

## Realizing Planar Graphs as Convex Polytopes

#### Günter Rote Freie Universität Berlin



#### General Problem Statement





#### GIVEN:

a combinatorial type of 3-dimensional polytope (a 3-connected planar graph)

[ + additional data ]



#### CONSTRUCT: a geometric realization of the polytope

#### [ with additional properties ]

#### General Problem Statement





#### GIVEN:

a combinatorial type of3-dimensional polytope(a 3-connected planar graph)

[ + additional data ]

CONSTRUCT: a geometric realization of the polytope

[ with additional properties ]

e.g.: *small integer vertex coordinates* 

Polytopes with Small Vertex Coordinates Freie Universität

Every polytope with n vertices can be realized with integer coordinates less than  $148^n$ .

[Ribó, Rote, Schulz 2011, Buchin & Schulz 2010]

Lower bounds:  $\Omega(n^{1.5})$ 

Better bounds for special cases:  $O(n^{18})$  for *stacked polytopes* 

[ Demaine & Schulz 2011 ]

#### Schlegel Diagrams





## project from a center ${\cal O}$ close enough to a face

#### Schlegel Diagrams





## project from a center ${\cal O}$ close enough to a face

a Schlegel diagram:a planar graph withconvex faces

#### 3-Connectivity

Freie Universität

Assume a, b separate the graph G. Choose a third vertex v. Take a plane  $\pi$  through a, b, v.



#### 3-Connectivity

Assume a, b separate the graph G. Choose a third vertex v. Take a plane  $\pi$  through a, b, v.



Every vertex has a monotone path to  $v_{\rm max}$  or  $v_{\rm min}$ .

Freie Universität

Berlin

 $\boldsymbol{v}$  has both paths.

 $G - \{a, b\}$  is connec

d-connected in d dimensions [ Balinski 1961 ] [ this proof: Grünbaum ]

#### The Theorem of Steinitz (1916)



The graphs of convex three-dimensional polytopes are exactly the *planar*, *3-connected* graphs. We have seen " $\implies$ ".

Whitney's Theorem:

3-connected planar graphs have a unique face structure.

 $(\implies$  they have a combinatorially unique plane drawing up to *reflection* and the choice of the *outer* face.)

 $\implies$  The combinatorial structure of a 3-polytope is given by its graph.



#### 1. INDUCTIVE

Start with the simplest polytope and make local modifications.



[ Steinitz ]

[ Das & Goodrich 1995 ]

#### 2. DIRECT

Obtain the polytope as the result of

- a system of equations
- an optimization problem
- an iterative procedure
- (and existential argument)

[Tutte]

[Koebe-Andreyev-Thurston]



assume: origin in the interior of P.

n vertices, m edges, f faces





assume: origin in the interior of P. n vertices, m edges, f faces



$$(a_j, b_j, c_j) \cdot (x_i, y_i, z_i) \begin{cases} = 1, & \text{if face } j \text{ contains vertex } i \\ < 1, & \text{otherwise} \end{cases}$$

 $\mathcal{R}^{0} = \left\{ \begin{pmatrix} x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ \dots & & \\ x_{n} & y_{n} & z_{n} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ \dots & & \\ a_{f} & b_{f} & c_{f} \end{pmatrix} \in \mathbb{R}^{(n+f)\times3} :$   $(a_{j}, b_{j}, c_{j}) \cdot (x_{i}, y_{i}, z_{i}) \begin{cases} = 1, & \text{if face } j \text{ contains vertex } i \\ < 1, & \text{otherwise} \end{cases}$ 

3n + 3f variables, 2m equations THEOREM: dim  $\mathcal{R}^0 = 3n + 3f - 2m = m + 6$ .  $\mathcal{R}^0$  is contractible.

In 4 and higher dimensions, realization spaces can be arbitrarily complicated. [Mnëv 1988, Richter-Gebert 1996]

Günter Rote, Freie Universität Berlin

Freie Universität

🖉 Berlin

 $\mathcal{R}^{0} = \left\{ \begin{pmatrix} x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ \dots & & \\ x_{n} & y_{n} & z_{n} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ \dots & & \\ a_{f} & b_{f} & c_{f} \end{pmatrix} \in \mathbb{R}^{(n+f)\times3} :$   $(a_{j}, b_{j}, c_{j}) \cdot (x_{i}, y_{i}, z_{i}) \begin{cases} = 1, & \text{if face } j \text{ contains vertex } i \\ < 1, & \text{otherwise} \end{cases}$ 

• triangulated (simplicial) polytopes



vertices can be perturbed.  $(a_j, b_j, c_j)$  variables are redundant.

