Testing Congruence of Point Sets

Günter Rote
 Freie Universität Berlin

Testing Congruence of Point Sets

OPEN PROB Günter Rote
$t=2,3$ PrOBLEM :oe Universität Berlin
Find

common tuple of vertices
with a successor;

$\left(\begin{array}{l}k c_{\text {ted }} \text { cycle the arcs } \\ \geq 2 \text {, proper) }\end{array}\right.$

$$
\left.m_{a x}\right)^{2 n_{s}} \text { all colors every }
$$

Testing Congruence of Point Sets

Günter Rote
Freie Universität Berlin

Testing Congruence of Point Sets and Symmetry

Günter Rote

Freie Universität Berlin

Testing Congruence of Point Sets and Symmetry

Günter Rote

Freie Universität Berlin

- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions
- d dimensions
- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions ?
- d dimensions $O\left(n^{\lceil d / 3\rceil} \log n\right)$ time
- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions ?
- d dimensions $O\left(n^{\lceil d / 3\rceil} \log n\right)$ time
- Problem statement and variations
- PRUNING and DIMENSION REDUCTION
- Point groups (discrete subgroups of the orthogonal group)

Rotation or Rotation+Reflection?

We only need to consider proper congruence (orientation-preserving congruence, of determinant +1).

If mirror-congruence is also desired, repeat the test twice, for B and its mirror image B^{\prime}.

Congruence $=$ Rotation + Translation

Translation is easy to determine:
The centroid of A must coincide with the centroid of B.

\rightarrow from now on: All point sets are centered at the origin O :

$$
\sum_{a \in A} a=\sum_{b \in B} b=0
$$

We need to find a rotation around the origin (orthogonal matrix T with determinant +1) which maps A to B.

Exact Arithmetic

The proper setting for this (mathematical) problem requires real numbers as inputs and exact arithmetic.
\rightarrow the Real RAM model (RAM $=$ random access machine): One elementary operation with real numbers $(+, \div, \sqrt{ }, \sin)$ is counted as one step.

Congruence testing is the basic problem for many pattern matching tasks

- computer vision
- star matching
- brain matching

The proper setting for this applied problem requires tolerances, partial matchings, and other extensions.

Given two sets A and B in the plane and an error tolerance ε, find a bijection $f: A \rightarrow B$ and a congruence T such that

$$
\|T(a)-f(b)\| \leq \varepsilon, \text { for all } a \in A
$$

This problem is NP-hard. [S.Iwanowski 1991, C.Dieckmann 2012]

Arbitrary Dimension

$A, B \subset \mathbb{R}^{d},|A|=|B|=n$.
We consider the problem for fixed dimension d.

When d is unrestricted, the problem is equivalent to graph isomorphism:

$$
\begin{aligned}
& G=(V, E), V=\{1,2, \ldots, n\} \\
& \mapsto A=\underbrace{\left\{e_{1}, \ldots, e_{n}\right\}}_{\text {regular simplex }} \cup\left\{\left.\frac{e_{i}+e_{j}}{2} \right\rvert\, i j \in E\right\} \subset \mathbb{R}^{n}
\end{aligned}
$$

CONJECTURE:

Congruence can be tested in $O(n \log n)$ time for every fixed dimension d. ("fixed-parameter tractable")
Current best bound: $O\left(n^{\lceil d / 3\rceil} \log n\right)$ time

Trivial.
(after shifting the centroid to the origin and getting rid of reflection):

Test if $A=B . O(n \log n)$ time.

Can be done by string matching.

Sort points around the origin.

Encode alternating sequence of distances r_{i} and angles ϕ_{i}.

$$
\left(r_{1}, \phi_{1}, r_{2}, \phi_{2}, \ldots, r_{n}, \phi_{n}\right)
$$

Check whether the corresponding sequence of B is a cyclic shift.
$\rightarrow O(n \log n)+O(n)$ time.

