Realizing Planar Graphs as Convex Polytopes

Günter Rote
Freie Universität Berlin

General Problem Statement

GIVEN:
a combinatorial type of 3-dimensional polytope
(a 3-connected planar graph)
[+ additional data]

CONSTRUCT:
a geometric realization of the polytope
[with additional properties]

General Problem Statement

GIVEN:
a combinatorial type of 3-dimensional polytope
(a 3-connected planar graph)
[+ additional data]

CONSTRUCT:

a geometric realization of the polytope
[with additional properties]
e.g.: small integer vertex coordinates

Polytopes with Small Vertex Coordinates frie Univestite (4) Betin

Every polytope with n vertices can be realized with integer coordinates less than 148^{n}.
[Ribó, Rote, Schulz 2011, Buchin \& Schulz 2010]
Lower bounds: $\Omega\left(n^{1.5}\right)$
Better bounds for special cases:
$O\left(n^{18}\right)$ for stacked polytopes
[Demaine \& Schulz 2011]

Schlegel Diagrams

project from a center O
close enough to a face

Schlegel Diagrams

Assume a, b separate the graph G.
Choose a third vertex v. Take a plane π through a, b, v.

Assume a, b separate the graph G.
Choose a third vertex v. Take a plane π through a, b, v.

Every vertex has a monotone path to $v_{\text {max }}$ or $v_{\text {min }}$.
v has both paths.
\qquad
$G-\{a, b\}$ is connec
d-connected in d dimensions
[Balinski 1961]
[this proof: Grünbaum]

The graphs of convex three-dimensional polytopes are exactly the planar, 3-connected graphs.
We have seen " \Longrightarrow ".
Whitney's Theorem:
3-connected planar graphs have a unique face structure.
(\Longrightarrow they have a combinatorially unique plane drawing up to reflection and the choice of the outer face.)
\Longrightarrow The combinatorial structure of a 3-polytope is given by its graph.

Constructive Approaches

1. INDUCTIVE

Start with the simplest polytope and make local modifications.

[Steinitz]
[Das \& Goodrich 1995]
2. DIRECT

Obtain the polytope as the result of

- a system of equations
- an optimization problem
- an iterative procedure [Koebe-Andreyev-Thurston]
- (and existential argument)

The Realization Space

assume: origin in the interior of P.
$\left(a_{j}, b_{j}, c_{j}\right) \quad n$ vertices, m edges, f faces

The Realization Space

assume: origin in the interior of P.

$$
\left(\begin{array}{ccc}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
\ldots & & \\
x_{n} & y_{n} & z_{n} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
\cdots & & \\
a_{f} & b_{f} & c_{f}
\end{array}\right)
$$

$$
\left(a_{j}, b_{j}, c_{j}\right) \cdot\left(x_{i}, y_{i}, z_{i}\right) \begin{cases}=1, & \text { if face } j \text { contains vertex } i \\ <1, & \text { otherwise }\end{cases}
$$

The Realization Space

$$
\begin{aligned}
& \mathcal{R}^{0}=\left\{\left(\begin{array}{ccc}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
\cdots & & \\
x_{n} & y_{n} & z_{n} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
\cdots & & \\
a_{f} & b_{f} & c_{f}
\end{array}\right) \in \mathbb{R}^{(n+f) \times 3}:\right. \\
&\left(a_{j}, b_{j}, c_{j}\right) \cdot\left(x_{i}, y_{i}, z_{i}\right) \begin{cases}=1, & \text { if face } j \text { contains vertex } i \\
<1, & \text { otherwise }\end{cases}
\end{aligned}
$$

$3 n+3 f$ variables, $2 m$ equations
THEOREM: $\operatorname{dim} \mathcal{R}^{0}=3 n+3 f-2 m=m+6$. \mathcal{R}^{0} is contractible.

In 4 and higher dimensions, realization spaces can be arbitrarily complicated. [Mnëv 1988, Richter-Gebert 1996]

The Realization Space

$$
\begin{aligned}
\mathcal{R}^{0}=\{ & \left(\begin{array}{ccc}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
\cdots & & \\
x_{n} & y_{n} & z_{n} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
\cdots & & \\
a_{f} & b_{f} & c_{f}
\end{array}\right) \in \mathbb{R}^{(n+f) \times 3}: \\
& \left(a_{j}, b_{j}, c_{j}\right) \cdot\left(x_{i}, y_{i}, z_{i}\right)\left\{\begin{array}{cl}
=1, & \text { if face } j \text { contains vertex } i \\
<1, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- triangulated (simplicial) polytopes

vertices can be perturbed.
$\left(a_{j}, b_{j}, c_{j}\right)$ variables are redundant.

