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Outline

1. Motivation: ray shooting

2. Pseudotriangulations: definitions and properties

3. Rigidity, Laman graphs

4. Rigidity: kinematics of linkages

5. Liftings of pseudotriangulations to 3 dimensions
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1. Motivation: Ray Shooting in a Simple Polygon
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1. Motivation: Ray Shooting in a Simple Polygon

Walking in a triangulation:

Walk to starting point. Then walk along the ray.

O(n) steps in the worst case.
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Triangulations of a convex polygon
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Triangulations of a simple polygon
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An edge crosses O(log n)
pseudotriangles.

[Chazelle, Edelsbrunner, Grigni, Guibas, Hershberger, Sharir, Snoeyink 1994]
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Triangulations of a simple polygon

1

2

3

4

5

6

7

8

9

10

11

12

balanced triangulation:

An edge crosses O(log n)
triangles.

1

2

3

4

5

6

7

8

9

10
11

12

pseudotriangle

tail

corner

balanced geodesic triangulation:

An edge crosses O(log n)
pseudotriangles.

[Chazelle, Edelsbrunner, Grigni, Guibas, Hershberger, Sharir, Snoeyink 1994]
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Going through a single pseudotriangle

balanced binary tree for

each pseudo-edge:

→ O(log n) time per

pseudotriangle

→ O(log2 n) time total
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Going through a single pseudotriangle
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→ O(log2 n) time total

weighted binary tree:

→ O(log n) time total
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2. Pseudotriangulations:
Basic definitions and properties
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Pointed Vertices

A pointed vertex is incident to an angle > 180◦ (a reflex angle

or big angle).

A straight-line graph is pointed if all vertices are pointed.
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Pointed Vertices

A pointed vertex is incident to an angle > 180◦ (a reflex angle

or big angle).

A straight-line graph is pointed if all vertices are pointed.

Where do pointed vertices arise?
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Geodesic shortest paths

Shortest path (with given homotopy) turns only at pointed

vertices. Addition of shortest path edges leaves intermediate

vertices pointed.

→ geodesic triangulations of a simple polygon

[Chazelle, Edelsbrunner, Grigni, Guibas, Hershberger, Sharir, Snoeyink ’94]
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Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed

vertices.

A pseudotriangulation is a maximal (with respect to ⊆) set of

non-crossing edges with all vertices in Vp pointed.
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Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed

vertices.

A pseudotriangulation is a maximal (with respect to ⊆) set of

non-crossing edges with all vertices in Vp pointed.
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Pseudotriangles

A pseudotriangle has three convex corners and an arbitrary

number of reflex vertices (> 180◦).
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Pseudotriangulations
Given: A set V of vertices, a subset Vp ⊆ V of pointed
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non-crossing edges with all vertices in Vp pointed.
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Pseudotriangulations
Given: A set V of vertices, a subset Vp ⊆ V of pointed

vertices.

(1) A pseudotriangulation is a maximal (w.r.t. ⊆) set E of

non-crossing edges with all vertices in Vp pointed.

(2) A pseudotriangulation is a partition of a convex polygon

into pseudotriangles.

Proof. (2) =⇒ (1) No edge can be added inside a

pseudotriangle without creating a nonpointed vertex.

Proof. (1) =⇒ (2) All convex hull edges are in E.

→ decomposition of the polygon into faces.

Need to show: If a face is not a pseudotriangle, then one can

add an edge without creating a nonpointed vertex.
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Characterization of pseudotriangulations

Lemma. If a face is not a pseudotriangle, then one can add

an edge without creating a nonpointed vertex.
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Characterization of pseudotriangulations

Lemma. If a face is not a pseudotriangle, then one can add

an edge without creating a nonpointed vertex.

Go from a convex vertex along the boundary to the third

convex vertex. Take the shortest path.
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Characterization of pseudotriangulations
continued

A new edge is always added, unless the face is already a

pseudotriangle (without inner obstacles).

[Rote, C. A. Wang, L. Wang, Xu 2003]
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Flipping of Edges

Any interior edge can be flipped against another edge. That

edge is unique.

before after
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Any interior edge can be flipped against another edge. That

edge is unique.

before after

The flip graph is connected.

Its diameter is O(n log n). [Bespamyatnikh 2003]
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Flipping of Edges

Any interior edge can be flipped against another edge. That

edge is unique.

before after

The flip graph is connected.

Its diameter is O(n log n). [Bespamyatnikh 2003]

BETTER THAN TRIANGULATIONS!
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Flipping

Every pseudoquadrangle has precisely two diagonals, which

cut it into two pseudotriangles.

