

Testing Congruence of Point Sets

Günter Rote Freie Universität Berlin

Testing Congruence of Point Sets

Testing Congruence of Point Sets

Testing Congruence of Point Sets and Symmetry Günter Rote Freie Universität Berlin

Overview

- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions
- *d* dimensions

Overview

- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions ?
- d dimensions $O(n^{\lceil d/3 \rceil} \log n)$ time

 $O(n \log n)$ time

Overview

- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions ?
- d dimensions $O(n^{\lceil d/3 \rceil} \log n)$ time
- Problem statement and variations
- PRUNING and DIMENSION REDUCTION
- Point groups (discrete subgroups of the orthogonal group)

 $O(n \log n)$ time

Rotation or Rotation+Reflection?

We only need to consider *proper* congruence (orientation-preserving congruence, of determinant +1).

If mirror-congruence is also desired, repeat the test twice, for B and its mirror image B'.

Freie Universität

🖗 Berlin

Congruence = Rotation + Translation

Translation is easy to determine:

The centroid of A must coincide with the centroid of B.

 \rightarrow from now on: All point sets are centered at the origin O:

$$\sum_{a \in A} a = \sum_{b \in B} b = 0$$

We need to find a rotation around the origin (orthogonal matrix T with determinant +1) which maps A to B.

Günter Rote, Freie Universität Berlin

Freie Universität 🕅 🐜

🖗 Berlin

Exact Arithmetic

Freie Universität

The proper setting for this (mathematical) problem requires real numbers as inputs and exact arithmetic.

 \rightarrow the *Real RAM* model (RAM = random access machine): One elementary operation with real numbers (+, \div , $\sqrt{}$, sin) is counted as one step.

Applications

Congruence testing is the basic problem for many pattern matching tasks

- computer vision
- star matching
- brain matching
- . . .

The proper setting for this applied problem requires tolerances, partial matchings, and other extensions.

Approximate matching

Given two sets A and B in the plane and an error tolerance ε , find a bijection $f: A \to B$ and a congruence T such that

This problem is NP-hard. [S.Iwanowski 1991, C.Dieckmann 2012]

Arbitrary Dimension

$$A, B \subset \mathbb{R}^d$$
, $|A| = |B| = n$.

We consider the problem for fixed dimension d.

When d is unrestricted, the problem is equivalent to graph isomorphism:

$$G = (V, E), V = \{1, 2, \dots, n\}$$

$$\mapsto A = \underbrace{\{e_1, \dots, e_n\}}_{\text{regular simplex}} \cup \{\frac{e_i + e_j}{2} \mid ij \in E\} \subset \mathbb{R}^n$$

CONJECTURE:

Congruence can be tested in $O(n \log n)$ time for every fixed dimension d. ("fixed-parameter tractable") Current best bound: $O(n^{\lceil d/3 \rceil} \log n)$ time

One dimension

Freie Universität

Trivial.

(after shifting the centroid to the origin and getting rid of reflection):

Test if A = B. $O(n \log n)$ time.

Günter Rote, Freie Universität Berlin

Testing Congruence and Symmetry of Point Sets

Two dimensions

Can be done by string matching. Sort points around the origin.

Encode alternating sequence of distances r_i and angles ϕ_i .

 $(r_1, \phi_1, r_2, \phi_2, \dots, r_n, \phi_n)$

[Manacher 1976]

Three dimensions

Freie Universität

Compute the convex hull P(A) and P(B), in $O(n \log n)$ time.

Check isomorphism between the corresponding planar graphs, in O(n) time. [Hopcroft and Wong 1974]

The result is unique, up to

- the symmetries of a Platonic solid (at most 60 choices), or
- a rotation around an axis.

 \rightarrow project down to a 2-dimensional problem.

[Sugihara 1984; Alt, Mehlhorn, Wagener, Welzl 1988]

Pruning

Find *some* criterion that distinguishes points (distance from the center, number of closest neighbors, ...)