Compute the convex hull $P(A)$ and $P(B)$, in $O(n \log n)$ time.
Check isomorphism between the corresponding planar graphs, in $O(n)$ time.
[Hopcroft and Wong 1974]
The result is unique, up to

- the symmetries of a Platonic solid (at most 60 choices), or
- a rotation around an axis.
\rightarrow project down to a 2-dimensional problem.
[Sugihara 1984; Alt, Mehlhorn, Wagener, Welzl 1988]

Pruning

Find some criterion that distinguishes points (distance from the center, number of closest neighbors, ...)

Pruning

Find some criterion that distinguishes points (distance from the center, number of closest neighbors, ...)

Throw away all but the smallest resulting class, and repeat.

Simultaneously, apply the same pruning procedure to B.

Dimension Reduction

As soon as $\left|A^{\prime}\right|=\left|B^{\prime}\right|=k$ is small:
Choose a point $a_{0} \in A^{\prime}$ and try all k possibilities of mapping it to a point $b \in B^{\prime}$.

Fixing $a_{0} \mapsto b$ reduces the dimension by one.

Project perpendicular to $O a_{0}$ and label projected points a_{i}^{\prime} with the signed projection distance d_{i} as $\left(a_{i}^{\prime}, d_{i}\right)$.

Pruning + Dimension Reduction

PRUNING:

Find some (geometric, combinatorial) characteristic that distinguishes points from each other. Keep only the smallest equivalence class.

DIMENSION REDUCTION:

Reduce one d-dimensional problem to k problems of dimension $d-1$.
[M. D. Atkinson, J. Algorithms 1987, for $d=3$]

If the points lie in a plane or on a line
\rightarrow DIMENSION REDUCTION.
Compute the convex hull $P(A)$.
If there are vertices of different degrees \rightarrow PRUNE
The number n of vertices is reduced to $\leq n / 2$. RESTART.
All n vertices have now degree 3 , 4, or 5 .
There are $f=\frac{n}{2}+2$ or $f=n+2$ or $f=\frac{3 n}{2}+2$ faces.
If the face degrees are not all equal
\rightarrow switch to the centroids of the faces and PRUNE them.
n is reduced to $\leq \frac{3 n}{4}+1$. RESTART.
Now $P(A)$ must have the graph of a Platonic solid. $\rightarrow n \leq 20$. \rightarrow DIMENSION REDUCTION.

Three Dimensions

If the points lie in a plane or on a line \rightarrow DIMENSION REDUCTION.
Compute the convex hull $P(A) . \longleftarrow O(|A| \log |A|)$ time If there are vertices of different degrees \rightarrow PRUNE
The number n of vertices is reduced to $\leq n / 2$. RESTART.
All n vertices have now degree 3,4 , or 5 .
There are $f=\frac{n}{2}+2$ or $f=n+2$ or $f=\frac{3 n}{2}+2$ faces.
If the face degrees are not all equal
\rightarrow switch to the centroids of the faces and PRUNE them. n is reduced to $\leq \frac{3 n}{4}+1$. RESTART.
TIME =
$O(n \log n)+O\left(\frac{3}{4} n \log \frac{3}{4} n\right)+O\left(\left(\frac{3}{4}\right)^{2} n \log \left(\left(\frac{3}{4}\right)^{2} n\right)\right)+\ldots$
$=O(n \log n)$

Symmetry groups

COROLLARY. The symmetry group of a finite full-dimensional point set in 3 -space ($=$ a discrete subgroup of $O(3)$) is

- the symmetry group of a Platonic solid,
- the symmetry group of a regular prism,
- or a subgroup of such a group.

The point groups (discrete subgroups of $O(3)$) are classified (Hessel's Theorem).
[F. Hessel 1830, M. L. Frankenheim 1826]

Point groups in higher dimensions

Is this true in higher dimensions?
¿The symmetry group of a finite full-dimensional point set in d-space (= a discrete subgroup of $O(d)$) is

- the symmetry group of a regular d-dimensional polytope:
- a regular simplex
- * a hypercube (or its dual, the crosspolytope)
- a regular n-gon in two dimensions
- a dodecahedron (or its dual, the icosahedron) in 3 d .
- a 24 -cell, or a 120 -cell (or its dual, the 600 -cell) in 4 d .
- the symmetry group of the Cartesian product of lower-dimensional regular polytopes,
- or a subgroup of such a group?