[Proof. Every tangent ray can be continued to a geodesic

path running along the boundary to a corner, in a unique way.]
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Vertex and face counts

Lemma. A pseudotriangulation with x nonpointed and y

pointed vertices has e = 3x + 2y − 3 edges and 2x + y − 2
pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has

e = 2n− 3 edges and n− 2 pseudotriangles.
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Vertex and face counts

Lemma. A pseudotriangulation with x nonpointed and y

pointed vertices has e = 3x + 2y − 3 edges and 2x + y − 2
pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has

e = 2n− 3 edges and n− 2 pseudotriangles.

Proof. A k-gon pseudotriangle has k − 3 large angles.∑
t∈T

(kt − 3) + kouter = y∑
t
kt + kouter︸ ︷︷ ︸
2e

−3|T | = y

e + 2 = (|T |+ 1) + (x + y) (Euler)
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Vertex and face counts

Lemma. A pseudotriangulation with x nonpointed and y

pointed vertices has e = 3x + 2y − 3 edges and 2x + y − 2
pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has

e = 2n− 3 edges and n− 2 pseudotriangles.
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Vertex and face counts

Lemma. A pseudotriangulation with x nonpointed and y

pointed vertices has e = 3x + 2y − 3 edges and 2x + y − 2
pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has

e = 2n− 3 edges and n− 2 pseudotriangles.

BETTER THAN TRIANGULATIONS!

Corollary. A non-crossing pointed graph with n ≥ 2 vertices

has at most 2n− 3 edges.
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Pseudotriangulations/Geodesic Triangulations

Applications:

• kinetics of bar frameworks, robot motion planning, the

“Carpenter’s Rule Problem” [ Streinu 2000 ]

• data structures for ray shooting [Chazelle, Edelsbrunner, Grigni,

Guibas, Hershberger, Sharir, and Snoeyink 1994] and visibility

[Pocchiola and Vegter 1996]

• kinetic collision detection [Agarwal, Basch, Erickson, Guibas,

Hershberger, Zhang 1999–2001] [Kirkpatrick, Snoeyink, and Speckmann

2000] [Kirkpatrick & Speckmann 2002]

• . . .
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Pseudotriangulations/Geodesic Triangulations

Applications (continued):

• art gallery problems [Pocchiola and Vegter 1996b],

[Speckmann and Tóth 2001]

• locally convex surfaces, reflex-free hull

[ Aichholzer, Aurenhammer, Krasser, Braß 2003 ]

• pseudotriangulations on the sphere, smooth counterexample

surface to a conjecture of A. D. Alexandrov [G. Panina 2005]
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3. RIGIDITY, PLANAR LAMAN GRAPHS

What are the graphs of pseudotriangulations?

• planar

• 2n− 3 edges

• . . . ?
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Infinitesimal motions — rigid frameworks

A framework is a set of movable joints (vertices) connected

by rigid bars (edges) of fixed length.

n points p1, . . . , pn.

1. (global) motion pi = pi(t), t ≥ 0
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Infinitesimal motions — rigid frameworks

A framework is a set of movable joints (vertices) connected

by rigid bars (edges) of fixed length.

n points p1, . . . , pn.

1. (global) motion pi = pi(t), t ≥ 0

2. infinitesimal motion (local motion)

vi =
d

dt
pi(t) = ṗi(0)

velocity vectors v1, . . . , vn.

3. constraints:

|pi(t)− pj(t)| is constant for every edge (bar) ij.
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Expansion

1
2 ·

d

dt
|pi(t)− pj(t)|2 = 〈vi − vj, pi − pj〉

vi · (pj − pi)
|pj − pi|

vj · (pj − pi)
|pj − pi|

pj − pi

vi

pjpi

vj

expansion (or strain) of the segment ij
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Infinitesimally rigid frameworks

A framework is infinitesimally rigid if the system of equations

〈vi − vj, pi − pj〉 = 0, for all edges ij

in the vector variables v1, . . . , vn has only the trivial solutions:

translations and rotations of the framework as a whole.
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Infinitesimally rigid frameworks

A framework is infinitesimally rigid if the system of equations

〈vi − vj, pi − pj〉 = 0, for all edges ij

in the vector variables v1, . . . , vn has only the trivial solutions:

translations and rotations of the framework as a whole.

[ Alternative: pin an edge ij by setting vi = vj = 0.

=⇒ only (0, 0, . . . , 0) is a trivial solution. ]
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Rigid frameworks

An infinitesimally rigid framework is rigid.

This framework is rigid, but not infinitesimally rigid:
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Generically rigid frameworks

A given graph can be rigid in most embeddings, but it may

have special non-rigid embeddings:

A graph is generically rigid if it is infinitesimally rigid in almost

all embeddings.

This is a combinatorial property of the graph.
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Minimally rigid frameworks

Theorem. A graph with n vertices is minimally rigid in the

plane (with respect to ⊆) iff it has the Laman property :

• It has 2n− 3 edges.

