Realization of Three-Dimensional Polytopes

Günter Rote

Freie Universität Berlin, Institut für Informatik

joint work with
Ares Ribó Mor and André Schulz

Graphs of polytopes
The graph of a 3-polytope is 3-connected.
(Removing 2 vertices does not disconnert the graph.)

The intersection of two faces is an edge, a vertex, or empty.

Graphs of polytopes
The graph of a 3-polytope is 3-conmected.
(Removing 2 vertices does not disconnert the graph.)

The intersection of two faces is an edge, a vertex, or empty.

Theorem (Steinitz)
Every 3-connected planar graph is the graph of a 3-polytope.

GIVEN:

a combinatorial type of 3-polytope (convex) (=a 3-connected planar graph)
[tadditional data]
"CONSTRUCT:"

a geometric realization of the polytope.

Polytope construction

GIVEN a combinatorial type of convex 3-polytope FIND a geometric realization with ...
... certain properties

Polytope construction

GIVEN a combinatorial type of convex 3-polytope FIND a geometric realization with certain properties

Two approaches:

1. inductive: start with the simplest polytopes and make local modifications

2. direct: obtain the polytope as a result of

- a system of equations
- an optimization problem
- an existential proof

Polytope construction

GIVEN a combinatorial type of convex 3-polytope FIND a geometric realization with ...
... small integer vertex coordinates
Two approaches:

1. inductive: • Steinitz (1922): coordinates $\leq 2^{\exp (n)}$

- Das \& Goodrich (1997): coordinates $\leq 2^{\text {poly }(n)}$ for triangulated polytopes

2. direct: obtain the polytope as a result of

- a system of equations $\leftarrow \bullet$ Onn,Sturmfels('94): $\leq n^{169 n^{3}}$
- an optimization problem. Richter-Gebert('96): $\leq 2^{20 n^{2}}$
- an existential proof \bullet Ribó, Rote, Schulz (2008): $\leq 2^{8 n}$

Polytope construction

GIVEN a combinatorial type of convex 3-polytope FIND a geometric realization with ...
... all vertices on the unit sphere (an inscribed polytope)
Two approaches: (cf. Delaunay triangulation)

1. inductive:
2. direct: obtain the polytope as a result of

- a system of equations
- an optimization problem
- an existential proof Rivin, Hodgson, Smith (1993): test inscribability in polynomial time

Polytope construction

GIVEN a combinatorial type of convex 3-polytope
FIND a geometric realization with ...
... all edges tangent to the unit sphere
Two approaches:

1. inductive:
(a midscribed polytope)
(cf. circle packings)
2. direct: obtain the polytope as a result of

- a system of equations - Thurston's algorithm,
- an optimization problem
- an existential proof Y. Colin de Verdière

Koebe-Andreyev-Thurston Theorem

Polytope construction

GIVEN a-combinatorial type of convex 3-polytope
FIND a geometric realization with ...
... these face areas and face normals
Two approaches:

1. inductive:
2. direct: obtain the polytope as a result of

- a system of equations
- an optimization problem Minkowski (~1897)
- an existential proof

Polytope construction

.

GIVEN a-combinatorial type of convex 3-polytope (a net)
FIND a geometric realization with ...

Two approaches:

1. inductive:

2. direct: obtain the polytope as a result of

- a system of equations Sabitov (1990)
- an optimization problem Bobenko \& Izmestiev (2008)
- an existential proof Alexandrov (~1930)

Polytope construction

GIVEN a combinatorial type of convex 3-polytope FIND a geometric realization with ...
... all edge lengths rational
Two approaches:

1. inductive:
2. direct: obtain the polytope as a result of

- a system of equations
- an optimization problem
- an existential proof

Tutte embedding

> Tutte embedding (spiderweb embedding, equilibrium embedding)

All edges are springs with elasticity constant $\omega_{i j}=\omega_{j i}=1$, obeying Hooke's law.
inner vertices are in equilibrium
\rightarrow drawing is planar.
Tutte (1961)
fix boundary vertices $\vec{p}_{1}, \vec{p}_{2}, \ldots, \vec{p}_{k}$

Tutte embedding

Lifting to 3 -space (Maxwell-Cremona correspondence)