Pruning

Simultaneously, apply the same pruning procedure to B.

Dimension Reduction

As soon as |A'| = |B'| = k is small: Choose a point $a_0 \in A'$ and try all k possibilities of mapping it to a point $b \in B'$.

Fixing $a_0 \mapsto b$ reduces the dimension by one.

Project perpendicular to Oa_0 and label projected points a'_i with the signed projection distance d_i as (a'_i, d_i) .

PRUNING:

Find some (geometric, combinatorial) characteristic that distinguishes points from each other. Keep only the smallest equivalence class.

DIMENSION REDUCTION:

Reduce one *d*-dimensional problem to k problems of dimension d-1.

[M. D. Atkinson, J. Algorithms 1987, for d = 3]

Three Dimensions

Freie Universität

If the points lie in a plane or on a line \rightarrow DIMENSION REDUCTION.

Compute the convex hull P(A). If there are vertices of different degrees \rightarrow PRUNE

The number n of vertices is reduced to $\leq n/2$. RESTART. All n vertices have now degree 3, 4, or 5. There are $f = \frac{n}{2} + 2$ or f = n + 2 or $f = \frac{3n}{2} + 2$ faces.

If the face degrees are not all equal \rightarrow switch to the centroids of the faces and PRUNE them. n is reduced to $\leq \frac{3n}{4} + 1$. RESTART.

Now P(A) must have the graph of a Platonic solid. $\rightarrow n \leq 20$. \rightarrow DIMENSION REDUCTION.

Three Dimensions

Freie Universität

If the points lie in a plane or on a line \rightarrow DIMENSION REDUCTION.

Compute the convex hull P(A). $\checkmark O(|A| \log |A|)$ time If there are vertices of different degrees \rightarrow PRUNE

The number n of vertices is reduced to $\leq n/2$. RESTART. All n vertices have now degree 3, 4, or 5. There are $f = \frac{n}{2} + 2$ or f = n + 2 or $f = \frac{3n}{2} + 2$ faces.

If the face degrees are not all equal \rightarrow switch to the centroids of the faces and PRUNE them. n is reduced to $\leq \frac{3n}{4} + 1$. RESTART.

$$TIME = O(n \log n) + O(\frac{3}{4}n \log \frac{3}{4}n) + O((\frac{3}{4})^2 n \log((\frac{3}{4})^2 n)) + \dots = O(n \log n)$$

Symmetry groups

COROLLARY. The symmetry group of a finite full-dimensional point set in 3-space (= a discrete subgroup of O(3)) is

- the symmetry group of a Platonic solid,
- the symmetry group of a regular prism,
- or a subgroup of such a group.

The *point groups* (discrete subgroups of O(3)) are classified (Hessel's Theorem). [F. Hessel 1830, M. L. Frankenheim 1826]

Point groups in higher dimensions

Is this true in higher dimensions?

¿The symmetry group of a finite full-dimensional point set in d-space (= a discrete subgroup of O(d)) is

- the symmetry group of a regular *d*-dimensional polytope:
 - a regular simplex
 - * a hypercube (or its dual, the crosspolytope)
 - a regular n-gon in two dimensions
 - a dodecahedron (or its dual, the icosahedron) in 3 d.
 - a 24-cell, or a 120-cell (or its dual, the 600-cell) in 4 d.
- the symmetry group of the Cartesian product of lower-dimensional regular polytopes,
- or a subgroup of such a group?

The symmetry groups of the root systems E_6 , E_7 , E_8 in 6, 7, and 8 dimensions might be counterexamples.

Dimension d

Freie Universität

Dimension reduction without pruning:

Pick $a_0 \in A$. Try $a_0 \mapsto b$ for all $b \in B$ (*n* possibilities). $\rightarrow O(n^{d-2} \log n)$ time

Improvement [Matoušek \approx 1998]: $\overset{a_0}{\bullet} \overset{a_1}{\bullet}$ Consider all *closest pairs* of *A* and *B*. Each point belongs to

 $\leq C_d$ closest pairs. (packing argument, the kissing number). $\implies O(n)$ closest pairs.