• Every subset of k ≥ 2 vertices spans at most 2k − 3 edges.

n = 10, e = 17n = 6, e = 9

[Laman 1961]
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A pointed pseudotriangulation
is a Laman graph

Proof: Every subset of k ≥ 2 vertices is pointed and has

therefore at most 2k − 3 edges.

[Streinu 2001]
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Every planar Laman graph is a pointed
pseudotriangulation

Theorem. Every planar Laman graph has a realization as a

pointed pseudotriangulation. The outer face can be chosen

arbitrarily.

[Haas, Rote, Santos, B. Servatius, H. Servatius, Streinu, Whiteley 2003]
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Every planar Laman graph is a pointed
pseudotriangulation

Theorem. Every planar Laman graph has a realization as a

pointed pseudotriangulation. The outer face can be chosen

arbitrarily.

[Haas, Rote, Santos, B. Servatius, H. Servatius, Streinu, Whiteley 2003]

Proof I: Induction, using Henneberg constructions

Proof II: via Tutte embeddings for directed graphs

Theorem. Every rigid planar graph has a realization as a

pseudotriangulation (not necessarily pointed).

[Orden, Santos, B. Servatius, H. Servatius 2003]
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Henneberg constructions

Type I Type II

Every Laman graph can be built up by a sequence of Henneberg

construction steps, starting from a single edge.
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Proof I: Henneberg constructions
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4. RIGIDITY AND KINEMATICS
Unfolding of polygons — expansive motions

The Carpenter’s Rule Problem:

Theorem. Every polygonal arc in the plane can be brought

into straight position, without self-overlap.

Every polygon in the plane can be unfolded into convex

position. [Connelly, Demaine, Rote 2000], [Streinu 2000]
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4. RIGIDITY AND KINEMATICS
Unfolding of polygons — expansive motions

The Carpenter’s Rule Problem:

Theorem. Every polygonal arc in the plane can be brought

into straight position, without self-overlap.

Every polygon in the plane can be unfolded into convex

position. [Connelly, Demaine, Rote 2000], [Streinu 2000]

Proof outline:

1. Find an expansive infinitesimal motion.

2. Find a global motion.
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Expansive Motions

No distance between any pair of vertices decreases.

Expansive motions cannot lead to self-crossings.
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Expansive Motions

No distance between any pair of vertices decreases.

Expansive motions cannot lead to self-crossings.

. . . need to show that an expansive motion exists . . .
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Every Polygon has an Expansive Motion

Proof I: (Outline)

Existence of an expansive motion

m (duality)

Self-stresses (rigidity)

Self-stresses on planar frameworks

m (Maxwell-Cremona correspondence)

polyhedral terrains

[ Connelly, Demaine, Rote 2000 ]

Proof II: via pseudotriangulations and the Pseudotriangulation

Polytope

[ Streinu 2000 ] [ Rote, Santos, Streinu 2003 ]
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Expansive motions exist

Pseudotriangulations with one convex hull edge removed yield

expansive mechanisms. [Streinu 2000]

(There are in general rigid substructures.)
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Expansive motions for a chain
(or a polygon)

• Add edges to form a pseudotriangulation

• Remove a convex hull edge

• → expansive mechanism 2

Theorem. Every polygonal arc in the plane can be brought

into straight position, without self-overlap.

Every polygon in the plane can be unfolded into convex

position.

[Connelly, Demaine, Rote 2000], [Streinu 2000]
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5. LIFTINGS OF PSEUDOTRIANGULATIONS
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Locally convex liftings — the reflex-free hull

flat

nearly reflex

reflex

saddle
nearly convex

convex

an approach for recognizing pockets in biomolecules

[Ahn, Cheng, Cheong, Snoeyink 2002]
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Locally convex surfaces

A function over a polygonal domain P is locally convex if it is

convex on every segment in P .
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Locally convex surfaces

A function over a polygonal domain P is locally convex if it is

convex on every segment in P .
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Locally convex functions on a polygon

Given a polygon P and a height value hi for all vertices plus

some additional points pi in the polygon, find the highest

locally convex function f : P → R with f(pi) ≤ hi.

If P is convex, this is the lower convex hull of the three-

dimensional point set (pi, hi).

In general, the result is a piecewise linear function defined

on a pseudotriangulation of (P, S). (Interior vertices may be

missing.)

→ regular pseudotriangulations

[Aichholzer, Aurenhammer, Braß, Krasser 2003]

This can be extended to 3-polytopes.

[Aurenhammer, Krasser 2005]
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OPEN QUESTIONS

• Pseudotriangulations in 3-space?

(Rigid graphs are not well-understood in 3-space.)

• How many pseudotriangulations does a point set have?

• Can every pseudotriangulation be (re)drawn on a

polynomial-size grid?
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TNPUT A NO TNPUT
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