, Wolfgang Aigner, Franz Aurenhammer, Kateřina Čech Dobiásova, Bert Jüttler, Günter Rote

Problem Setting

straight, with bends, curved

circular arcs!

GIVEN:

A triangulation of a domain (with fixed boundary)

FIND:

A redrawing with circular arcs. (The vertices remain fixed.) MAXIMIZE the smallest angle δ between adjacent edges.

GIVEN:

A triangulation of a domain (with fixed boundary)
FIND:
A redrawing with circular arcs. (The vertices remain fixed.) MAXIMIZE the smallest angle δ between adjacent edges.

GIVEN:

A triangulation of a domain (with fixed boundary)
FIND:
A redrawing with circular arcs. (The vertices remain fixed.)
MAXIMIZE the smallest angle δ between adjacent edges.
Applications:

- Graph Drawing: better visibility
- Meshing, Finite Element Methods: better quality of triangles
(\rightarrow better numerical properties)

GIVEN:

A triangulation of a domain (with fixed boundary)
FIND:
A redrawing with circular arcs. (The vertices remain fixed.) MAXIMIZE the smallest angle δ between adjacent edges.

Results:

- A linear programming model
- An $O\left(n^{2}\right)$ algorithm

Remarks

Multiple edges are possible.
A solution need not exist.

Related Results

- angle resolution (Malitz and Papakostas, 1992)
- di Battista and Vismara (1996): angles in straight-line triangulations (vertices are not fixed)
- force-directed methods for curvilinear drawings (Finkel and Tamassia, GD 2004)
- Lombardi drawings (Duncan et al., GD 2010), 2 more papers in this session.

My entry for the GD 1996 contest

Günter Rote
rote@opt.math.tu-graz.ac.at
Technische Universität Graz
Institut für Mathematik (501B)
Steyrergasse 30
A-8010 Graz, Austria

Graph C
The placement of the circles was optimized by computer. The rest was done by hand.
My entry for the G

$\varphi_{u v}=$ the signed deviation from the straight edge $u v$
(clockwise around $u=$ positive, counterclockwise $=$ negative.)

$$
\begin{gathered}
\varphi_{u v}=-\varphi_{v u} \\
\delta \leq \angle v u w+\varphi_{u v}-\varphi_{u w}
\end{gathered}
$$

Maximize δ subject to these constraints.

Linear Programming Formulation

Maximize

subject to

$$
\begin{gather*}
\varphi_{u v}=-\varphi_{v u} \text { for all edges } u v \tag{1}\\
\delta \leq \angle v u w+\varphi_{u v}-\varphi_{u w} \text { for all angles } v u w \tag{2}
\end{gather*}
$$

Linear Programming Formulation

Maximize

$$
\delta
$$

subject to

$$
\begin{gather*}
\varphi_{u v}=-\varphi_{v u} \text { for all edges } u v \tag{1}\\
\delta \leq \angle v u w+\varphi_{u v}-\varphi_{u w} \text { for all angles } v u w \tag{2}
\end{gather*}
$$

For fixed δ, the constraints (2) are of the form

$$
x_{j} \leq x_{i}+c_{i j}
$$

Checking feasibility of (2) for a given δ amounts to a shortest path problem.

Shortest Paths

A system of inequalities of the form

$$
x_{j} \leq x_{i}+c_{i j}
$$

is feasible \Longleftrightarrow the directed graph with arc weights $c_{i j}$ has no negative cycles.
add artificial source vertex S_{0} $x_{i}:=$ shortest path from S_{0} to i

Bellman-Ford algorithm: $O(m n)=O\left(n^{2}\right)$ time $(m=\# \operatorname{arcs}=O(n)$.)

Shortest Paths

A system of inequalities of the form

$$
x_{j} \leq x_{i}+c_{i j}
$$

is feasible \Longleftrightarrow the directed graph with arc weights $c_{i j}$ has no negative cycles.
δ variable: Find the largest δ such that the graph with arc weights $c_{i j}-\delta$ has no negative cycles. \rightarrow the minimum cycle mean problem (Karp 1978):

In a cycle with k arcs, the weight changes like $C-k \delta$.
weight nonnegative $\Longrightarrow \delta \leq C / k$.