The Realization Space

$$
\begin{aligned}
\mathcal{R}^{0}=\{ & \left(\begin{array}{ccc}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
\cdots & & \\
x_{n} & y_{n} & z_{n} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
\cdots & & \\
a_{f} & b_{f} & c_{f}
\end{array}\right) \in \mathbb{R}^{(n+f) \times 3}: \\
& \left(a_{j}, b_{j}, c_{j}\right) \cdot\left(x_{i}, y_{i}, z_{i}\right)\left\{\begin{array}{cl}
=1, & \text { if face } j \text { contains vertex } i \\
<1, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- simple polytopes (with 3-regular graphs)

faces can be perturbed.
$\left(x_{i}, y_{i}, z_{i}\right)$ variables are redundant.

The Realization Space

Polarity: interpret $\left(a_{j}, b_{j}, c_{j}\right)$ as vertices and $\left(x_{i}, y_{i}, z_{i}\right)$ as half-spaces. \rightarrow the polar polytope: VERTICES \leftrightarrow FACES exchange roles. \rightarrow the (planar) dual graph

Inductive Constructions of Polytopes

Inductive Constructions of Polytopes

Inductive Constructions of Polytopes

an additional (triangular) face

+ apply polarity when necessary [Steinitz 1916]
Everything can be done with rational coordinates.
\rightarrow integer coordinates of size $2^{\exp (n)}$
COMBINATORIAL + GEOMETRIC arguments

Inductive Constructions of Polytopes

Das \& Goodrich [1997]: $2^{\text {poly }(n)}$ for triangulated polytopes

perform this operation on $n / 24$ independent vertices in parallel $\rightarrow O(\log n)$ rounds
Each round multiplies the number of bits by a constant factor.

Inductive Constructions of Polytopes

Das \& Goodrich [1997]: $2^{\text {poly }(n)}$ for triangulated polytopes

perform this operation on $n / 24$ independent vertices in parallel $\rightarrow O(\log n)$ rounds
Each round multiplies the number of bits by a constant factor.

Direct Constructions of Polytopes

A) construct the Schlegel diagram in the plane.

B) Lift to three dimensions.

When is a Drawing a Schlegel Diagram? frie uniestite (1) Betin

strictly convex faces!

When is a Drawing a Schlegel Diagram? frie uniestite (1) Betin

strictly convex faces!

When is a Drawing a Schlegel Diagram? Frie uniestitit (1) Betin

strictly convex faces!

When is a Drawing a Schlegel Diagram? frie uniestite (1) Betin

strictly convex faces!

Equilibrium stress: Assign a scalar $\omega_{i j}=\omega_{j i}$ to every edge $i j$.

Equilibrium stress: equilibrium at every vertex.
THEOREM: [Maxwell 1864, Whiteley 1982]
A drawing is a Schlegel diagram \Longleftrightarrow it has an equilibrium stress that is positive on each interior edge.

Tutte Embedding [1960, 1963]

1) Fix the vertices of the outer face
2) Set $\omega_{i j} \equiv 1$. Compute positions of interior vertices by ($*$)
3) Lift to three dimensions.
$(*) \sum_{j \sim i} \omega_{i j}\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right)=0 \quad \Longrightarrow \quad \mathbf{v}_{i}=\frac{\sum_{j \sim i} \omega_{i j} \mathbf{v}_{j}}{\sum_{j \sim i} \omega_{i j}}$
Every vertex \mathbf{v}_{i} is the (weighted) barycenter of its neighbors. SPIDERWEB EMBEDDING

Tutte Embedding [1960, 1963]

1) Fix the vertices of the outer face
2) Set $\omega_{i j} \equiv 1$. Compute positions of interior vertices by $(*)$
3) Lift to three dimensions.
$(*) \sum_{j \sim i} \omega_{i j}\left(\mathbf{v}_{j}-\mathbf{v}_{i}\right)=0 \quad \Longrightarrow \quad \mathbf{v}_{i}=\frac{\sum_{j \sim i} \omega_{i j} \mathbf{v}_{j}}{\sum_{j \sim i} \omega_{i j}}$
Every vertex \mathbf{v}_{i} is the (weighted) barycenter of its neighbors. SPIDERWEB EMBEDDING

If the outer face is a triangle, equilibrium at interior vertices is enough.

