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OPEN PROBLEM:

t = 2, 3, . . .Find a digraph such that

• every t-tuple of vertices has a

common successor;

• with a (not necessarily proper)

k-coloring of the arcs so that every

directed cycle contains all colors.

(k ≥ 2, k → max)
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Overview

• 1 dimension
• 2 dimensions
• 3 dimensions
• 4 dimensions
• d dimensions

O(n log n) time

O(ndd/3e log n) time

• Problem statement and variations
• PRUNING and DIMENSION REDUCTION
• Point groups (discrete subgroups of the orthogonal group)

?
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Rotation or Rotation+Reflection?

We only need to consider proper congruence
(orientation-preserving congruence, of determinant +1).

If mirror-congruence is also desired, repeat the test twice, for
B and its mirror image B′.

∼=
?

A B

∼=
?

B′
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Congruence = Rotation + Translation

Translation is easy to determine:
The centroid of A must coincide with the centroid of B.

∼=
?

A B

→ from now on: All point sets are centered at the origin O:∑
a∈A

a =
∑
b∈B

b = 0

We need to find a rotation around the origin (orthogonal
matrix T with determinant +1) which maps A to B.
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Exact Arithmetic

The proper setting for this (mathematical) problem requires
real numbers as inputs and exact arithmetic.
→ the Real RAM model (RAM = random access machine):
One elementary operation with real numbers (+, ÷,

√
, sin) is

counted as one step.

A regular 5-gon, 7-gon, 8-gon, . . .
with rational coordinates does not
exist in any dimension.
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Applications

The proper setting for this applied problem requires tolerances,
partial matchings, and other extensions.

Congruence testing is the basic problem for many pattern
matching tasks

• computer vision
• star matching
• brain matching
• . . .
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Approximate matching

Given two sets A and B in the plane and an error tolerance ε,
find a bijection f : A→ B and a congruence T such that

‖T (a)− f(b)‖ ≤ ε, for all a ∈ A.

This problem is NP-hard. [S.Iwanowski 1991, C.Dieckmann 2012]

BA

T (A)
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Arbitrary Dimension

A,B ⊂ Rd, |A| = |B| = n.
We consider the problem for fixed dimension d.

When d is unrestricted, the problem is equivalent to graph
isomorphism:
G = (V,E), V = {1, 2, . . . , n}
7→ A = {e1, . . . , en}︸ ︷︷ ︸

regular simplex

∪{ ei+ej
2 | ij ∈ E } ⊂ Rn

CONJECTURE:
Congruence can be tested in O(n log n) time for every fixed
dimension d. (“fixed-parameter tractable”)
Current best bound: O(ndd/3e log n) time
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One dimension

Trivial.
(after shifting the centroid to the origin and getting rid of
reflection):

Test if A = B. O(n log n) time.
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Two dimensions

Can be done by string matching. [ Manacher 1976 ]

Sort points around the origin.
Encode alternating sequence of distances ri and angles φi.

r1

r2r3

φ1

(r1, φ1, r2, φ2, . . . , rn, φn)

Check whether the
corresponding sequence of B is
a cyclic shift.

→ O(n log n) +O(n) time.
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Three dimensions

[ Hopcroft and Wong 1974 ]

Compute the convex hull P (A) and P (B), in O(n log n) time.

Check isomorphism between the corresponding planar graphs,
in O(n) time.

The result is unique, up to
• the symmetries of a Platonic solid (at most 60 choices), or
• a rotation around an axis.
→ project down to a 2-dimensional problem.

[ Sugihara 1984; Alt, Mehlhorn, Wagener, Welzl 1988 ]
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Pruning

A
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Pruning

A

Find some criterion that distinguishes
points (distance from the center,
number of closest neighbors, . . . )
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Pruning

A

Find some criterion that distinguishes
points (distance from the center,
number of closest neighbors, . . . )

Throw away all but the smallest
resulting class,
and repeat.

A′

Simultaneously, apply the same pruning procedure to B.
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Dimension Reduction

As soon as |A′| = |B′| = k is small:
Choose a point a0 ∈ A′ and try all k possibilities of mapping it
to a point b ∈ B′.