Freie Universität

🛿 Berlin

 $\mathcal{R}^{0} = \left\{ \begin{pmatrix} x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ \dots & & \\ x_{n} & y_{n} & z_{n} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ \dots & & \\ a_{f} & b_{f} & c_{f} \end{pmatrix} \in \mathbb{R}^{(n+f)\times3} :$   $(a_{j}, b_{j}, c_{j}) \cdot (x_{i}, y_{i}, z_{i}) \begin{cases} = 1, & \text{if face } j \text{ contains vertex } i \\ < 1, & \text{otherwise} \end{cases}$ 

• simple polytopes (with 3-regular graphs)



faces can be perturbed.  $(x_i, y_i, z_i)$  variables are redundant.

Freie Universität

🖗 Berlin

 $\mathcal{R}^{0} = \left\{ \begin{pmatrix} x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ \dots & & \\ x_{n} & y_{n} & z_{n} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ \dots & & \\ a_{f} & b_{f} & c_{f} \end{pmatrix} \in \mathbb{R}^{(n+f)\times3} :$   $(a_{j}, b_{j}, c_{j}) \cdot (x_{i}, y_{i}, z_{i}) \begin{cases} = 1, & \text{if face } j \text{ contains vertex } i \\ < 1, & \text{otherwise} \end{cases}$ 

Polarity: interpret  $(a_j, b_j, c_j)$  as vertices and  $(x_i, y_i, z_i)$  as half-spaces.  $\rightarrow$  the polar polytope: VERTICES  $\leftrightarrow$  FACES exchange roles.  $\rightarrow$  the (planar) dual graph

Freie Universität

Berlin













an additional (triangular) face

+ apply polarity when necessary [ Steinitz 1916 ]

Everything can be done with rational coordinates.  $\rightarrow$  integer coordinates of size  $2^{\exp(n)}$ 

#### COMBINATORIAL + GEOMETRIC arguments

Das & Goodrich [1997]:  $2^{poly(n)}$  for *triangulated* polytopes



perform this operation on n/24 independent vertices in parallel

 $\rightarrow O(\log n)$  rounds Each round multiplies the number of bits by a constant factor.

Freie Universität

Berlin



perform this operation on n/24 independent vertices in parallel

 $\rightarrow O(\log n)$  rounds Each round multiplies the number of bits by a constant factor.

Freie Universität

Berlin

#### **Direct Constructions of Polytopes**





A) construct the Schlegel diagram in the plane.

B) *Lift* to three dimensions.

#### When is a Drawing a Schlegel Diagram? Freie Universität



strictly convex faces!



#### When is a Drawing a Schlegel Diagram? Freie Universität



strictly convex faces!



#### When is a Drawing a Schlegel Diagram? Freie Universität



strictly convex faces!





# When is a Drawing a Schlegel Diagram? Freie Universität Berlin strictly convex faces! 1 2

#### The Maxwell-Cremona Correspondence Freie Universität

Equilibrium stress: Assign a scalar  $\omega_{ij} = \omega_{ji}$  to every edge ij.



Equilibrium stress: equilibrium at every vertex.

THEOREM: [Maxwell 1864, Whiteley 1982] A drawing is a Schlegel diagram  $\iff$  it has an equilibrium stress that is positive on each interior edge.

🖗 Berlin

1) Fix the vertices of the outer face

2) Set  $\omega_{ij} \equiv 1$ . Compute positions of interior vertices by (\*) 3) Lift to three dimensions.

(\*) 
$$\sum_{j \sim i} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i) = 0 \implies \mathbf{v}_i = \frac{\sum_{j \sim i} \omega_{ij} \mathbf{v}_j}{\sum_{j \sim i} \omega_{ij}}$$

Every vertex  $\mathbf{v}_i$  is the (weighted) barycenter of its neighbors. SPIDERWEB EMBEDDING

Freie Universität

Berlin

1) Fix the vertices of the outer face

2) Set  $\omega_{ij} \equiv 1$ . Compute positions of interior vertices by (\*) 3) Lift to three dimensions.

