

Triangulations with Circular Arcs

Oswin Aichholzer, Wolfgang Aigner, Franz Aurenhammer, Kateřina Čech Dobiásova, Bert Jüttler, Günter Rote

Problem Setting

straight, with bends, curved

circular arcs!

- A triangulation of a domain (with fixed boundary) FIND:
- A redrawing with circular arcs. (The vertices remain fixed.) MAXIMIZE the smallest angle δ between adjacent edges.

- A triangulation of a domain (with fixed boundary) FIND:
- A redrawing with circular arcs. (The vertices remain fixed.) MAXIMIZE the smallest angle δ between adjacent edges.

- A triangulation of a domain (with fixed boundary) FIND:
- A redrawing with circular arcs. (The vertices remain fixed.) MAXIMIZE the smallest angle δ between adjacent edges.

Applications:

- Graph Drawing: better visibility
- Meshing, Finite Element Methods: better quality of triangles (→ better numerical properties)

- A triangulation of a domain (with fixed boundary) FIND:
- A redrawing with circular arcs. (The vertices remain fixed.) MAXIMIZE the smallest angle δ between adjacent edges.

Results:

- A linear programming model
- An $O(n^2)$ algorithm

Remarks

Multiple edges are possible. A solution need not exist.

Related Results

- angle resolution (Malitz and Papakostas, 1992)
- di Battista and Vismara (1996): angles in straight-line triangulations (vertices are not fixed)
- force-directed methods for curvilinear drawings (Finkel and Tamassia, GD 2004)
- Lombardi drawings (Duncan et al., GD 2010), 2 more papers in this session.

Freie Universität

Berlin

My entry for the GD 1996 contest

Technische Universität Graz Institut für Mathematik (501B) Steyrergasse 30 A-8010 Graz, Austria

The placement of the circles was optimized by computer. The rest was done by hand.

Modeling by Variables φ_{uv}

 $\varphi_{uv} =$ the signed deviation from the straight edge uv(clockwise around u = positive, counterclockwise = negative.)

$$\varphi_{uv} = -\varphi_{vu}$$

$$\delta \leq \angle vuw + \varphi_{uv} - \varphi_{uw}$$

Maximize δ subject to these constraints.

Linear Programming Formulation

Maximize

subject to

$$\varphi_{uv} = -\varphi_{vu} \text{ for all edges } uv \tag{1}$$

$$\delta \leq \angle vuw + \varphi_{uv} - \varphi_{uw} \text{ for all angles } vuw \tag{2}$$

 δ

Linear Programming Formulation

Maximize

subject to

$$\varphi_{uv} = -\varphi_{vu} \text{ for all edges } uv \tag{1}$$

$$\delta \leq \angle vuw + \varphi_{uv} - \varphi_{uw} \text{ for all angles } vuw \tag{2}$$

For fixed
$$\delta$$
, the constraints (2) are of the form

$$x_j \le x_i + c_{ij}$$

 δ

Checking feasibility of (2) for a given δ amounts to a *shortest* path problem.

A system of inequalities of the form

$$x_j \le x_i + c_{ij}$$

is feasible \iff the directed graph with arc weights c_{ij} has no negative cycles.

add artificial source vertex S_0 $x_i :=$ shortest path from S_0 to i

Bellman-Ford algorithm: $O(mn) = O(n^2)$ time $(m = \# \operatorname{arcs} = O(n).)$

A system of inequalities of the form

$$x_j \le x_i + c_{ij}$$

is feasible \iff the directed graph with arc weights c_{ij} has no negative cycles.

 δ variable: Find the largest δ such that the graph with arc weights $c_{ij} - \delta$ has no negative cycles. \rightarrow the minimum cycle mean problem (Karp 1978):

In a cycle with k arcs, the weight changes like $C - k\delta$.

weight nonnegative $\implies \delta \leq C/k$.

$$O(mn) = O(n^2)$$
 time, $O(n)$ space.

For each inequality of the form

Getting rid of coupling equations

 $X \le Y + c$

 $x_i = -\bar{x}_i$

add the (redundant) symmetric inequality

$$\bar{Y} \leq \bar{X} + c$$

LEMMA: Then we can omit the equations (*) without changing feasibility.

We have a system where variables come in pairs x_i, \bar{x}_i .

Getting rid of coupling equations

$$x_i = -\bar{x}_i \tag{*}$$

 $X \le Y + c$ $\overline{Y} \le \overline{X} + c$

Proof (Shostak 1981): Set

$$x_i^{\text{new}} := (x_i - \bar{x}_i)/2$$
$$\bar{x}_i^{\text{new}} := (\bar{x}_i - x_i)/2$$

 x_i^{new} and \bar{x}_i^{new} will fulfill (*).

Additional constraints

Upper and lower bounds on φ_{uv} :

$$\varphi_{uv}^{\min} \le \varphi_{uv} \le \varphi_{uv}^{\max}$$

In particular: fixed values for the boundary edges uv. These constraints can be accommodated in the model.

Additional constraints

Upper and lower bounds on φ_{uv} :

$$\varphi_{uv}^{\min} \le \varphi_{uv} \le \varphi_{uv}^{\max}$$

In particular: fixed values for the boundary edges uv. These constraints can be accommodated in the model.

Upper and lower bounds on φ_{uv} :

$$\varphi_{uv}^{\min} \le \varphi_{uv} \le \varphi_{uv}^{\max}$$

In particular: fixed values for the boundary edges uv. These constraints can be accommodated in the model.

THEOREM.

The optimal redrawing of a triangulated domain with n vertices can be computed in $O(n^2)$ time.

Extension:

Maximize lexicographically the sorted sequence of angles, by solving a sequence of problems (Burkard and Rendl 1991).

π -triangulations

angle sum = π .

These are Möbius transforms (conformal images) of straight-line triangles. → straightforward interpolation from vertex values into the interior

 $\varphi_{uv} + \varphi_{vw} + \varphi_{wu} = 0$ Another linear equality. Since it involves 3 variables, the reduction to a shortest path problem does not work. (General LP)

π -triangulations

angle sum = π .

These are Möbius transforms (conformal images) of straight-line triangles. → straightforward interpolation from vertex values into the interior

 $\varphi_{uv} + \varphi_{vw} + \varphi_{wu} = 0$ Another linear equality. Since it involves 3 variables, the reduction to a shortest path problem does not work. (General LP)

triangulate (arbitrarily)

internet backbone network

triangulate (arbitrarily)

Interpolation for Finite Elements

 L^2 -error: 0.18 max-error: 0.30

 L^2 -error: 0.07 max-error: 0.15

Improving the smallest angle by flipping Freie Universität

Open Question

Nontriangular faces.

Is the (φ_1, φ_2) -region of nonintersecting arcs *convex*? (Perhaps with a different choice of parameters?)