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Graphs of polytopes
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Graphs of polytopes

Theorem (Steinitz)

Every 3-connected
planar graph is the
graph of a 3-polytope.
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Polytope construction
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Polytope construction

GIVEN a combinatorial type of convex 3-polytope
FIND a geometric realization with . . .
. . . certain properties
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Polytope construction

GIVEN a combinatorial type of convex 3-polytope
FIND a geometric realization with . . .

Two approaches:
1. inductive:

2. direct: obtain the polytope as a result of

– a system of equations
– an optimization problem
– an existential proof

start with the
simplest polytopes and make
local modifications

. . . certain properties
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Polytope construction

GIVEN a combinatorial type of convex 3-polytope
FIND a geometric realization with . . .

Two approaches:
1. inductive:

2. direct: obtain the polytope as a result of

– a system of equations
– an optimization problem
– an existential proof

. . . small integer vertex coordinates

• Steinitz (1922): coordinates ≤ 2exp(n)

• Das & Goodrich (1997): coordinates
≤ 2poly(n) for triangulated polytopes

• Onn,Sturmfels(’94): ≤ n169n3

• Richter-Gebert(’96): ≤ 220n2

• Ribó, Rote, Schulz (2008): ≤ 28n
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Polytope construction

GIVEN a combinatorial type of convex 3-polytope
FIND a geometric realization with . . .

Two approaches:
1. inductive:

2. direct: obtain the polytope as a result of

– a system of equations
– an optimization problem
– an existential proof

. . . all vertices on the unit sphere (an inscribed polytope)

(cf. Delaunay triangulation)

Rivin, Hodgson, Smith (1993):
test inscribability in polynomial time
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Polytope construction

GIVEN a combinatorial type of convex 3-polytope
FIND a geometric realization with . . .

Two approaches:
1. inductive:

2. direct: obtain the polytope as a result of

– a system of equations
– an optimization problem
– an existential proof

. . . all edges tangent to the unit sphere
(a midscribed polytope)

Thurston’s algorithm,
Brightwell & Scheinerman

(cf. circle packings)

Y. Colin de Verdière

Koebe-Andreyev-Thurston Theorem
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Polytope construction

GIVEN a combinatorial type of convex 3-polytope
FIND a geometric realization with . . .

Two approaches:
1. inductive:

2. direct: obtain the polytope as a result of

– a system of equations
– an optimization problem
– an existential proof

. . . these face areas and face normals

Minkowski (˜1897)

face normals and face areas
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Polytope construction

GIVEN a combinatorial type of convex 3-polytope
FIND a geometric realization with . . .

Two approaches:
1. inductive:

2. direct: obtain the polytope as a result of

– a system of equations
– an optimization problem
– an existential proof

Bobenko & Izmestiev (2008)

metric on the surface
(a net)

Alexandrov (˜1930)

Sabitov (1990)
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Polytope construction

GIVEN a combinatorial type of convex 3-polytope
FIND a geometric realization with . . .

Two approaches:
1. inductive:

2. direct: obtain the polytope as a result of

– a system of equations
– an optimization problem
– an existential proof

. . . all edge lengths rational

OPEN
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Tutte embedding

Tutte embedding
(spiderweb embedding,
equilibrium embedding)

fix boundary vertices ~p1, ~p2, . . . , ~pk

All edges are springs with
elasticity constant ωij = ωji = 1,
obeying Hooke’s law.

inner vertices are in equilibrium

Tutte (1961)

→ drawing is planar.
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Tutte embedding

x

y

Lifting to 3-space
(Maxwell–Cremona
correspondence)
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Tutte embedding

z

x

y

Lifting to 3-space
(Maxwell–Cremona
correspondence)
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Tutte embedding

z

x

y

Lifting to 3-space
(Maxwell–Cremona
correspondence)
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Maxwell-Cremona correspondence

• 3-dimensional polytopes

• equilibrium stresses in the
plane projection

between . . .

Maxwell (1864), Whiteley (1982)

liftingprojection
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Equilibrium

~pi

~pj
ωij

remove rows (equations) and
columns (variables) corresponding
to boundary vertices ~p1, ~p2, . . . , ~pk

(weighted)
Laplacian matrix
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Equilibrium

~pi

~pj
ωij

(weighted)
Laplacian matrix
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Spanning trees

xi or yi =
Di

det L̄

det L̄ = number of tree-like structures
< number of spanning trees

scaling by det L̄ gives integer coordinates (xi, yi)

Maxwell-Cremona correspondence gives integer coordi-
nates zi
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Easy bound on spanning trees

#T ≤
n∏

v=1

dv (product of the degrees)

follows from the Hadamard bound for the determinant of
positive semidefinite matrices.