Tutte embedding

Lifting to 3 -space (Maxwell-Cremona correspondence)

Tutte embedding

Lifting to 3 -space (Maxwell-Cremona correspondence)

Maxwell-Cremona correspondencerfeie unimesitiat 9 Betin

 between...- 3-dimensional polytopes

- equilibrium stresses in the plane projection

Maxwell (1864), Whiteley (1982)

Equilibrium

For every i: $\quad \sum_{j \sim i} \omega_{i j}\left(\vec{p}_{j}-\vec{p}_{i}\right)=0 \quad\left(\sum_{j \sim i} \omega_{i j}\right) \vec{p}_{i}=\sum_{j \sim i}\left(\omega_{i j} \cdot \vec{p}_{j}\right)$ $\vec{p}_{i}=\binom{x_{i}}{y_{i}} \ldots$ two separate systems for x_{i} and for y_{i}

$$
\begin{aligned}
& \text { (weighted) } \\
& \text { Laplacian matrix } L=\left(\begin{array}{ccc}
0 & 0-w_{i j} \\
0 & & 0 \\
-w_{i j} & &
\end{array}\right) .
\end{aligned}
$$

$$
\ell_{i i}=\sum_{j \sim i} w_{i j}
$$

remove rows (equations) and columns (variables) corresponding to boundary vertices $\vec{p}_{1}, \vec{p}_{2}, \ldots, \vec{p}_{k}$

$$
\begin{aligned}
& I\binom{x_{1}}{x_{n}}=\left(\begin{array}{l}
\vdots \\
\vdots \\
\overline{y_{1}} \\
\vdots \\
y_{n}
\end{array}\right)=\binom{\vdots}{\vdots}
\end{aligned}
$$

Equilibrium

Forevery i: $\quad \sum_{j \sim i} w_{i j}\left(\vec{p}_{j}-\vec{p}_{i}\right)=0$

$$
\left(\sum_{j \sim i} w_{i j}\right) \vec{p}_{i}=\sum_{j \sim i}\left(w_{i j} \cdot \vec{p}_{j}\right)
$$

$\overrightarrow{p_{i}}=\binom{x_{i}}{y_{i}} \ldots$ two separate systems for x_{i} and for y_{i}
(weighted)
Laplacian matrix $L=$
unweighted $L=-$ (adjacency matrix) with degrees d_{i} on the main diagonal

$$
L=\left(\begin{array}{ccccccc}
3 & -1 & -1 & -1 & 0 & 0 & 0 \\
-1 & 3 & -1 & 0 & -1 & 0 & 0 \\
-1 & -1 & 4 & 0 & 0 & -1 & -1 \\
-1 & 0 & 0 & 3 & -1 & 0 & -1 \\
0 & -1 & 0 & -1 & 3 & -1 & 0 \\
0 & 0 & -1 & 0 & -1 & 3 & -1 \\
0 & 0 & -1 & -1 & 0 & -1 & 3
\end{array}\right) \text { vertex degree } d_{i}
$$

Spanning trees

$$
\begin{aligned}
& L\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\binom{\vdots}{\vdots} \\
& x_{i} \text { or } y_{i}=\frac{D_{i}}{\operatorname{det} \bar{L}}
\end{aligned}
$$

scaling by det \bar{L} gives integer coordinates $\left(x_{i}, y_{i}\right)$
Maxwell-Cremona correspondence gives integer coordinates z_{i}
$\operatorname{det} \bar{L}=$ number of tree-like structures
$<$ number of spanning trees

Easy bound on spanning trees

$$
\# T \leq \prod_{v=1}^{n} d_{v} \quad \text { (product of the degrees) }
$$

follows from the Hadamard bound for the determinant of positive semidefinite matrices.
For planar graphs: $\left.\# T \leq \prod_{v=1}^{n} d_{v} \leq\left(\sum_{v=1}^{n} d_{v} / n\right)^{n}<6^{n}\right)$

$$
\# T \leq \prod_{v=1}^{n} d_{v} \cdot \frac{1}{2 m}\left(1+\frac{1}{n-1}\right)^{n-1} \leq \prod_{v=1}^{n} d_{v} \cdot \frac{e}{2 m}
$$

for graphs with m edges
[Grone, Merris 1988]