Pick a closest pair $a_0a_1 \in A$. Try $(a_0, a_1) \mapsto (b, b')$ for all closest pairs $(b, b') \in B$. O(n) possibilities, reducing the dimension by *two*. $\rightarrow O(n^{\lfloor d/2 \rfloor} \log n)$ time

Further improvement: Find a "closest triplet" ...

Freie Universität

🖗 Berlin

Compute the closest pair graph

$$G(A) = (A, \{ aa' : ||a - a'|| = \delta \})$$

where δ is the distance of the closest pair.

By the PRUNING principle, we can assume that all points look locally the same:

• same distance from the origin. (A lies on the 3-sphere \mathbb{S}^3 .)

 All points have congruent neighborhoods in G(A). (The neighbors of a lie on a 2-sphere in S³; There are at most 12 neighbors.)

CASE 1. The vertex figure has no symmetries.

CASE 1.

The vertex figure has no symmetries.

Follow the sequence of "1"-neighbors

 a_1

*a*₀ 1____

CASE 1.

 a_0

The vertex figure has no symmetries.

Follow the sequence of "1"-neighbors

 a_1

• If the "1"-edges form a matching: Take the midpoints of these edges. $n \rightarrow n/2$.

CASE 1.

The vertex figure has no symmetries.

Follow the sequence of "1"-neighbors

 a_1

$(a_0, a_1, a_2) \cong (a_1, a_2, a_3) \cong (a_2, a_3, a_4) \cong \cdots$ A is partitioned into cycles of the same length.

- Cycles are short \rightarrow their centroid is nonzero; replace them by their centroids.
- a₀, a₁, a₂ lie on a circle through the origin special situation: all these circles are parallel; or there is a bounded number of circles.
- a_0, a_1, a_2 span a hyperplane \rightarrow take their normals

Freie Universität

CASE 2.

The vertex figure has, say, tetrahedral symmetry.

```
Start with a path of length 3,
by extending a_0a_1 "as straight as possible"
(Finitely many starting patterns).
a_0, a_1, a_2 span a hyperplane.
```


Freie Universität

CASE 2.

The vertex figure has, say, tetrahedral symmetry.

```
Start with a path of length 3,
by extending a_0a_1 "as straight as possible"
(Finitely many starting patterns).
a_0, a_1, a_2 span a hyperplane.
```


Extend the path by

$$(a_0, a_1, a_2) \cong (a_1, a_2, a_3) \cong (a_2, a_3, a_4) \cong \cdots$$

 $\rightarrow A$ is partitioned into cycles of the same length.

- [W. Threlfall and H. Seifert, Math. Annalen, 1931, 1933] enumerated discrete subgroups of SO(4) (determinant +1)
- [J. Conway and D. Smith 2003] complete enumeration of point groups
- 4d-rotation $T \leftrightarrow \text{pair}(R, S)$ of 3d-rotations. (for example, via quaternions)
- Goursat's Lemma: [É. Goursat 1890] Pairs of 3d point groups + additional information
- \rightarrow 4d point groups

Freie Universität

Berlin

 The groups generated by reflections (Coxeter groups) have been enumerated up to 8 dimensions.
 [Norman Johnson, unpublished book manuscript]