The symmetry groups of the root systems E_{6}, E_{7}, E_{8} in 6, 7, and 8 dimensions might be counterexamples.

Dimension d

Dimension reduction without pruning:
Pick $a_{0} \in A$. Try $a_{0} \mapsto b$ for all $b \in B$ (n possibilities).
$\rightarrow O\left(n^{d-2} \log n\right)$ time

Improvement [Matoušek \approx 1998]:

Consider all closest pairs of A and B. Each point belongs to $\leq C_{d}$ closest pairs. (packing argument, the kissing number). $\Longrightarrow O(n)$ closest pairs.

Pick a closest pair $a_{0} a_{1} \in A$. Try $\left(a_{0}, a_{1}\right) \mapsto\left(b, b^{\prime}\right)$ for all closest pairs $\left(b, b^{\prime}\right) \in B$.
$O(n)$ possibilities, reducing the dimension by two.
$\rightarrow O\left(n^{\lfloor d / 2\rfloor} \log n\right)$ time
Further improvement: Find a "closest triplet"...

Life in four dimensions

Life in four dimensions

Compute the closest pair graph

$$
G(A)=\left(A,\left\{a a^{\prime}:\left\|a-a^{\prime}\right\|=\delta\right\}\right)
$$

where δ is the distance of the closest pair.
By the PRUNING principle, we can assume that all points look locally the same:

- same distance from the origin. (A lies on the 3 -sphere \mathbb{S}^{3}.)
- All points have congruent neighborhoods in $G(A)$. (The neighbors of a lie on a 2 -sphere in \mathbb{S}^{3}; There are at most 12 neighbors.)

CASE 1.
The vertex figure has no symmetries.

Life in four dimensions

CASE 1.

The vertex figure has no symmetries.
Follow the sequence of " 1 "-neighbors

Life in four dimensions

CASE 1.

The vertex figure has no symmetries.
Follow the sequence of " 1 "-neighbors

- If the " 1 "-edges form a matching: Take the midpoints of these edges. $n \rightarrow n / 2$.

Life in four dimensions

CASE 1.

The vertex figure has no symmetries.
Follow the sequence of " 1 "-neighbors

$\left(a_{0}, a_{1}, a_{2}\right) \cong\left(a_{1}, a_{2}, a_{3}\right) \cong\left(a_{2}, a_{3}, a_{4}\right) \cong \ldots$
A is partitioned into cycles of the same length.

- Cycles are short \rightarrow their centroid is nonzero; replace them by their centroids.
- a_{0}, a_{1}, a_{2} lie on a circle through the origin special situation: all these circles are parallel; or there is a bounded number of circles.
- a_{0}, a_{1}, a_{2} span a hyperplane \rightarrow take their normals

Life in four dimensions

CASE 2.

The vertex figure has, say, tetrahedral symmetry.
Start with a path of length 3 , by extending $a_{0} a_{1}$ "as straight as possible"
 (Finitely many starting patterns). a_{0}, a_{1}, a_{2} span a hyperplane.

Life in four dimensions

CASE 2.

The vertex figure has, say, tetrahedral symmetry.
Start with a path of length 3 , by extending $a_{0} a_{1}$ "as straight as possible"
 (Finitely many starting patterns). a_{0}, a_{1}, a_{2} span a hyperplane.

Extend the path by

$$
\left(a_{0}, a_{1}, a_{2}\right) \cong\left(a_{1}, a_{2}, a_{3}\right) \cong\left(a_{2}, a_{3}, a_{4}\right) \cong \ldots
$$

$\rightarrow A$ is partitioned into cycles of the same length.