The Outgoing Edge Method

Pick a root r

The Outgoing Edge Method

Pick a root r
Select an arbitrary outgoing edge for each vertex $v \neq r$.

$$
\# \text { choices }=\prod_{v \neq r} d_{v}
$$

The Outgoing Edge Method

Pick a root r
Select an arbitrary outgoing edge for each vertex $v \neq r$.

$$
\# \text { choices }=\prod_{v \neq r} d_{v}
$$

The Outgoing Edge Method

Pick a root r
Select an arbitrary outgoing edge for each vertex $v \neq r$.

$$
\# \text { choices }=\prod_{v \neq r} d_{v}
$$

The Outgoing Edge Method

Pick a root r
Select an arbitrary outgoing edge for each vertex $v \neq r$.

$$
\# \text { choices }=\prod_{v \neq r} d_{v}
$$

Every spanning tree arises once as a rooted directed spanning tree

$$
\# T \leq \prod_{v \neq r} d_{v}
$$

The Outgoing Edge Method

Pick a root r
Select an arbitrary outgoing edge for each vertex $v \neq r$.

$$
\# \text { choices }=\prod_{v \neq r} d_{v}
$$

Every spanning tree arises once as a rooted directed spanning tree

$$
\# T \leq \prod_{v \neq r} d_{v}
$$

The Outgoing Edge Method

Pick a root r
Select an arbitrary outgoing edge for each vertex $v \neq r$.

$$
\# \text { choices }=\prod_{v \neq r} d_{v}
$$

Every spanning tree arises once as a rooted directed spanning tree

$$
\# T \leq \prod_{v \neq r} d_{v}<6^{n}
$$

General bound for planar graphs

W.I.o.g., the graph is triangulated.

The dual graph has $n^{*}=2 n-3$ vertices and the same number \#T of spanning trees.

It is 3-regular, and therefore

$$
\# T \leq \frac{2 \log _{3} n^{*}}{3 \cdot n^{*}}\left(\frac{4}{\sqrt{3}}\right)^{n^{*}} \leq\left(\frac{16}{3}\right)^{n}=5.333 \ldots{ }^{n}
$$

[B. McKay 1983, Chung and Yao 1999, for k-regular graphs]

\#spanning trees of planar graphs freie uniesestat 4 Beetin

can have at most can have
planar graphs with n vertices... 5.333 ... ${ }^{n}$
5.029^{n}

\qquad without Δ and \square 2.848^{n}
... spanning trees.

3.209^{n}
— without triangles
3.530^{n}
[There are recent improvements by K. Buchin and A. Schulz.]

Triangular outer face

Take $\quad \vec{p}_{1}=\binom{0}{0} \quad \vec{p}_{2}=\binom{1}{0} \quad \overrightarrow{p_{3}}=\binom{1}{0}$

$$
\rightarrow A l l \quad x_{i}, y_{i}=\frac{D_{i}}{D}
$$

Multiply everything by D

\rightarrow integer coordinates in the range [O..D]

Triangular outer face
Take $\quad \overrightarrow{p_{1}}=\binom{0}{0} \quad \overrightarrow{p_{2}}=\binom{1}{0} \quad \overrightarrow{p_{3}}=\binom{1}{0}$
\rightarrow All $x_{i}, y_{i}=\frac{D_{i}}{D}$
Multiply everything by D
\rightarrow integer coordinates in the range [O..D]
Maxwell-Cremona lifting:
gradient of "boundary" faces bounded by $n . D$
$\rightarrow P$ contained in

$$
\rightarrow z_{i} \in\left[-n D^{2} \cdot \frac{1}{3} \ldots 0\right]
$$

Triangular outer face

Take $\overrightarrow{p_{1}}=\binom{0}{0} \quad \overrightarrow{p_{2}}=\binom{1}{0} \quad \overrightarrow{p_{3}}=\binom{1}{0}$
\rightarrow All $x_{i}, y_{i}=\frac{D_{i}}{D}$
Multiply everything by D
\rightarrow integer coordinates in the range $[O . . D]$
Maxwell-Cremona lifting:

gradient of "boundary" faces bounded by $n . D$
$\rightarrow P$ contained in

$$
\rightarrow z_{i} \in\left[-n D^{2} \cdot \frac{1}{3} . .0\right]
$$

THEOREM: A 3-polytope which contains a triangle can be realized with integer vertex coordinates $\left(x_{i}, y_{i}, z_{i}\right)$ with