umerate the groups		Generators (See	section 3	able 4.1.	The chira	al groups
Grou	$\frac{ip}{O}$ [<i>i</i> _I ,	$1], [\omega, 1], [1, i_O], [1, \omega]$]; (groups of		0 1
$\pm [I \times$	O $[i_I, [i_I]]$	1], $[\omega, 1], [1, i], [1, \omega]$;			
$\pm [I \times$	T $[i_T]$	1] $[\omega, 1], [1, e_n], [1, j]$]; O	rientation	n-preservir	າg
$\pm [I \times$	D_{2n}] $[\iota_I,$	$i_1, [\omega, -], [\nu, 1], [1, e_n];$	0	rthogonal	l transform	mations)
$\pm [I \times$	C_n]	$[1, 1], [\omega, 1], [-j, -n],$:	rtiogona		nationsj
$\pm [O \times$	T] [i_O	$, 1], [\omega, 1], [1, o], [1, \omega]$:]•	r a		
$\pm [O \times$	$[D_{2n}]$ $[i_O$	$, 1], [\omega, 1], [1, e_n], [1, J]$	(] 9 ;]	[Conwa	y and Smi	th 2003 J
$\pm \frac{1}{2}[O \times$	$[D_{2n}]$ [<i>i</i> ,	$1], [\omega, 1], [1, e_n]; [i_0, j]$	/] ₁	_		_
$\pm \frac{1}{2}[O \times$	$(\overline{D}_{4n}] \qquad [i,1],[a]$	$[\omega, 1], [1, e_n], [1, j]; [i_0]$	$,e_{2n}]$			
$\pm \frac{1}{6} [O >$	$< D_{6n}$] [i, 1], [$j,1],[1,e_{n}];[i_{O},j],[\omega$	$[,e_{3n}]$			
$\pm [O >$	$\langle C_n]$	$[i_O, 1], [\omega, 1], [1, e_n];$				
$\pm \frac{1}{2}[O > $	$\times C_{2n}$] [<i>i</i> , 1	$[], [\omega, 1], [1, e_n]; [i_O, e_n]$	$_{2n}]$			
$\pm[T:$	$\times D_{2n}$] [i,	$[1], [\omega, 1], [1, e_n], [1, j]$];			
$\pm [T]$	$\times C_n$]	$[i,1], [\omega,1], [1,e_n];$				
$\pm \frac{1}{3}[T$	$\times C_{3n}$]	$[i,1], [1,e_n]; [\omega,e_{3n}]$				
$\pm \frac{1}{2}[D_{2m}$	$\times \overline{D}_{4n}$] [e_n	$[1, 1], [1, e_n], [1, j]; [j, e_n]$	2n			
$\pm [D_{2m}$	$\times C_n$]	$[e_m, 1], [j, 1], [1, e_n];$				
$\pm \frac{1}{2}[D_{2m}$	$\times C_{2n}$]	$[e_m, 1], [1, e_n]; [j, e_{2n}]$	nie en			
$+\frac{1}{2}[D_{2m}$	$\times C_{2n}$]	· +	lor	- both m	and n must	· he odd
$\pm \frac{1}{2}[\overline{D}_{4m}]$	$(\times C_{2n}]$ [e _m	$,1],[j,1],[1,e_n];[e_{2m},$	$e_{2n}]$			
Table 4.1. Chiral gro	ups 1 Those					
4.6—some others app	bear in the last few	ost of the "metachiral" g	groups—s y of Po	int Sets	,CSA2D	Koper, June 9–13, 2013
		able 4.2.				

