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Unfolding of polygons

Theorem. Every polygonal arc in the plane can be
brought into straight position, without self-overlap.

Every polygon in the plane can be unfolded into convex
position.



Infinitesimal Motion

n vertices pi, ..., Pn.

1. (global) motion p; = p;(t), t > 0



Infinitesimal Motion

n vertices pi, ..., Pn.
1. (global) motion p; = p;(t), t > 0

2. infinitesimal motion (local motion)

d

Velocity vectors vy, ..., v,.



Expansion

' —\pi(t) - pj(t)‘2 — <Ui — U5y Di — pj> =+ XDy

— —
v; - (pj - pz') vy - (pj — pi)

expansion (or strain) exp;; of the segment ij



The Rigidity Map

M : (vla s ,Un) — (eXpZ])@JGE
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The rigidity matrix:
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Expansive Motions

exp;; = 0 for all bars ij

(preservation of length)
exp;; > 0 for all other pairs (struts) ij
(expansiveness)
[ exp;; > 0 ]

(strict expansiveness)



Expansive motions cannot overlap




Proof Outline

1. Prove that expansive motions exist.

2. Select an expansive motion and provide a global motion.



Proof Outline

1. Prove that expansive motions exist. [ 2 PROOFS |

2. Select an expansive motion and provide a global motion.



Proof Outline

Existence of an expansive motion

U (duality)

Self-stresses (rigidity)
Self-stresses on planar frameworks

I (Maxwell-Cremona correspondence)

polyhedral terrains
[ Connelly, Demaine, Rote 2000 |



The Expansion Cone

The set of expansive motions forms a convex polyhedral
cone Xy in R?", defined by homogeneous linear equations
and inequalities of the form

<Ui — Vjy,Pi — pj>

VoIV
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Bars, Struts, Frameworks, Stresses

Assign a stress w;; = wj; € R to each edge.

Equilibrium of forces in vertex i:

> wiilpj—pi) =0
j

wi; < 0 for struts: Struts can only push.
w;; € R for bars: Bars can push or pull.
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Motions and Stresses

Linear Programming duality:

There is a strictly expansive motion if and only if there is
NO NON-zero stress.

Zw@-j(pj—pi) =0, for all ¢
— () J

w;; € R, for a bar ij
wi; <0, for a strut i
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Motions and Stresses

Linear Programming duality:

There is a strictly expansive motion if and only if there is
NO NON-zero stress.

Zw@-j(pj—pi) = 0, for all ¢
=0 / [ MTw=0]

w;; € R, for a bar ij
{MU{:O } w;; <0, for a strut ij




Making the Framework Planar

e subdivide edges at intersection points

e collapse multiple edges
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The Maxwell-Cremona Correspondence
| 1850}

3-d lifting (polyhedral terrain)

0

self-stresses on a ]
planar framework




The Maxwell-Cremona Correspondence

[ 1850]
3-d lifting (polyhedral terrain)
)
self-stresses on a ]
planar framework
)

orthogonal dual

14



Valley and Mountain Folds

A M

Wij > 0 Wi; < 0
valley mountain

bar or strut bar
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Look a the highest peak!

\

mountain — bar

Every polygon has > 3 convex vertices

— 3 valleys — 3 bars.
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The general case

4

A pointed vertex

There Is at least one vertex with angle > .
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The only remaining possibility

a convex polygon
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Constructing a Global Motion

[ Connelly, Demaine, Rote 2000 |

e Define a point v := v(p) in the interior of the expansion
cone, by a suitable non-linear convex objective function.

e v(p) depends smoothly on p.

e Solve the differential equation p = v(p)



Constructing a Global Motion

Alternative approach: Select an extreme ray of the
expansion cone.

Streinu [2000]:
Extreme rays correspond to pseudotriangulations.
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Part Il: Pseudotriangulations
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Part Il: Pseudotriangulations

Pseudotriangulations!

Assumption: Points in general position.
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Pseudotriangles

A pseudotriangulation has three convex corners and an
arbitrary number of reflex vertices.

VAV Y
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Pseudotriangulations/

Geodesic Triangulations
Other applications:

e data structures

for ray shooting [Chazelle, Edelsbrunner,

Grigni, Guibas, Hershberger, Sharir, and Snoeyink 1994] and
visibility [Pocchiola and Vegter 1996]

e kinetic collision detection [Agarwal, Basch, Erickson, Gui-
bas, Hershberger, Zhang 1999—2001] [Kirkpatrick, Snoeyink, and

Speckmann 2000]

e art gallery pro

:Kirkpatrick & Speckmann 2002 this afternoon]

blems [Pocchiola and Vegter 1996b],

[Speckmann and Téth 2001]
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Minimum (or Pointed)
Pseudotriangulations (PPT)

A pointed vertex Is incident to an angle > 180°.

A  maximal non-crossing and pointed set of edges
decomposes the convex hull into n — 2 pseudotriangles
using 2n — 3 edges.