- [W. Threlfall and H. Seifert, Math. Annalen, 1931, 1933] enumerated discrete subgroups of $S O(4)($ determinant +1$)$
- [J. Conway and D. Smith 2003] complete enumeration of point groups 4d-rotation $T \leftrightarrow$ pair (R, S) of 3d-rotations. (for example, via quaternions)

Goursat's Lemma: [É. Goursat 1890]
Pairs of 3d point groups

+ additional information
\rightarrow 4d point groups

- The groups generated by reflections (Coxeter groups) have been enumerated up to 8 dimensions.
[Norman Johnson, unpublished book manuscript]

Table 4.1. Chiral groups, I. These are most of the "metachiral" groups-s
4.6 -some others 4.6-some others appear in the last few lines of Table 4.2.

The four-dimensional point groups

	Generators	Coxeter Name
Group	[i, 1], $[\omega, 1],\left[1, i_{I}\right],[1, \omega]$;	$[3,3,5]^{+}$
$\pm[I \times I]$	$\left.\left[i_{I}, 1\right],[\omega, 1],\left[1, i^{\prime}\right], i^{\prime}\right]$ $;[\omega, \omega],\left[i_{1}, i_{I}\right]$	2. $[3,5]^{+}$
$\pm \frac{1}{60}[I \times I]$	$\cdots+$	$[3,5]^{+}$
$+\frac{1}{60}[I \times I]$	$;[\omega, \omega],\left[i_{I}, i_{I}^{\prime}\right]$	2. $[3,3,3]^{+}$
$\pm \frac{1}{60}[I \times \bar{I}]$	$;[\omega, \omega],\left[i_{1}, \iota_{l}\right]$	$[3,3,3]^{+}$
$+\frac{1}{60}[I \times I]$ $\pm[O \times O]$	$\left[i_{0}, 1\right],[\omega, 1],\left[1, i_{0}\right],[1, \omega] ;$	$[3,4,3]^{+}: 2$
$\pm[0 \times O]$ $\pm \frac{1}{2}[O \times O]$	$[i, 1],[\omega, 1],[1, i],[1, \omega] ;\left[i_{0}, i_{o}\right]$	$[3,4,3]^{+}$
$\begin{aligned} & \pm \frac{1}{2}[O \times O] \\ & \pm \frac{1}{6}[O \times O] \end{aligned}$	$[i, 1],[j, 1],[1, i],[1, j] ;[\omega, \omega],\left[i_{O}, i_{O}\right]$	$[3,3,4]^{+}$
$\pm \frac{1}{24}[O \times O]$; $[\omega, \omega],\left[i_{0}, i_{o}\right]$	2. $[3,4]^{+}$
$+\frac{1}{24}[O \times O]$; +	$[3,4]^{+}$
$+\frac{1}{24}[O \times \bar{O}]$; +	$[2,3,3]^{+}$
$\pm[T \times T]$	$[i, 1],[\omega, 1],[1, i],[1, \omega] ;$	$\left[{ }^{+} 3,4,3^{+}\right]$
$\pm \frac{1}{3}[T \times T]$	$[i, 1],[j, 1],[1, i],[1, j] ;[\omega, \omega]$	$\left.{ }^{+} 3,3,4^{+}\right]$
$\cong \pm \frac{1}{3}[T \times \bar{T}]$	$[i, 1],[j, 1],[1, i],[1, j] ;[\omega, \bar{\omega}]$	
$\pm \frac{1}{12}[T \times T]$	$;[\omega, \omega],[i, i]$	2. $[3,3]^{+}$
$\cong \pm \frac{1}{12}[T \times \bar{T}]$	$;[\omega, \bar{\omega}],[i,-i]$	
$+\frac{1}{12}[T \times T]$; + , +	$[3,3]^{+}$
$\cong+\frac{1}{12}[T \times \bar{T}]$; + , +	"
$\pm\left[D_{2 m} \times D_{2 n}\right]$	$\left[e_{m}, 1\right],[j, 1],\left[1, e_{n}\right],[1, j] ;$	
$\pm \frac{1}{2}\left[\bar{D}_{4 m} \times \bar{D}_{4 n}\right]$	$\left[e_{m}, 1\right],[j, 1],\left[1, e_{n}\right],[1, j] ;\left[e_{2 m}, e_{2 n}\right]$	
$\pm \frac{1}{4}\left[D_{4 m} \times \bar{D}_{4 n}\right]$	$\left[e_{m}, 1\right],\left[1, e_{n}\right] ;\left[e_{2 m}, j\right],\left[j, e_{2 n}\right]$	Conditions
$+\frac{1}{4}\left[D_{4 m} \times \bar{D}_{4 n}\right]$	- , - + , +	m, n odd
$\pm \frac{1}{2 f}\left[D_{2 m f} \times D_{2 n f}^{(s)}\right]$	$\left[e_{m}, 1\right],\left[1, e_{n}\right] ;\left[e_{m f}, e_{n f}^{s}\right],[j, j]$	$(s, f)=1$
$+\frac{1}{2 f}\left[D_{2 m f} \times D_{2 n f}^{(s)}\right]$	- , - ; + , +	n, n odd, $(s, 2 f)$
$\pm \frac{1}{f}\left[C_{m f} \times C_{n f}^{(s)}\right]$	$\left[e_{m}, 1\right],\left[1, e_{n}\right] ;\left[e_{m f}, e_{n f}^{s}\right]$	$(s, f)=1$
$+\frac{1}{f}\left[C_{m f} \times C_{n f}^{(s)}\right]$		n odd, ($s, 2 f$)