(\*) 
$$\sum_{j \sim i} \omega_{ij} (\mathbf{v}_j - \mathbf{v}_i) = 0 \implies \mathbf{v}_i = \frac{\sum_{j \sim i} \omega_{ij} \mathbf{v}_j}{\sum_{j \sim i} \omega_{ij}}$$

Every vertex  $\mathbf{v}_i$  is the (weighted) barycenter of its neighbors. SPIDERWEB EMBEDDING

If the outer face is a triangle, equilibrium at *interior* vertices is enough.

Freie Universität

Berlin



Coefficient matrix (for  $\omega \equiv 1$ ) = the Laplacian  $\Lambda$ 



negative adjacency matrix

$$\mathbf{v}_i = \begin{pmatrix} x_i \\ y_i \end{pmatrix} \quad x_i, y_i = \frac{\det(\cdot)}{\det \Lambda}$$



Coefficient matrix (for  $\omega \equiv 1$ ) = the Laplacian  $\Lambda$ 



$$\mathbf{v}_i = \begin{pmatrix} x_i \\ y_i \end{pmatrix} \quad x_i, y_i = \frac{\det(\cdot)}{\det \Lambda'} \quad \det \Lambda' = \text{the number of}$$
(certain) spanning forests < 6<sup>n</sup>

common denominator  $< 6^n \implies \ldots$  all coordinates  $< \text{const}^n$ .

$$\#T \leq \prod_{v=1}^{n} d_{v} \qquad \text{(product of the degrees)}$$

follows from the Hadamard bound for the determinant of positive semidefinite matrices.

For planar graphs: 
$$\#T \leq \prod_{v=1}^{n} d_v \leq \left(\sum_{v=1}^{n} d_v / n\right)^n < 6^n$$
  
 $\#T \leq \prod_{v=1}^{n} d_v \cdot \frac{1}{2m} (1 + \frac{1}{n-1})^{n-1} \leq \prod_{v=1}^{n} d_v \cdot \frac{e}{2m}$   
for graphs with  $m$  edges [Grone, Merris 1988]

Freie Universität

 $\boldsymbol{n}$ 

Berlin





#### Pick a root r





Pick a root r

Select an arbitrary outgoing edge for each vertex  $v \neq r$ .

$$\# \text{choices} = \prod_{v \neq r} d_v$$





Pick a root r

Select an arbitrary outgoing edge for each vertex  $v \neq r$ .

$$\# \text{choices} = \prod_{v \neq r} d_v$$





Pick a root r

Select an arbitrary outgoing edge for each vertex  $v \neq r$ .

$$\# \text{choices} = \prod_{v \neq r} d_v$$



Pick a root r

Select an arbitrary outgoing edge for each vertex  $v \neq r$ .

$$\# \text{choices} = \prod_{v \neq r} d_v$$



Freie Universität

🖗 Berlin

Every spanning tree arises once as a rooted directed spanning tree





Pick a root r

Select an arbitrary outgoing edge for each vertex  $v \neq r$ .

$$\# \text{choices} = \prod_{v \neq r} d_v$$



Every spanning tree arises once as a rooted directed spanning tree





Pick a root r

Select an arbitrary outgoing edge for each vertex  $v \neq r$ .

$$\# \text{choices} = \prod_{v \neq r} d_v$$



Every spanning tree arises once as a rooted directed spanning tree

$$\#T \le \prod_{v \ne r} d_v < 6^n$$



Pick a root r

Select an arbitrary outgoing edge for each vertex  $v \neq r$ .

$$\# \text{choices} = \prod_{v \neq r} d_v$$

 $\#T \le O(5.29^n)$ 



Freie Universität

Berlin

Every spanning tree arises once as a rooted directed spanning tree

$$\#T \le \prod_{v \ne r} d_v < 6^n$$

[K. Buchin & A. Schulz 2010]



If the outer face is NOT a triangle, equilibrium at *interior* vertices is NOT enough.



If the outer face is NOT a triangle, equilibrium at *interior* vertices is NOT enough.

Solution 1) Realize the polar polytope instead! (Either the graph or its dual contains a triangle face.)  $\leq n^{169n^3}$  [ Onn & Sturmfels 1994 ]  $< 2^{18n^2}$ [Richter-Gebert 1996]



Freie Universität

If the outer face is NOT a triangle, equilibrium at *interior* vertices is NOT enough.