Fixing a0 7→ b reduces the dimension by one.
a0

ai

(a′i, di)

Project perpendicular to Oa0 and label projected points a′i
with the signed projection distance di as (a′i, di).

di

O

b

O

the original
set A
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Pruning + Dimension Reduction

PRUNING:
Find some (geometric, combinatorial) characteristic that
distinguishes points from each other.
Keep only the smallest equivalence class.

DIMENSION REDUCTION:
Reduce one d-dimensional problem to k problems
of dimension d− 1.

[ M. D. Atkinson, J. Algorithms 1987, for d = 3 ]
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Three Dimensions

Compute the convex hull P (A).
If there are vertices of different degrees → PRUNE

All n vertices have now degree 3, 4, or 5.
There are f = n

2 + 2 or f = n+ 2 or f = 3n
2 + 2 faces.

The number n of vertices is reduced to ≤ n/2. RESTART.

If the points lie in a plane or on a line
→ DIMENSION REDUCTION.

If the face degrees are not all equal
→ switch to the centroids of the faces and PRUNE them.

n is reduced to ≤ 3n
4 + 1. RESTART.

Now P (A) must have the graph of a Platonic solid. → n ≤ 20.
→ DIMENSION REDUCTION.
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Three Dimensions

Compute the convex hull P (A).
If there are vertices of different degrees → PRUNE

All n vertices have now degree 3, 4, or 5.
There are f = n

2 + 2 or f = n+ 2 or f = 3n
2 + 2 faces.

The number n of vertices is reduced to ≤ n/2. RESTART.

If the points lie in a plane or on a line
→ DIMENSION REDUCTION.

If the face degrees are not all equal
→ switch to the centroids of the faces and PRUNE them.

n is reduced to ≤ 3n
4 + 1. RESTART.

O(|A| log |A|) time

TIME =
O(n log n) +O( 3

4n log 3
4n) +O(( 3

4 )2n log(( 3
4 )2n)) + . . .

= O(n log n)
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Symmetry groups

COROLLARY. The symmetry group of a finite full-dimensional
point set in 3-space (= a discrete subgroup of O(3)) is

• the symmetry group of a Platonic solid,

• the symmetry group of a regular prism,

• or a subgroup of such a group.

The point groups (discrete subgroups of O(3)) are classified
(Hessel’s Theorem).

[ F. Hessel 1830, M. L. Frankenheim 1826 ]



Günter Rote, Freie Universität Berlin Testing Congruence and Symmetry of Point Sets CSA CS , Koper, June 9–13, 2013

Point groups in higher dimensions

¿The symmetry group of a finite full-dimensional point set in
d-space (= a discrete subgroup of O(d)) is

• the symmetry group of a regular d-dimensional polytope:
– a regular simplex
– ∗ a hypercube (or its dual, the crosspolytope)
– a regular n-gon in two dimensions
– a dodecahedron (or its dual, the icosahedron) in 3 d.
– a 24-cell, or a 120-cell (or its dual, the 600-cell) in 4 d.

• the symmetry group of the Cartesian product of
lower-dimensional regular polytopes,

• or a subgroup of such a group? ?

Is this true in higher dimensions?

The symmetry groups of the root systems E6, E7, E8 in 6, 7,
and 8 dimensions might be counterexamples.
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Dimension d

Dimension reduction without pruning:
Pick a0 ∈ A. Try a0 7→ b for all b ∈ B (n possibilities).
→ O(nd−2 log n) time

Improvement [Matoušek ≈ 1998]:
Consider all closest pairs of A and B. Each point belongs to
≤ Cd closest pairs. (packing argument, the kissing number).
=⇒ O(n) closest pairs.

Pick a closest pair a0a1 ∈ A. Try (a0, a1) 7→ (b, b′) for all
closest pairs (b, b′) ∈ B.
O(n) possibilities, reducing the dimension by two.
→ O(nbd/2c log n) time

Further improvement: Find a “closest triplet” . . .

a0 a1

a0 a1

a2
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Life in four dimensions

Consider two regular n-gons in
orthogonal planes.
There are O(n2) “closest triplets”.
(Triplets on the same n-gon are
not useful.)

√
2

[ Brass and Knauer 2002 ]

Point sets in orthogonal subspaces are
the only problematic case; they can be
treated specially.
→ O(ndd/3e log n) time,
by looking at closest pairs

x1, x2

x3, x4

The convex hull has
Θ(n2) edges and facets.
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Life in four dimensions

Compute the closest pair graph

G(A) = (A, { aa′ : ‖a− a′‖ = δ })

where δ is the distance of the closest pair.