Tutte Embedding [1960, 1963]

Coefficient matrix (for $\omega \equiv 1$) = the Laplacian Λ

negative adjacency matrix
$\mathbf{v}_{i}=\binom{x_{i}}{y_{i}} \quad x_{i}, y_{i}=\frac{\operatorname{det}(\cdot)}{\operatorname{det} \Lambda}$

Tutte Embedding [1960, 1963]

Coefficient matrix (for $\omega \equiv 1$) = the Laplacian Λ

negative adjacency matrix
$\mathbf{v}_{i}=\binom{x_{i}}{y_{i}} \quad x_{i}, y_{i}=\frac{\operatorname{det}(\cdot)}{\operatorname{det} \Lambda^{\prime}} \quad \begin{aligned} & \operatorname{det} \Lambda^{\prime}=\text { the number of } \\ & \text { (certain) spanning forests }<6^{n}\end{aligned}$
common denominator $<6^{n} \Longrightarrow \ldots$ all coordinates $<$ const n.

Easy bound on spanning trees

$$
\# T \leq \prod_{v=1}^{n} d_{v} \quad \text { (product of the degrees) }
$$

follows from the Hadamard bound for the determinant of positive semidefinite matrices.
For planar graphs: $\# T \leq \prod_{v=1}^{n} d_{v} \leq\left(\sum_{v=1}^{n} d_{v} / n\right)^{n}<\widehat{6^{n}}$

$$
\# T \leq \prod_{v=1}^{n} d_{v} \cdot \frac{1}{2 m}\left(1+\frac{1}{n-1}\right)^{n-1} \leq \prod_{v=1}^{n} d_{v} \cdot \frac{e}{2 m}
$$

for graphs with m edges
[Grone, Merris 1988]

The Outgoing Edge Method

Pick a root r

The Outgoing Edge Method

Pick a root r
Select an arbitrary outgoing edge for each vertex $v \neq r$.

$$
\# \text { choices }=\prod_{v \neq r} d_{v}
$$

The Outgoing Edge Method

Pick a root r
Select an arbitrary outgoing edge for each vertex $v \neq r$.

$$
\# \text { choices }=\prod_{v \neq r} d_{v}
$$

The Outgoing Edge Method

Pick a root r
Select an arbitrary outgoing edge for each vertex $v \neq r$.

$$
\# \text { choices }=\prod_{v \neq r} d_{v}
$$

The Outgoing Edge Method

Pick a root r
Select an arbitrary outgoing edge for each vertex $v \neq r$.

$$
\# \text { choices }=\prod_{v \neq r} d_{v}
$$

Every spanning tree arises once as a rooted directed spanning tree

$$
\# T \leq \prod_{v \neq r} d_{v}
$$

The Outgoing Edge Method

Pick a root r
Select an arbitrary outgoing edge for each vertex $v \neq r$.

$$
\# \text { choices }=\prod_{v \neq r} d_{v}
$$

Every spanning tree arises once as a rooted directed spanning tree

$$
\# T \leq \prod_{v \neq r} d_{v}
$$

The Outgoing Edge Method

Pick a root r
Select an arbitrary outgoing edge for each vertex $v \neq r$.

$$
\# \text { choices }=\prod_{v \neq r} d_{v}
$$

Every spanning tree arises once as a rooted directed spanning tree

$$
\# T \leq \prod_{v \neq r} d_{v}<6^{n}
$$

The Outgoing Edge Method

Pick a root r
Select an arbitrary outgoing edge for each vertex $v \neq r$.

$$
\# \text { choices }=\prod_{v \neq r} d_{v}
$$

$\# T \leq O\left(5.29^{n}\right)$

Every spanning tree arises once as a rooted directed spanning tree

$$
\# T \leq \prod_{v \neq r} d_{v}<6^{n}
$$

Tutte Embedding [1960, 1963]

If the outer face is NOT a triangle, equilibrium at interior vertices is NOT enough.

Tutte Embedding [1960, 1963]

If the outer face is NOT a triangle, equilibrium at interior vertices is NOT enough.

Tutte Embedding [1960, 1963]

If the outer face is NOT a triangle, equilibrium at interior vertices is NOT enough.