Freie Universität

	Generators	Coxeter Name
Group	$[i, 1] [w, 1], [1, i_I], [1, w];$	$[3, 3, 5]^+$
$\pm [I \times I]$	$[i_{I}, 1], [w, 1], [-i_{I}, i_{I}]$	$2.[3,5]^+$
$\pm \frac{1}{60}[I \times I]$	(w, w), (v, v)	$[3, 5]^+$
$+\frac{1}{60}[I \times I]$	$i \downarrow i$	$2.[3, 3, 3]^+$
$\pm \frac{1}{60}[I \times \overline{I}]$	$;[\omega,\omega],[v_1,v_1]$	$[3, 3, 3]^+$
$+\frac{1}{60}[I \times \overline{I}]$; + , +	$[3, 4, 3]^+: 2$
$\pm [O \times O]$	$[i_{O}, 1], [\omega, 1], [1, i_{O}], [1, \omega],$	$[3, 4, 3]^+$
$\pm \frac{1}{2}[O \times O]$	$[i, 1], [\omega, 1], [1, i], [1, \omega]; [io, io]$	$[3, 3, 4]^+$
$\pm \frac{1}{6}[O \times O]$	$[i, 1], [j, 1], [1, i], [1, j]; [\omega, \omega], [i_0, i_0]$	[0, 0, 4]
$\pm \frac{1}{24}[O \times O]$	$;[\omega,\omega],[i_O,i_O]$	$2 \cdot [0, 4]$
$+\frac{1}{24}[O \times O]$; + , +	[0, 4]
$+\frac{1}{24}[O \times \overline{O}]$; + , -	[2, 3, 3]
$\pm [T \times T]$	$[i,1],[\omega,1],[1,i],[1,\omega];$	[3, 4, 3]
$\pm \frac{1}{3}[T \times T]$	$[i,1],[j,1],[1,i],[1,j];[\omega,\omega]$	$[^+3, 3, 4^+]$
$\cong \pm \frac{1}{3} [T \times \overline{T}]$	$[i,1],[j,1],[1,i],[1,j];[\omega,\overline{\omega}]$	"
$\pm \frac{1}{12}[T \times T]$	$;[\omega,\omega],[i,i]$	$2.[3,3]^+$
$\cong \pm \frac{1}{12} [T \times \overline{T}]$	$;[\omega,\overline{\omega}],[i,-i]$	"
$+\frac{1}{12}[T \times T]$; + , +	$[3,3]^+$
$\cong +\frac{1}{12}[T \times \overline{T}]$; + , +	"
$\pm [D_{2m} \times D_{2n}]$	$[e_m, 1], [j, 1], [1, e_n], [1, j];$	
$\pm \frac{1}{2} [\overline{D}_{4m} \times \overline{D}_{4n}]$	$[e_m,1],[j,1],[1,e_n],[1,j];[e_{2m},e_{2n}]$	
$\pm \frac{1}{4} [D_{4m} \times \overline{D}_{4n}]$	$[e_m,1],[1,e_n];[e_{2m},j],[j,e_{2n}]$	Conditions
$+\frac{1}{4}[D_{4m} \times D_{4n}]$	- , $-$; $+$, $+$	$m,n { m odd}$
$\pm \frac{1}{2f} [D_{2mf} \times D_{2nf}^{(s)}]$	$[e_m, 1], [1, e_n]; [e_{mf}, e_{nf}^s], [j, j]$	(s,f)=1
$+\frac{1}{2f}[D_{2mf} \times D_{2nf}^{(s)}]$	- , - ; + , +	m, n odd, (s, 2f) = 1
$\pm \frac{1}{f} \begin{bmatrix} C_{mf} \times C_{nf}^{(s)} \end{bmatrix}$	$[e_m, 1], [1, e_n]; [e_{mf}, e_{nf}^s]$	(s,f)=1
$+\overline{f}[C_{mf} \times C_{nf}]$; +	m, n odd, (s, 2f) = 1

Table 4.2. The *chiral* groups (continued)