By the PRUNING principle, we can assume that all points look
locally the same:

• same distance from the origin. (A lies on the 3-sphere S3.)

• All points have congruent neighborhoods in G(A).
(The neighbors of a lie on a 2-sphere in S3;
There are at most 12 neighbors.)

a

δ

CASE 1.
The vertex figure has no symmetries.

1

2

3

4

6
5

7 8
CASE 1.
The vertex figure has no symmetries.



Günter Rote, Freie Universität Berlin Testing Congruence and Symmetry of Point Sets CSA CS , Koper, June 9–13, 2013

Life in four dimensions

a1

1

2

3

4

6
5

7 8

CASE 1.
The vertex figure has no symmetries.

Follow the sequence of “1”-neighbors

1a0
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Life in four dimensions

a1

1

2

3

4

6
5

7 8

CASE 1.
The vertex figure has no symmetries.

Follow the sequence of “1”-neighbors

1a0
1

• If the “1”-edges form a matching:
Take the midpoints of these edges. n→ n/2.
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Life in four dimensions

a1

1

2

3

4

6
5

7 8

CASE 1.
The vertex figure has no symmetries.

Follow the sequence of “1”-neighbors

1a0 1

5
a2

a3
1

(a0, a1, a2) ∼= (a1, a2, a3) ∼= (a2, a3, a4) ∼= · · ·
A is partitioned into cycles of the same length.

• Cycles are short → their centroid is nonzero;
replace them by their centroids.

• a0, a1, a2 lie on a circle through the origin
special situation: all these circles are parallel; or there is a
bounded number of circles.

• a0, a1, a2 span a hyperplane → take their normals
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Life in four dimensions

a1

CASE 2.
The vertex figure has, say, tetrahedral symmetry.

Start with a path of length 3,
by extending a0a1 “as straight as possible”
(Finitely many starting patterns).
a0, a1, a2 span a hyperplane.

a0 a2
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Life in four dimensions

a1

CASE 2.
The vertex figure has, say, tetrahedral symmetry.

Start with a path of length 3,
by extending a0a1 “as straight as possible”
(Finitely many starting patterns).
a0, a1, a2 span a hyperplane.

a0 a2
a3

Extend the path by

(a0, a1, a2) ∼= (a1, a2, a3) ∼= (a2, a3, a4) ∼= · · ·

→ A is partitioned into cycles of the same length.



Günter Rote, Freie Universität Berlin Testing Congruence and Symmetry of Point Sets CSA CS , Koper, June 9–13, 2013

The four-dimensional point groups

• [ W. Threlfall and H. Seifert, Math. Annalen, 1931, 1933 ]

enumerated discrete subgroups of SO(4) (determinant +1)

• [ J. Conway and D. Smith 2003 ]

complete enumeration of point groups

4d-rotation T ↔ pair (R,S) of 3d-rotations.
(for example, via quaternions)

• The groups generated by reflections (Coxeter groups) have
been enumerated up to 8 dimensions.

[ Norman Johnson, unpublished book manuscript ]

Goursat’s Lemma: [ É. Goursat 1890 ]

Pairs of 3d point groups
+ additional information
→ 4d point groups
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The four-dimensional point groups

Table 4.1. The chiral groups
(groups of
orientation-preserving
orthogonal transformations)

both m and n must be odd.

[ Conway and Smith 2003 ]
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The four-dimensional point groups

Table 4.2.
The chiral groups
(continued)
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The four-dimensional point groups

Table 4.3.
The achiral groups
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The four-dimensional point groups

Table 4.3.
The achiral groups

• Visualize these
groups:
Schlegel diagram of a
4-polytope which has
these symmetries.
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The four-dimensional point groups

Table 4.3.
The achiral groups

• Visualize these
groups:
Schlegel diagram of a
4-polytope which has
these symmetries.

• Then go to 5d and
higher
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The four-dimensional point groups

Table 4.3.
The achiral groups

• Visualize these
groups:
Schlegel diagram of a
4-polytope which has
these symmetries.

• Then go to 5d and
higher

OPEN PROBLEM:

t = 2, 3, . . .Find a digraph such that

• every t-tuple of vertices has a

common successor;

• the arcs can be k-colored so that

every directed cycle contains all

colors. (k ≥ 2, k → max)
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