$$
0 \leq x_{i}, y_{i} \leq\left(\frac{16}{3}\right)^{n}
$$

$$
0 \leq z_{i} \leq 2 n\left(\frac{16}{3}\right)^{2 n}
$$

[Richter-Gebert 1996]
(no triangle $\rightarrow P$ has a 3-valent vertex use polarity: P^{*} has a triangle
move origin into interior
face $a x+b y+c z=1 \rightarrow \operatorname{vertex}\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$
a, b, c is the solution of

$$
\begin{aligned}
& \quad \begin{array}{l}
a, b, c \text { is the } \\
\\
\\
\\
\\
\\
\\
a x_{1}+b y_{2}+b y_{2}+c z_{1}=1
\end{array} \quad\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right),\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right),\left(\begin{array}{l}
x_{3} \\
y_{3} \\
z_{3}
\end{array}\right) \text { vertices } \begin{array}{l}
\text { of } p^{*} \\
a=\frac{A}{D} \quad b=\frac{B}{D}, c=\frac{C}{D} \quad|A|,|B|,|c|,|D| \leqslant \sqrt{27} \cdot \max \left\{x_{i}, y_{1}, z_{i}\right\}^{3}
\end{array} .
\end{aligned}
$$

Gives vertices of $P \quad \vec{P}_{i}=\left(\frac{A_{i}}{D_{i}}, \frac{B_{i}}{D_{i}}, \frac{C_{i}}{D_{i}}\right)$ multiply by $\prod_{i=1}^{n} D_{i} \rightarrow$ integer coordinates

A 3-polytope can be realized with integer coordinates at most $\left(\sqrt{27}\left(n .42^{n}\right)^{3}\right)^{n+1}$

$$
\leq 2^{20 n^{2}}
$$

[[Richter-Gebert 1996]

- If the graph contains a quadrilateral face:

NOT EVERY CHOICE OF $\vec{p}_{1}, \overrightarrow{p_{2}}, \overrightarrow{p_{3}}, \overrightarrow{p_{4}}$ LEADS TO AN EQUILIBRIUM WITH $\omega_{i j} \equiv 1$ FOR INTERIOR EDGES.

- If the graph contains a quadrilateral face:

NOT EVERY CHOICE OF $\vec{p}_{1}, \overrightarrow{p_{2}}, \overrightarrow{p_{3}}, \overrightarrow{p_{4}}$ LEADS TO AN EQUILIBRIUM WITH $\omega_{i j} \equiv 1$ FOR INTERIOR EDGES.

The force pulling at \vec{p}_{1} is a linear function of $\vec{p}_{2}-\overrightarrow{p_{1}}, \overrightarrow{p_{3}}-\overrightarrow{p_{1}}, \overrightarrow{p_{4}}-\overrightarrow{p_{1}}$.

can be modeled as a complete graph with 4 vertices and stresses $\bar{w}_{i j}$.

The Substitution Lemma:
There are $\bar{\omega}_{i j}, 1 \leq i<j \leq 4$, such that for all $\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}, \vec{p}_{4}$, the resulting forces in G on $\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}, \vec{p}_{4}$ are the same as in the sustitution graph \bar{G} on the four vertices $\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}, \vec{p}_{4}$ only.

How to place $\vec{p}_{1}, \overrightarrow{p_{2}}, \vec{p}_{3}, \vec{p}_{4}$?
$\bar{w}_{12}, \bar{w}_{23}, \bar{w}_{34}, \bar{w}_{41}$ can be controlled by modifying $w_{12}, w_{23}, w_{34}, w_{41}$.
Only $\overline{w_{13}}$ and \bar{w}_{24} matter!
W.L.o.g. $\vec{p}_{1}=\binom{0}{0} \overrightarrow{p_{2}}=\binom{1}{0} \overrightarrow{p_{4}}=\binom{0}{1} \quad$ (affine transformation $\vec{p}_{3}=\binom{x_{3}}{y_{3}}$: Equilibrium can be obtained if

$$
\frac{\overline{w_{13}}}{\overline{w_{24}}} \cdot x_{3} y_{3}-x_{3}-y_{3}+1=0
$$