$O(m n)=O\left(n^{2}\right)$ time, $O(n)$ space.

Getting rid of coupling equations

We have a system where variables come in pairs x_{i}, \bar{x}_{i}.

$$
\begin{equation*}
x_{i}=-\bar{x}_{i} \tag{*}
\end{equation*}
$$

\bar{X} denotes the partner of $X, \bar{X}=-X, \overline{\bar{X}}=X$.
For each inequality of the form

$$
X \leq Y+c
$$

add the (redundant) symmetric inequality

$$
\bar{Y} \leq \bar{X}+c
$$

LEMMA: Then we can omit the equations (*) without changing feasibility.

Getting rid of coupling equations

$$
\begin{equation*}
x_{i}=-\bar{x}_{i} \tag{*}
\end{equation*}
$$

$$
\begin{aligned}
& X \leq Y+c \\
& \bar{Y} \leq \bar{X}+c
\end{aligned}
$$

Proof (Shostak 1981):
Set

$$
\begin{aligned}
& x_{i}^{\text {new }}:=\left(x_{i}-\bar{x}_{i}\right) / 2 \\
& \bar{x}_{i}^{\text {new }}:=\left(\bar{x}_{i}-x_{i}\right) / 2
\end{aligned}
$$

$x_{i}^{\text {new }}$ and $\bar{x}_{i}^{\text {new }}$ will fulfill $(*)$.

Additional constraints

Upper and lower bounds on $\varphi_{u v}$:

$$
\varphi_{u v}^{\min } \leq \varphi_{u v} \leq \varphi_{u v}^{\max }
$$

In particular: fixed values for the boundary edges $u v$. These constraints can be accommodated in the model.

avoid self-intersections

Additional constraints

Upper and lower bounds on $\varphi_{u v}$:

$$
\varphi_{u v}^{\min } \leq \varphi_{u v} \leq \varphi_{u v}^{\max }
$$

In particular: fixed values for the boundary edges $u v$. These constraints can be accommodated in the model.

Additional constraints

Upper and lower bounds on $\varphi_{u v}$:

$$
\varphi_{u v}^{\min } \leq \varphi_{u v} \leq \varphi_{u v}^{\max }
$$

In particular: fixed values for the boundary edges $u v$.
These constraints can be accommodated in the model.

THEOREM.

The optimal redrawing of a triangulated domain with n vertices can be computed in $O\left(n^{2}\right)$ time.

Extension:

Maximize lexicographically the sorted sequence of angles, by solving a sequence of problems (Burkard and Rendl 1991).

$$
\text { angle sum }=\pi
$$

These are Möbius transforms (conformal images) of straight-line triangles.
\rightarrow straightforward interpolation from vertex values into the interior
$\varphi_{u v}+\varphi_{v w}+\varphi_{w u}=0$
Another linear equality.
Since it involves 3 variables, the reduction to a shortest path problem does not work. (General LP)

$$
\text { angle sum }=\pi .
$$

These are Möbius transforms (conformal images) of straight-line triangles.
\rightarrow straightforward interpolation from vertex values into the interior
$\varphi_{u v}+\varphi_{v w}+\varphi_{w u}=0$
Another linear equality.
Since it involves 3 variables, the reduction to a shortest path problem does not work. (General LP)

Graphs which are not triangulated

Graphs which are not triangulated

triangulate (arbitrarily)

Graphs which are not triangulated

internet backbone network

Graphs which are not triangulated

triangulate (arbitrarily)
internet backbone network

Graphs which are not triangulated

internet backbone network

Graphs which are not triangulated

internet backbone network

triangulate (arbitrarily)

Interpolation for Finite Elements

$$
\left(x^{2}+y^{2}-1\right) \cos (y-1)
$$

$\begin{array}{ll}L^{2} \text {-error: } & 0.18 \\ \text { max-error: } & 0.30\end{array}$

L^{2}-error: 0.07 max-error: 0.15

Improving the smallest angle by flipping frie Univesitita 4 Serlin

Open Question

Nontriangular faces.

Is the $\left(\varphi_{1}, \varphi_{2}\right)$-region of nonintersecting arcs convex? (Perhaps with a different choice of parameters?)