VA




Characterization of Pointed
Pseudotriangulations

An edge set with any two of the following properties:

e 2n — 3 edges (or n — 2 faces)
e decomposition into pseudotriangles

e non-crossing, and every vertex is pointed.

[Streinu 2002]
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Characterization of Trees

An edge set with any two of the following properties:
e n — 1 edges
e connected

e acyclic
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Characterization of Pointed
Pseudotriangulations

An edge set with any two of the following properties:
e 2n — 3 edges (or n — 2 faces)
e decomposition into pseudotriangles

e non-crossing, and every vertex is pointed.
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Characterization of Pointed
Pseudotriangulations

An edge set with any two of the following properties:

e 2n — 3 edges (or n — 2 faces)
e decomposition into pseudotriangles

e non-crossing, and every vertex is pointed.

Caveat: Removing edges from a trian-
gulation does not necessarily lead to a
pointed pseudotriangulation.
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Rigidity Properties of Pseudotriangulations

e Pseudotriangulations are minimally rigid.
e a Henneberg-type construction

e Removing a hull edge gives an expansive mechanism
with 1 degree of freedom.

[Streinu 2002]
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Flipping of Edges

Any interior edge can be flipped against another edge.
That edge is unique.

A, A
SV &

before after
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Flipping of Edges

Any interior edge can be flipped against another edge.
That edge is unique.

A, A
SV &

before after

The flip graph is connected. Its diameter is O(n?).
[Brc’jnnimann, Kettner, Pocchiola, Snoeyink 2001]
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Part 1ll: Cones and Polytopes
[Rote, Santos, Streinu 2002]

e [ he expansion cone

e [ he perturbed expansion cone
= the PPT polyhedron

Xf — {esz’j > fij }

e The PPT polytope

Xy ={exp;; > fij, Q
exp;; = fi; for ij on boundary }



Pinning of Vertices

Trivial Motions: Motions of the point set as a whole
(translations, rotations).

Pin a vertex and a direction. ( “tie-down")
V1 = 0

(%, H P2 — D1

This eliminates 3 degrees of freedom.
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Extreme Rays of the Expansion Cone

Pseudotriangulations with one convex hull edge removed
yield expansive mechanisms. [Streinu 2000]
Rigid substructures can be identified.
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A Polyhedron for Pseudotriangulations

Wanted:
A perturbation of the constraints “exp,; > 0" such that
the vertices are in 1-1 correspondence with pseudotrian-
gulations.
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Heating up the Bars

AT = |z|?
Length increase > / z|* ds

TEP;D;
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Heating up the Bars

AT = |z|?
Length increase > / z|* ds

TEP;D;
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Heating up the Bars

AT = |z|?
Length increase > / z|* ds

TEP;D;

exp;; > [pi — pjl - / ] ds

TEP;P;
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Heating up the Bars

AT = |z|?
Length increase > / z|* ds

TEP;D;

exp;; > [pi — pjl - / ] ds

TEP;P;

€XPi; > ’pi _pj‘Q | (’pi‘z T <pi7pj> T ‘pj‘2) ' %
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Heating up the Bars — Points in Convex
Position

~

AN N\
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The Perturbed Expansion Cone
= PPT Polyhedron

)_(f:{(vl,...,vn) | eXp;; = fij ¥

¢ fij = \pi —ij ' (\Z%’!Q + <pi,pj> T ’ij)

/

1] — [a'apiapj] | [bapup]]
lx, 1y, z] = signed area of the triangle xyz
a, b: two arbitrary points.
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Tight Edges

For v = (vq,...,v,) € Xy,

E(v) :={1j | CXPi; = fij}
Is the set of tight edges at v.

Maximal sets of tight edges = vertices of X.

38



39

What are good values of f;;?

Which configurations of edges can occur in a set of tight
edges?

We want:

® No crossing edges

e no 3-star with all angles < 180° /k

It is sufficient to look at 4-point subsets.



Good Values f;; for 4 points

Jij 1s given on six edges.

Any five values exp;; determine
the last one.

Check if the resulting value
exp;; of the last edge is feasible
(exp;; > fij)

— checking the sign of an

expression.
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Good Values f;; for 4 points

A 4-tuple pi1,po,p3, ps has a unique self-stress (up to a
scalar factor).

1
DiyDjs DE) - Pis D, DI

Kk

Wij = Cforalll1 <1< 9 <4

iAI

w;; > 0 for boundary edges. % A
wi; < 0 for interior edges.




Why the stress?

If the equation

holds, then f;; are the expansion values exp,; of a motion

(vla U2, U3, ”04).

Actually, “if and only if".
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Why the stress?

If the equation

Z wijfij; =0

1<i<j<4
holds, then f;; are the expansion values exp,; of a motion

(vla U2, U3, ”04).

Actually, “if and only if".

[ M'w =0, f=exp=Mv]
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Good Perturbations

We need

Z wij fij >0
1<i<j<4
for all 4-tuples of points.

— For every vertex v, E(v) is non-crossing and pointed.

— X'f Is a simple polyhedron.
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The PPT-polyhedron

Every vertex is incident to 2n — 3 edges.
Edge = removing a segment from E(v).