4 boundary vertices

ensure $\bar{w}_{13} \geq \bar{w}_{24}$ (w.l.o.g.)

$$
x_{3}=2, \quad y_{3}=\frac{\bar{\omega}_{24}}{2 \bar{\omega}_{13}-\bar{\omega}_{24}}
$$

5 boundary vertices

- P contains a 5 -face
- compute

$$
\bar{w}_{13}, \bar{w}_{24}, \bar{w}_{35}, \bar{w}_{14}, \bar{w}_{25}
$$

5 boundary vertices

2 cases (depending on $\bar{\omega}$'s):

$$
x_{5}=\frac{\left(\bar{\omega}_{13}-\bar{\omega}_{25}-\bar{\omega}_{24}\right)\left(\bar{\omega}_{35}+\bar{\omega}_{13}-\bar{\omega}_{24}\right)}{\bar{\omega}_{35} \bar{\omega}_{14}+\bar{\omega}_{14} \bar{\omega}_{25}+\bar{\omega}_{25} \bar{\omega}_{24}+\bar{\omega}_{13} \bar{\omega}_{35}-\bar{\omega}_{35} \bar{\omega}_{25}}
$$

$$
y_{5}=\frac{\bar{\omega}_{35}+\bar{\omega}_{13}-\bar{\omega}_{24}}{\bar{\omega}_{35}+\bar{\omega}_{25}}
$$

Putting everything together

Every 3-connected planar graphs has a triangle, a quadrilateral, or a pentagon.

Theorem (Ribó Mor, Rote, Schulz).
Every 3-polytope with n vertices can be embedded with coordinates $0 \leq x_{i} \leq 9^{n}, 0 \leq y_{i} \leq 24^{n}, 0 \leq z_{i} \leq 188^{n}$.

Algorithm gives

$$
z \leq 1.11 \times 10^{25}
$$

(general bound $\approx 10^{47}$)
remove common factors
$\Longrightarrow \quad 0 \leq x_{i} \leq 1374$
$0 \leq y_{i} \leq 898$
$0 \leq z_{i} \leq 406.497$
$\checkmark \leftarrow$ in a $4 \times 24 \times 28$ box
(done by hand)

Algorithm gives

Lower bounds
Klatte (1982)
Acketa and Z̈unić (1995)
Thiele (1991)
[Jarnik 1922]
An n-gon needs an integer grid of side Length

$$
\frac{2 \pi}{12^{3 / 2}} \cdot n^{3 / 2}+O(n \log n)
$$

Andrews (1961, 1963) Fleiner, Kaibel, Rote (1999)
Any d-polytope with n vertices/facets needs an integer grid of side length at least

$$
\underbrace{n^{\frac{d+1}{d(\alpha-1)}} \cdot \frac{e}{2} \cdot \frac{1}{d} \underbrace{(1+\sigma(1))}_{\text {as } \alpha \rightarrow \infty}}_{\text {tight for fixed } d}
$$

(Bárány and Larman, 1998<super>):
take the convex hull of the integer points. in a sphere of appropriate radius.

Various constructions

Zickfeld (2007):
Certain classes of stacked polytopes need only a polynomial-size grid.

Bárány and Rote (2006):
Strictly convex drawings on an $O\left(n^{2}\right) \times O\left(n^{2}\right)$ grid.
Fixing the planar projection and then minimizing z is not a good idea.

Other uses of Tutte embeddings freie univesititu Q Perin
Pach and Tóth (2002):
Monotone drawings of planar graphs (by induction and case analysis)

Chrobak, Goodrich, and Tamassia (1996):
Polytopes with given x-coordinates (for example, $1,2,3, \ldots$).
Ribó (2006):
\rightarrow perturbation of self-touching linkages

Inductive method (Das\&Goodrich) gieuminesitat (3) Berin

for triangulated polytopes.
Find a large independent set of degree ≤ 8.
Contract an incident edge for each vertex (in parallel), maintaining 3-connectivity.
\rightarrow linear-time algorithm, fast parallel algorithm
$O(\log n)$ rounds; in each round the bit-size is multiplied by a constant factor.
\rightarrow bit-size $=\operatorname{poly}(n)$