Solution Characteristic Characterist

Solution 2)

Choose the outer face carefully. For the case of 4-gons and 5-gons, have to analyze the resulting stresses on the outer face.

 $< 188^n$  [Ribó, Rote, Schulz 2011]  $< 148^n$  [Buchin & Schulz 2010,
by better bound on spanning trees]

#### Lower Bounds



Every *n*-gon with integer vertices needs area  $\Omega(n^3)$ . [ Andrews 1961, Voss & Klette 1982, Thiele 1991, Acketa & Žunić 1995, Jarník 1929 ]

 $\implies$  side length  $\ge \Omega(n^{1.5})$ 

For comparison:

Strictly convex drawings of 3-connected planar graphs on an  $O(n^2) \times O(n^2)$  grid. [Bárány & Rote 2006]



Algorithm gives

 $z \le 1.11 \times 10^{25}$ 

Freie Universität

Berlin

(general bound  $\approx 10^{47}$ )

remove common factors  $\implies 0 \le x_i \le 1374$   $0 \le y_i \le 898$   $0 \le z_i \le 406.497$ 





Algorithm gives  $z \le 1.11 \times 10^{25}$ (general bound  $\approx 10^{47}$ ) remove common factors  $\implies 0 \le x_i \le 1374$  $0 \le y_i \le 898$  $0 < z_i < 406.497$ 



Freie Universität

🖗 Berlin





## the pyritohedron $12 \times 12 \times 12$



























Start with  $K_4$ Repeatedly insert a new degree-3 vertex into a face.



A stacked polytope with n vertices can be realized on an  $O(n^4) \times O(n^4) \times O(n^{18})$  grid. [Demaine & Schulz 2011]

Main idea: Recursive bottom-up procedure. Choose appropriate *areas* for the planar drawing. Then lift each vertex high enough.

OPEN: Can every (triangulated) polytope be realized on a polynomial-size grid?



Start with  $K_4$ Repeatedly insert a new degree-3 vertex into a face.



A stacked polytope with n vertices can be realized on an  $O(n^4) \times O(n^4) \times O(n^{18})$  grid. [Demaine & Schulz 2011]

Main idea: Recursive bottom-up procedure. Choose appropriate *areas* for the planar drawing. Then lift each vertex high enough.

OPEN: Can every (triangulated) polytope be realized on a polynomial-size grid?

#### **Circle Packings**





## The Koebe–Andreyev–Thurston Circle Packing Theorem (1936):

#### **Circle Packings**





The Koebe–Andreyev–Thurston Circle Packing Theorem (1936):

Every planar graph can be realized as a point contact graph of circular disks.

Simultaneously also the dual graph.

#### Stereographic Projection







Every 3-polytope can be realized with edges tangent to the unit sphere.

unique up to Möbius transformations.



Every 3-polytope can be realized with edges tangent to the unit sphere.

unique up to Möbius transformations.

In addition: barycenter of vertices lies at the sphere center. [ Schramm 1992 (?) ]

 $\rightarrow$  polytope becomes unique up to reflection.

#### Extensions of Steinitz' Theorem

- specify the shape of a face [Barnette & Grünbaum 1969]
- choose the edges on the shadow boundary [Barnette 1970]
- respect *all* symmetries of the graph [Mani 1971] [follows also from Schramm 1992]
- specify the *x*-coordinates of vertices (under restrictions)
- with all edge lengths integer? [OPEN]
- specify face areas and directions (but *not* the graph)
   [Minkowski 1897]
- specify the metric on the surface (but *not* the graph)

[Alexandrov 1936]





Extensions of Steinitz' Theorem



Specifying the *x*-coordinates of vertices:

• There must be only one local minimum and one local maximum of *x*-coordinates.

$$\left(\sum_{j\sim i}\omega_{ij}\right)\cdot\mathbf{v}_i=\sum_{j\sim i}\omega_{ij}\mathbf{v}_j$$

IDEA: Use this equation to compute some  $\omega$ 's for given *x*-coordinates. [ Chrobak, Goodrich, Tamassia 1996 ] see also [ A. Schulz, GD 2009 ]

A polytope with given x-coordinates exists if

- $\bullet\,$  adjacent vertices have distinct  $x\text{-coordinates, and}\,$
- the minimum and the maximum are incident to a common triangle.
   PEN: Can the last constraint be removed?

#### OPEN: Can the last constraint be removed?