Removing an interior segment leads to an adjacent
pseudotriangulation (flip).

Removing a hull segment is an extreme ray. O
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Proof of
wiafi2 + wisfis + wiaf1a + wasfoz + wagfoa + w3af34 >0

R(OJ b Z Wij - CL p”mpj”b plap]]

1<i<y<4

R=1!

R is linear in @ and linear in b. R(p;,p;) = 1 is sufficient.

R(p1,p2): all f;; = 0 except f34

det(plap3ap4) det(p27p37p4)

= 1.
det(ps, P4, p1) det(psa P4, p2)

R(p17p2) = w34 f34 =

[]

45



The PPT polytope

Cut out all rays:
Change exp,; > fi; to exp;; = f;; for hull edges.
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The PPT polytope

Cut out all rays:
Change exp,; > fi; to exp;; = f;; for hull edges.
The Expansion Cone X

collapse parallel rays into one ray. — pseudotriangulations
minus one hull edge. Rigid subcomponents are identified.
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Expansive motions for a chain
(or a polygon)

e Add edges to form a pseudotriangulation
e Remove a convex hull edge

e — expansive mechanism
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Which f;; to choose?

o fii:=|pi— ;> (|Ipil*> + (pi, p;) + |pj|?)

/

i L= [aap%pj] | [b7p’mp]]

Go to the space of the (exp,;) variables instead of the
(v;) variables.
exp = Mwv
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Characterization of the space (exp;;);

A set of values (exp;;)i<i<j<n forms the expansion values

of a motion (vy,...,v,) if and only if the equation
Z Wi expw =0
1<i<j<4

holds for all 4-tuples.

SKIP
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A canonical representation

Z wijexp;; = 0, for all 4-tuples
1<i<j<4
exp;; > fij, for all pairs i, j
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A canonical representation

Z wijexp;; = 0, for all 4-tuples
1<i<j<4
exp;; > fij, for all pairs i, j

Z wijfz-j — 1, for all 4—tup|es
1<i<y<4
Zl§i<j§4 dijexp;; = —1, for all 4-tuples
dij > 0, for all Z,]

(1)
(2)
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The Associahedron
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Catalan Structures

e Triangulations of a convex polygon / edge flip

e Binary trees / rotation

e (ax(bx(cxd)))*xe / ((axb)x(cxd))=xe
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Catalan Structures

e Triangulations of a convex polygon / edge flip
e Binary trees / rotation
e (ax(bx(cxd)))*xe / ((axb)x(cxd))=xe

e non-crossing alternating trees
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The Secondary Polytope
Triangulation T — (x1,...,2,).

x; := total area of all triangles incident to p;

vertices = regular triangulations of (p1,...,pn)

(p1,...,pn) in convex position:
pseudotriangulations = triangulations = regular triangu-
lations.

— two realizations of the associahedron.

These two associahedra are affinely equivalent.



Expansive Motions in One Dimension

{(v;)) eR" |vj—v; > fijfor1<i<j<n}

fu+ fix> fie+ fa, foralli<j<k<I.
fil > fz’k‘|‘fkl, for all 2 < k < L.

For example, f;; :== (i — j)?

related to the Monge Property.

54



55

Non-crossing alternating trees

non-crossing: no two edges ik, 7l with 1 < 7 < k < [.
alternating: no two edges 7, 7k with 1 < 5 < k.

[Gelfand, Graev, and
[Postnikov 1997], [Ze

Postnikov 1997], in a dual setting.

evinsky 7]



The Associahedron
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Open Questions

1. the meaning of > w;;fi; =1
2. Is there essentially only one solution of ) w;;fi; > 07
3. canonical pseudotriangulations

4. pseudotriangulations in 3-space
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The meaning of

“l believe there is some underlying homology in this
situation. Given the fact that motions and stresses also
fit into a setting of cohomology and homology as well,
the authors might, at least, mention possible homology

descriptions.”
[a referee, about the definition of w;,]



The meaning of

Z wijfij =1

1<i<j<4
1
pis Py DK - Pis D, DI

wij =

One can define a similar formula for w for the k-wheel.
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ZijEE wZ]fZ] — 1 for the k-wheel

1
w.). 1 p—
T pipicnpo) - [P pas - A

1 _ [pi—lapiapi—i—l]

Wo; —
: [pi—lapiap()] ' [piapiJrlapO] [p17p27 IR 7pk]
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Open Questions

1. the meaning of > w;;fi; =1
2. Is there essentially only one solution of ) | w;;fi; > 07
3. canonical pseudotriangulations

4. pseudotriangulations in 3-space
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Canonical pseudotriangulations

Maximize/minimize > ", ¢; - v; over the PPT-polytope.

C; - — Ps.

(a) (b) ()

Delaunay triangulation Max/Min ) " p; - v;
(affine invariant)
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Edge flipping criterion for canonical
pseudotriangulations
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Pseudotriangulations in 3-space?

Rigid graphs are not well-understood in 3-space.
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