Coxeter Name

$[3,3,5]^{+}$
2. $[3,5]^{+}$
$[3,5]^{+}$
2. $[3,3,3]^{+}$
$[3,3,3]^{+}$
$[3,4,3]^{+}: 2$
$[3,4,3]^{+}$
$[3,3,4]^{+}$
2. $[3,4]^{+}$
$[3,4]^{+}$
$[2,3,3]^{+}$
[${ }^{+} 3,4,3^{+}$]
$\left[{ }^{+} 3,3,4^{+}\right]$

Table 4.2.
 The chiral groups (continued)

Table 4.2.

The four-dimensional point groups

Group	Extending element	Coxeter Name
$\pm[I \times I] \cdot 2$	*	[3,3,5]
$\pm \frac{1}{60}[I \times I] \cdot 2$	*	2. [3, 5]
$+\frac{1}{60}[I \times I] \cdot 23$ or 2_{1}	* or -*	$[3,5]$ or $[3,5]^{\circ}$
$\pm \frac{1}{60}[I \times \bar{I}] \cdot 2$	*	2. [3,3,3]
$+\frac{1}{60}[I \times \bar{I}] \cdot 2_{3}$ or 2_{1}	* or -*	[$3,3,3]^{\circ}$ or $[3,3,3]$
$\pm[\mathrm{O} \times \mathrm{O}] \cdot 2$	*	$[3,4,3]: 2$
$\pm \frac{1}{2}[O \times O] \cdot 2$ or $\overline{2}$	* or * $\left[1, i_{O}\right]$	$[3,4,3]$ or $[3,4,3]^{+\cdot} 2$
$\pm \frac{1}{6}[O \times O] \cdot 2$	*	[3, 3, 4]
$\pm \frac{1}{24}[0 \times O] \cdot 2$	*	2. [3, 4]
$+\frac{1}{24}[\mathrm{O} \times \mathrm{O}] \cdot 2_{3}$ or 2_{1}	* or -*	$[3,4]$ or $[3,4]^{\circ}$
$+\frac{1}{24}[O \times \bar{O}] \cdot 2_{3}$ or 2_{1}	* or -*	[$2,3,3]^{\circ}$ or [2,3,3]
$\pm[T \times T] \cdot 2$	*	[$3,4,3^{+}$]
$\pm \frac{1}{3}[T \times T] \cdot 2$	*	[${ }^{3} 3,3,4$]
$\pm \frac{1}{3}[T \times \bar{T}] \cdot 2$	*	[$3,3,4^{+}$]
$\pm \frac{1}{12}[T \times T] \cdot 2$	*	2. $\left.{ }^{+} 3,4\right]$
$\pm \frac{1}{12}[T \times \bar{T}] \cdot 2$	*	2. [3, 3]
$+\frac{1}{12}[T \times T] \cdot 2_{3}$ or 2_{1}	* or -*	$\left[{ }^{+} 3,4\right]$ or $\left[{ }^{+} 3,4\right]^{\circ}$
$+\frac{1}{12}[T \times \bar{T}] \cdot 2_{3}$ or 2_{1}	* or -*	$[3,3]^{\circ}$ or [3,3]
$\pm\left[D_{2 n} \times D_{2 n}\right] \cdot 2$	*	
$\pm \frac{1}{2}\left[\bar{D}_{4 n} \times \bar{D}_{4 n}\right] \cdot 2$ or $\overline{2}$	* or * $\left[1, e_{2 n}\right]$	
$\pm \frac{1}{4}\left[D_{4 n} \times \bar{D}_{4 n}\right] \cdot 2$	*	Conditions