Table 4.2. Chiral groups, II. These groups are mostly "orthochiral." with a few

Freie Universität

Group	Extending element	Coxeter Name
$\pm [I \times I] \cdot 2$	A THE R. P. LEWIS	[3, 3, 5]
$\pm \frac{1}{20}[I \times I] \cdot 2$	*	2.[3, 5]
$+\frac{1}{20}[I \times I] \cdot 2_3 \text{ or } 2_1$	* or*	[3,5] or [3,5]°
$\pm \frac{1}{60} [I \times \overline{I}] \cdot 2$	5	2.[3, 3, 3]
$+\frac{1}{50}[I \times \overline{I}] \cdot 2_3 \text{ or } 2_1$	* or - *	[3,3,3]° or [3,3,3]
$\pm [O \times O] \cdot 2$	*	[3, 4, 3]: 2
$\pm \frac{1}{2}[O \times O] \cdot 2 \text{ or } \overline{2}$	* or $* [1, i_0]$	$[3, 4, 3]$ or $[3, 4, 3]^+ 2$
$\pm \frac{1}{6}[O \times O] \cdot 2$	*	[3, 3, 4]
$\pm \frac{1}{24}[O \times O] \cdot 2$	* *	2.[3, 4]
$+\frac{1}{24}[O \times O] \cdot 2_3 \text{ or } 2_1$	* or*	$[3, 4]$ or $[3, 4]^{\circ}$
$+\frac{1}{24}[O \times \overline{O}] \cdot 2_3$ or 2_1	* or*	[2,3,3]° or [2,3,3]
$\pm [T \times T] \cdot 2$	*	$[3, 4, 3^+]$
$\pm \frac{1}{3}[T \times T] \cdot 2$	al a mi s* d a iran	[+3, 3, 4]
$\pm \frac{1}{3} [T \times \overline{T}] \cdot 2$	a de la seconda de	$[3, 3, 4^+]$
$\pm \frac{1}{12} [T \times T] \cdot 2$	*	2.[+3,4]
$\pm \frac{1}{12} [T \times \overline{T}] \cdot 2$	*	2.[3, 3]
$+\frac{1}{12}[T \times T] \cdot 2_3 \text{ or } 2_1$	* or - *	[⁺ 3, 4] or [⁺ 3, 4]°
$+\frac{1}{12}[T \times \overline{T}] \cdot 2_3 \text{ or } 2_1$	* or*	[3,3]° or [3,3]
$\pm [D_{2n} \times D_{2n}] \cdot 2$	*	and the set of the sectors
$\pm \frac{1}{2} [D_{4n} \times \overline{D}_{4n}] \cdot 2 \text{ or } \overline{2}$	* or $*[1, e_{2n}]$	
$\pm \frac{1}{4} [D_{4n} \times \overline{D}_{4n}] \cdot 2$	*	Conditions
$+\frac{1}{4}[D_{4n} \times D_{4n}] \cdot 2_3 \text{ or } 2_1$	* or - *	n odd
$\frac{1}{2f} \begin{bmatrix} D_{2nf} \times D_{2nf}^{(s)} \end{bmatrix} \cdot 2^{(\alpha,\beta)} \text{ or } \overline{2}$	$*[e_{2nf}^{\alpha}, e_{2nf}^{\alpha s + \beta f}] \text{ or } *[1, j]$	See
$\frac{2f[D_{2nf} \times D_{2nf}^{(s)}] \cdot 2^{(\alpha,\beta)} \text{ or } \overline{2}}{\pm \frac{1}{2}[C_{\alpha,\beta}] \cdot 2^{(\alpha,\beta)} \text{ or } \overline{2}}$	$*[e_{2nf}^{\alpha}, e_{2nf}^{\alpha s + \beta j}] \text{ or } *[1, j]$	Text
$= \int [C_{nf} \times C_{nf}^{(s)}] \cdot 2^{(\gamma)}$ $+ \frac{1}{2} [C_{nf} \times C_{nf}^{(s)}] \cdot 2^{(\gamma)}$	$*[1, e_{2nf}^{\gamma(f,s+1)}]$	in
$f(Onf \times Onf] \cdot 2^{(1)}$	$*[1, e_{2nf}^{\prime(j, (r+1))}]$) Appendix