Lower Bounds

Every n-gon with integer vertices needs area $\Omega\left(n^{3}\right)$.
[Andrews 1961, Voss \& Klette 1982, Thiele 1991,
Acketa \& Žunić 1995, Jarník 1929]
\Longrightarrow side length $\geq \Omega\left(n^{1.5}\right)$

For comparison:
Strictly convex drawings of 3-connected planar graphs on an $O\left(n^{2}\right) \times O\left(n^{2}\right)$ grid.
[Bárány \& Rote 2006]

Example: the Dodecahedron

Algorithm gives

$$
z \leq 1.11 \times 10^{25}
$$

(general bound $\approx 10^{47}$)
remove common factors
$\Longrightarrow \quad 0 \leq x_{i} \leq 1374$
$0 \leq y_{i} \leq 898$
$0 \leq z_{i} \leq 406.497$

Example: the Dodecahedron

Algorithm gives

$$
z \leq 1.11 \times 10^{25}
$$

(general bound $\approx 10^{47}$)
remove common factors
$\Longrightarrow \quad 0 \leq x_{i} \leq 1374$
$0 \leq y_{i} \leq 898$
$0 \leq z_{i} \leq 406.497$

Example: the Dodecahedron

Algorithm gives

the pyritohedron

$$
12 \times 12 \times 12
$$

Example: the Dodecahedron

the pyritohedron

$$
12 \times 12 \times 12
$$

by Francisco Santos

$$
6 \times 4 \times 8
$$

Stacked Polytopes (Planar 3-Trees)

Start with K_{4}
Repeatedly insert a new degree-3 vertex into a face.

Stacked Polytopes (Planar 3-Trees)

Start with K_{4}
Repeatedly insert a new degree-3 vertex into a face.

Stacked Polytopes (Planar 3-Trees)

Start with K_{4}
Repeatedly insert a new degree-3 vertex into a face.

Stacked Polytopes (Planar 3-Trees)

Start with K_{4}
Repeatedly insert a new degree-3 vertex into a face.

Stacked Polytopes (Planar 3-Trees)

Start with K_{4}
Repeatedly insert a new degree-3 vertex into a face.

Stacked Polytopes (Planar 3-Trees)

Start with K_{4}
Repeatedly insert a new degree-3 vertex into a face.

A stacked polytope with n vertices can be realized on an $O\left(n^{4}\right) \times O\left(n^{4}\right) \times O\left(n^{18}\right)$ grid. [Demaine \& Schulz 2011]

Main idea: Recursive bottom-up procedure.
Choose appropriate areas for the planar drawing. Then lift each vertex high enough.

OPEN:
Can every (triangulated) polytope be realized on a polynomial-size grid?

Stacked Polytopes (Planar 3-Trees)

Start with K_{4}
Repeatedly insert a new degree-3 vertex into a face.

A stacked polytope with n vertices can be realized on an $O\left(n^{4}\right) \times O\left(n^{4}\right) \times O\left(n^{18}\right)$ grid. \quad [Demaine \& Schulz 2011]

Main idea: Recursive bottom-up procedure.
Choose appropriate areas for the planar drawing. Then lift each vertex high enough.

OPEN:
Can every (triangulated) polytope be realized on a polynomial-size grid?

Circle Packings

Circle Packings

Stereographic Projection

Every 3-polytope can be realized with edges tangent to the unit sphere.
unique up to Möbius transformations.

Stereographic Projection

Every 3-polytope can be realized with edges tangent to the unit sphere.
unique up to Möbius transformations.

In addition: barycenter of vertices lies at the sphere center.
[Schramm 1992 (?)]
\rightarrow polytope becomes unique up to reflection.

Extensions of Steinitz' Theorem

- specify the shape of a face [Barnette \& Grünbaum 1969]
- choose the edges on the shadow boundary [Barnette 1970]
- respect all symmetries of the graph
[Mani 1971]
[follows also from Schramm 1992]
- specify the x-coordinates of vertices (under restrictions)
- with all edge lengths integer?
- specify face areas and directions (but not the graph)
[Minkowski 1897]
- specify the metric on the surface (but not the graph)

Extensions of Steinitz' Theorem

Specifying the x-coordinates of vertices:

- There must be only one local minimum and one local maximum of x-coordinates.

$$
\left(\sum_{j \sim i} \omega_{i j}\right) \cdot \mathbf{v}_{i}=\sum_{j \sim i} \omega_{i j} \mathbf{v}_{j}
$$

IDEA: Use this equation to compute some ω 's for given x-coordinates. [Chrobak, Goodrich, Tamassia 1996] see also [A. Schulz, GD 2009]

A polytope with given x-coordinates exists if

- adjacent vertices have distinct x-coordinates, and
- the minimum and the maximum are incident to a common triangle.
OPEN: Can the last constraint be removed?