$+\frac{1}{4}\left[D_{4 n} \times \bar{D}_{4 n}\right] \cdot 23$ or 2_{1}	* or -*	n odd
$\pm \frac{1}{2 f}\left[D_{2 n f} \times D_{2 n f}^{(s)}\right] \cdot 2^{(\alpha, \beta)}$ or $\overline{2}$	$*\left[e_{2 n f}^{\alpha}, e_{2 n f}^{\alpha s+\beta f}\right]$ or *[1, j]	See
$+\frac{1}{2 f}\left[D_{2 n f} \times D_{2 n f}^{(s)}\right] \cdot 2^{(\alpha, \beta)}$ or $\overline{2}$	$*\left[e_{2 n f}^{\alpha}, e_{2 n f}^{\alpha s+\beta f}\right]$ or $*[1, j]$	Text
$\pm \frac{1}{f}\left[C_{n f} \times C_{n f}^{(s)}\right] \cdot 2^{(\gamma)}$ $+\frac{1}{f}\left[C_{n f} \times C^{(s)}\right] \cdot 2(\gamma)$	*[1, $\left.e_{2 n f}^{\gamma(f, s+1)}\right]$	in
$\underline{+\frac{1}{f}\left[C_{n f} \times C_{n f}^{(s)}\right] \cdot 2^{(\gamma)}}$	$\left.*\left[1, e_{2 n f}^{\gamma(f, s+1)}\right] \quad\right)$	Appendix

Coxeter Name
[3,3,5]
2. [3, 5]
$[3,5]$ or $[3,5]^{\circ}$ 2. $[3,3,3]$
$[3,3,3]^{\circ}$ or $[3,3,3]$
$[3,4,3]: 2$
$[3,4,3]$ or $[3,4,3]^{+} \cdot 2$
$[3,3,4]$
2. [3, 4]
$[3,4]$ or $[3,4]^{\circ}$
[$2,3,3]^{\circ}$ or $[2,3,3]$
$\left[3,4,3^{+}\right]$
$\left[{ }^{+} 3,3,4\right]$
[$3,3,4^{+}$]
2. $\left.{ }^{+} 3,4\right]$
2. [3, 3]
$\left.{ }^{+} 3,4\right]$ or $\left[{ }^{+} 3,4\right]^{\circ}$
$[3,3]^{\circ}$ or $[3,3]$

Conditions
n odd
See
ppendix

The four-dimensional point groups

Table 4.3. The achiral groups

- Visualize these groups: Schlegel diagram of a 4-polytope which has these symmetries.

Table 4.3. The achiral groups

- Visualize these groups: Schlegel diagram of a 4-polytope which has these symmetries.
- Then go to 5d and higher

comptruple of that
- the aron success vertices has a every ${ }^{\text {ar s }}$ can ${ }^{\mathrm{cessen}_{\mathrm{O}} \text {; }}$ directed beria
- Visualize these groups: Schlegel diagram of a 4-polytope which has these symmetries.
- Then go to Sd and higher