Table 4.3. The *achiral* groups

Table 4.3. Achiral groups.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S
$\pm \frac{1}{2} [I \times I] \cdot 2$ * 2.[3,5] I ne achiral group	S
$+\frac{1}{60}[I \times I] \cdot 2_3 \text{ or } 2_1 $ * or $-*$ [3,5] or [3,5]°	
$\pm \frac{1}{60}[I \times \overline{I}] \cdot 2$ * 2.[3, 3, 3]	
$+\frac{1}{60}[I \times \overline{I}] \cdot 2_3 \text{ or } 2_1 $ * or $-* [3,3,3]^\circ \text{ or } [3,3,3] $ • Visualize these	
$\pm [O \times O] \cdot 2$ * $[3, 4, 3] : 2$	
$\pm \frac{1}{2}[O \times O] \cdot 2 \text{ or } \overline{2}$ * or * [1, i _O] [3, 4, 3] or [3, 4, 3] ^{+·} 2 Groups:	
$\pm \frac{1}{6}[O \times O] \cdot 2$ * [3,3,4] Schlogel diagram	of o
$\pm \frac{1}{24}[O \times O] \cdot 2$ * 2.[3,4] Schleger diagram	JId
$+\frac{1}{24}[O \times O] \cdot 2_3 \text{ or } 2_1$ * or -* [3,4] or [3,4]° 4 -polytope which	has
$+\frac{1}{24}[O \times \overline{O}] \cdot 2_3 \text{ or } 2_1 $ * or $-*$ [2,3,3]° or [2,3,3] + polycope withen	nas
$\pm [T \times T] \cdot 2$ * $[3,4,3^+]$ these symmetries.	
$\pm \frac{1}{3}[T \times T] \cdot 2$ * [+3,3,4]	
$\pm \frac{1}{3} [T \times \overline{T}] \cdot 2 \qquad \qquad * \qquad [3, 3, 4^+]$	
$\pm \frac{1}{12}[T \times T] \cdot 2 $ * 2.[+3,4]	
$\pm \frac{1}{12}[T \times T] \cdot 2 $ * 2.[3,3]	
$+\frac{1}{12}[T \times T] \cdot 2_3 \text{ or } 2_1 $ * or $-*$ [+3,4] or [+3,4]°	
$+\frac{1}{12}[T \times T] \cdot 2_3 \text{ or } 2_1 $ * or $-*$ [3,3]° or [3,3]	
$\pm [D_{2n} \times D_{2n}] \cdot 2 \qquad \qquad *$	
$\begin{array}{c} \pm \frac{1}{2} [D_{4n} \times D_{4n}] \cdot 2 \text{ or } 2 \\ \pm \frac{1}{2} [D_{4n} \times \overline{D}_{4n}] \cdot 2 \text{ or } 2 \\ \end{array} \qquad \qquad$	
$+\frac{1}{4}[D_{4n} \times D_{4n}] \cdot 2 \qquad * \qquad \underbrace{Conditions}_{1}$	
$ \begin{array}{c} + 4[D_{4n} \times D_{4n}] \cdot 2_3 \text{ or } 2_1 \\ \pm \frac{1}{22}[D_{2n} \times D^{(s)}] + 2(\alpha, \beta) \\ \hline \end{array} \qquad \qquad$	
$\frac{2f(-2nf \wedge D_{2nf}) \cdot 2^{(-p)} \text{ or } 2}{\frac{1}{2} \left[D_{2nf} \times D^{(s)} \right] \cdot 2^{(\alpha,\beta)} - \overline{2}} \qquad \left[e_{2nf}^{\alpha,\beta} e_{2nf}^{\alpha,\beta} \right] \text{ or } \ast [1,j] \qquad \qquad \text{See}$	
$\pm \frac{1}{f} [C_{nf} \times C^{(s)}] \cdot 2^{(\gamma)} \qquad \qquad$	
$+\frac{1}{f} \begin{bmatrix} C_{nf} \times C_{nf}^{(s)} \end{bmatrix} \cdot 2^{(\gamma)} \qquad \qquad$	