#T ≤
n∏

v=1

dv ·
1

2m
(1 + 1

n−1 )n−1 ≤
n∏

v=1

dv ·
e

2m

for graphs with m edges [Grone, Merris 1988]

For planar graphs: #T ≤
n∏

v=1

dv ≤

(
n∑

v=1

dv

/
n

)n

< 6n
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The Outgoing Edge Method

Pick a root r

r



Günter Rote, Institut für Informatik, Freie Universität Berlin Realization of three-dimensional polytopes, June 16, 2009

The Outgoing Edge Method

Pick a root r

Select an arbitrary outgoing
edge for each vertex v 6= r.

r

#choices =
∏
v 6=r

dv
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The Outgoing Edge Method

Pick a root r

Select an arbitrary outgoing
edge for each vertex v 6= r.

r
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∏
v 6=r

dv
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The Outgoing Edge Method
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The Outgoing Edge Method

Pick a root r

Select an arbitrary outgoing
edge for each vertex v 6= r.

r

#choices =
∏
v 6=r

dv

Every spanning tree

arises once as a rooted
directed spanning tree

#T ≤
∏
v 6=r

dv

r
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The Outgoing Edge Method

Pick a root r

Select an arbitrary outgoing
edge for each vertex v 6= r.

r

#choices =
∏
v 6=r

dv

Every spanning tree

arises once as a rooted
directed spanning tree

#T ≤
∏
v 6=r

dv

r

< 6n
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General bound for planar graphs

W.l.o.g., the graph is triangulated.

The dual graph has n∗ = 2n − 3 vertices and the same
number #T of spanning trees.

It is 3-regular, and therefore

#T ≤ 2 log3 n∗

3 · n∗

(
4√
3

)n∗

≤
(

16
3

)n

= 5.333 . . .n

[B. McKay 1983, Chung and Yao 1999, for k-regular graphs]
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#spanning trees of planar graphs

planar graphs
with n vertices . . .

without triangles

without ∆ and �

can havecan have at most

5.029n

3.209n

2.561n

5.333 . . .n

3.530n

2.848n

. . . spanning trees.

[There are recent improvements by K. Buchin and A. Schulz.]
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Triangular outer face
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Triangular outer face

Maxwell-Cremona lifting:
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Triangular outer face

Maxwell-Cremona lifting:

0 ≤ xi, yi ≤ ( 16
3 )n

0 ≤ zi ≤ 2n( 16
3 )2n
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No triangular outer face
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4 boundary vertices
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4 boundary vertices
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4 boundary vertices

The Substitution Lemma:

There are ω̄ij , 1 ≤ i < j ≤ 4, such that for all
~p1, ~p2, ~p3, ~p4, the resulting forces in G on ~p1, ~p2, ~p3, ~p4

are the same as in the sustitution graph Ḡ on the four
vertices ~p1, ~p2, ~p3, ~p4 only.

G Ḡ
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4 boundary vertices

How to place ~p1, ~p2, ~p3, ~p4?
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4 boundary vertices

x3 = 2, y3 =
ω̄24

2ω̄13 − ω̄24
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5 boundary vertices
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5 boundary vertices

p1 p2

p3p4

p5

p1

p2

p3

p4

p5

x5 =
(ω̄13 − ω̄25 − ω̄24)(ω̄35 + ω̄13 − ω̄24)

ω̄35ω̄14 + ω̄14ω̄25 + ω̄25ω̄24 + ω̄13ω̄35 − ω̄35ω̄25

y5 =
ω̄35 + ω̄13 − ω̄24

ω̄35 + ω̄25

2 cases (depending on ω̄’s):
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Putting everything together

Every 3-connected planar graphs has a triangle, a
quadrilateral, or a pentagon.

Theorem (Ribó Mor, Rote, Schulz).
Every 3-polytope with n vertices can be embedded with
coordinates 0 ≤ xi ≤ 9n, 0 ≤ yi ≤ 24n, 0 ≤ zi ≤ 188n.



Günter Rote, Institut für Informatik, Freie Universität Berlin Realization of three-dimensional polytopes, June 16, 2009

The dodecahedron

Algorithm gives

z ≤ 1.11× 1025

(general bound ≈ 1047)

remove common factors
=⇒ 0 ≤ xi ≤ 1374

0 ≤ yi ≤ 898
0 ≤ zi ≤ 406.497

← in a 4× 24× 28 box
(done by hand)
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The dodecahedron

Algorithm gives

z ≤ 1.11× 1025

(general bound ≈ 1047)

remove common factors
=⇒ 0 ≤ xi ≤ 1374

0 ≤ yi ≤ 898
0 ≤ zi ≤ 406.497

← in a 4× 24× 28 box
(done by hand)
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Lower bounds

Klatte (1982)
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Lower bounds

d = 3: Ω(n4/3)
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Various constructions

Zickfeld (2007):
Certain classes of stacked polytopes need only a
polynomial-size grid.

Bárány and Rote (2006):
Strictly convex drawings on an O(n2)×O(n2) grid.

Fixing the planar projection and then minimizing z is
not a good idea.
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Other uses of Tutte embeddings

Pach and Tóth (2002):
Monotone drawings of planar graphs (by induction and
case analysis)

Chrobak, Goodrich, and Tamassia (1996):
Polytopes with given x-coordinates (for example,
1, 2, 3, . . .).

Ribó (2006):
→ perturbation of self-touching linkages
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Inductive method (Das&Goodrich)

for triangulated polytopes.

Find a large independent set of degree ≤ 8.
Contract an incident edge for each vertex (in parallel),
maintaining 3-connectivity.
→ linear-time algorithm, fast parallel algorithm

O(log n) rounds; in each round the bit-size is multiplied
by a constant factor.
→ bit-size = poly(n)