Group	Extending element	Coxeter Name	Table 4.3.
$\pm [I \times I] \cdot 2$	1. A 1 (A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	[3, 3, 5]	
$\pm \frac{1}{50}[I \times I] \cdot 2$	*	2.[3, 5]	The <i>achiral</i> groups
$+\frac{1}{60}[I \times I] \cdot 2_3 \text{ or } 2_1$	* or *	$[3, 5]$ or $[3, 5]^{\circ}$	
$\pm \frac{1}{60}[I \times \overline{I}] \cdot 2$	*	2.[3, 3, 3]	x /
$+\frac{1}{60}[I \times \overline{I}] \cdot 2_3 \text{ or } 2_1$	* or - *	[3, 3, 3]° or [3, 3, 3]	 Visualize these
$\pm [O \times O] \cdot 2$	*	[3, 4, 3]: 2	
$\pm \frac{1}{2}[O \times O] \cdot 2 \text{ or } \overline{2}$	* or $*[1, i_0]$	$[3, 4, 3]$ or $[3, 4, 3]^+ 2$	groups:
$\pm \frac{1}{6}[O \times O] \cdot 2$	*	[3, 3, 4]	Schlogol diagram of a
$\pm \frac{1}{24}[O \times O] \cdot 2$	*	2.[3, 4]	Schleger diagraffi Or a
$+\frac{1}{24}[O \times O] \cdot 2_3 \text{ or } 2_1$	* or*	$[3, 4]$ or $[3, 4]^{\circ}$	4-nolytone which has
$+\frac{1}{24}[O \times \overline{O}] \cdot 2_3 \text{ or } 2_1$	* or *	$[2, 3, 3]^{\circ}$ or $[2, 3, 3]$	+ polytope which has
$\pm [T \times T] \cdot 2$	*	$[3, 4, 3^+]$	these symmetries.
$\pm \frac{1}{3}[T \times T] \cdot 2$	and the second parts	[+3, 3, 4]	
$\pm \frac{1}{3}[T \times \overline{T}] \cdot 2$	*	$[3, 3, 4^+]$	Then go to 5d and
$\pm \frac{1}{12} [T \times T] \cdot 2$	*	2.[+3,4]	
$\pm \frac{1}{12} [T \times T] \cdot 2$	*	2.[3, 3]	higher
$+\frac{1}{12}[T \times T] \cdot 2_3 \text{ or } 2_1$	* or - *	[⁺ 3,4] or [⁺ 3,4]°	ingliei
$+\frac{1}{12}[T \times T] \cdot 2_3 \text{ or } 2_1$	* or*	$[3,3]^{\circ}$ or $[3,3]$	
$\pm [D_{2n} \times D_{2n}] \cdot 2$	*		
$\pm \frac{1}{2} [D_{4n} \times D_{4n}] \cdot 2 \text{ or } 2$ $\pm \frac{1}{2} [D_{4n} \times \overline{D}_{4n}] \cdot 2 $	* or $* [1, e_{2n}]$		
$+\frac{1}{4}[D_{4n} \times D_{4n}] \cdot 2$ $+\frac{1}{2}[D_{4n} \times \overline{D}_{4n}] \cdot 2$	*	Conditions	
$\pm \frac{1}{24} [D_{2n} \times D_{4n}] \cdot 2_3 \text{ or } 2_1$ $\pm \frac{1}{24} [D_{2n} \times D^{(s)}] + 2(\alpha, \beta) = \overline{\alpha}$	* or - *	n odd	
$\frac{2f(-2nf)}{2nf} \sim D_{2nf} \cdot 2^{(n+p)} \text{ or } 2$ + $\frac{1}{2f} [D_{2nf} \times D^{(s)}] = 2^{(\alpha,\beta)} = \overline{2}$	$*[e_{2nf}^{\alpha}, e_{2nf}^{\alpha}]$ or $*[1, j]$	See	
$\pm \frac{1}{f} [C_{nf} \times C^{(s)}] \cdot 2^{(\gamma)} $ or 2	* $[e_{2nf}, e_{2nf}]$ or * $[1, j]$	in	
$+\frac{1}{f}[C_{nf} \times C_{nf}^{(s)}] \cdot 2^{(\gamma)}$	*[1, c_{2nf}] *[1, $e^{\gamma(f,s+1)}$]	Appendix	
nj1 ~			

