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Unfolding of polygons

Theorem. Every polygonal arc in the plane can be

brought into straight position, without self-overlap.

Every polygon in the plane can be unfolded into convex

position.
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Infinitesimal Motion

n vertices p1, . . . , pn.

1. (global) motion pi = pi(t), t ≥ 0
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Infinitesimal Motion

n vertices p1, . . . , pn.

1. (global) motion pi = pi(t), t ≥ 0

2. infinitesimal motion (local motion)

vi =
d

dt
pi(t) = ṗi(0)

Velocity vectors v1, . . . , vn.
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Expansion

1
2 ·

d

dt
|pi(t)− pj(t)|2 = 〈vi − vj, pi − pj〉 =: expij

vi · (pj − pi) vj · (pj − pi)

pj − pi

vi

pjpi

vj

expansion (or strain) expij of the segment ij
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The Rigidity Map

M : (v1, . . . , vn) 7→ (expij)ij∈E
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The Rigidity Map

M : (v1, . . . , vn) 7→ (expij)ij∈E

The rigidity matrix:

M =

 the

rigidity

matrix


︸ ︷︷ ︸

2|V |

 E
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Expansive Motions

expij = 0 for all bars ij

(preservation of length)

expij ≥ 0 for all other pairs (struts) ij

(expansiveness)

[ expij > 0 ]

(strict expansiveness)
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Expansive motions cannot overlap
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Proof Outline

1. Prove that expansive motions exist.

2. Select an expansive motion and provide a global motion.
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Proof Outline

1. Prove that expansive motions exist.

2. Select an expansive motion and provide a global motion.

1. Prove that expansive motions exist. [ 2 PROOFS ]
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Proof Outline

Existence of an expansive motion

m (duality)

Self-stresses (rigidity)

Self-stresses on planar frameworks

m (Maxwell-Cremona correspondence)

polyhedral terrains

[ Connelly, Demaine, Rote 2000 ]
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The Expansion Cone

The set of expansive motions forms a convex polyhedral

cone X̄0 in R2n, defined by homogeneous linear equations

and inequalities of the form

〈vi − vj, pi − pj〉


=
≥
[>]

 0
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Bars, Struts, Frameworks, Stresses

Assign a stress ωij = ωji ∈ R to each edge.

Equilibrium of forces in vertex i:∑
j

ωij(pj − pi) = 0
pi

pj

ωij(pj − pi)

ωij ≤ 0 for struts: Struts can only push.

ωij ∈ R for bars: Bars can push or pull.
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Motions and Stresses

Linear Programming duality:

There is a strictly expansive motion if and only if there is

no non-zero stress.

〈vi − vj, pi − pj〉
{

= 0
> 0

∑
j

ωij(pj−pi) = 0, for all i

ωij ∈ R, for a bar ij

ωij ≤ 0, for a strut ij
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Motions and Stresses

Linear Programming duality:

There is a strictly expansive motion if and only if there is

no non-zero stress.

〈vi − vj, pi − pj〉
{

= 0
> 0

∑
j

ωij(pj−pi) = 0, for all i

ωij ∈ R, for a bar ij

ωij ≤ 0, for a strut ij

[ MTω = 0 ]

[
Mv

{
= 0
> 0

]
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Making the Framework Planar

• subdivide edges at intersection points

• collapse multiple edges
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The Maxwell-Cremona Correspondence
[ 1850]

3-d lifting (polyhedral terrain)

m

self-stresses on a

planar framework
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The Maxwell-Cremona Correspondence
[ 1850]

3-d lifting (polyhedral terrain)

m

self-stresses on a

planar framework

m

orthogonal dual
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Valley and Mountain Folds

ωij > 0 ωij < 0

valley mountain

bar or strut bar
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Look a the highest peak!

mountain → bar

Every polygon has > 3 convex vertices

→ 3 valleys → 3 bars.
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The general case

pointed vertex

There is at least one vertex with angle > π.
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The only remaining possibility

a convex polygon

2
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Constructing a Global Motion

[ Connelly, Demaine, Rote 2000 ]

• Define a point v := v(p) in the interior of the expansion

cone, by a suitable non-linear convex objective function.

• v(p) depends smoothly on p.

• Solve the differential equation ṗ = v(p)
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Constructing a Global Motion

Alternative approach: Select an extreme ray of the

expansion cone.

Streinu [2000]:

Extreme rays correspond to pseudotriangulations.

[show animation]
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Part II: Pseudotriangulations
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Part II: Pseudotriangulations

Pseudotriangulations!

Assumption: Points in general position.
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Pseudotriangles

A pseudotriangulation has three convex corners and an

arbitrary number of reflex vertices.
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Pseudotriangulations/
Geodesic Triangulations

Other applications:

• data structures for ray shooting [Chazelle, Edelsbrunner,

Grigni, Guibas, Hershberger, Sharir, and Snoeyink 1994] and

visibility [Pocchiola and Vegter 1996]

• kinetic collision detection [Agarwal, Basch, Erickson, Gui-

bas, Hershberger, Zhang 1999–2001] [Kirkpatrick, Snoeyink, and

Speckmann 2000] [Kirkpatrick & Speckmann 2002 this afternoon]

• art gallery problems [Pocchiola and Vegter 1996b],

[Speckmann and Tóth 2001]
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Minimum (or Pointed)
Pseudotriangulations (PPT)

A pointed vertex is incident to an angle > 180◦.
A maximal non-crossing and pointed set of edges

decomposes the convex hull into n − 2 pseudotriangles

using 2n− 3 edges.
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Characterization of Pointed
Pseudotriangulations

An edge set with any two of the following properties:

• 2n− 3 edges (or n− 2 faces)

• decomposition into pseudotriangles

• non-crossing, and every vertex is pointed.

[Streinu 2002]
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Characterization of Trees

An edge set with any two of the following properties:

• n− 1 edges

• connected

• acyclic
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Characterization of Pointed
Pseudotriangulations

An edge set with any two of the following properties:

• 2n− 3 edges (or n− 2 faces)

• decomposition into pseudotriangles

• non-crossing, and every vertex is pointed.
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Characterization of Pointed
Pseudotriangulations

An edge set with any two of the following properties:

• 2n− 3 edges (or n− 2 faces)

• decomposition into pseudotriangles

• non-crossing, and every vertex is pointed.

Caveat: Removing edges from a trian-

gulation does not necessarily lead to a

pointed pseudotriangulation.
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Rigidity Properties of Pseudotriangulations

• Pseudotriangulations are minimally rigid.

• a Henneberg-type construction

• Removing a hull edge gives an expansive mechanism

with 1 degree of freedom.

[Streinu 2002]
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Flipping of Edges

Any interior edge can be flipped against another edge.

That edge is unique.

before after
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Flipping of Edges

Any interior edge can be flipped against another edge.

That edge is unique.

before after

The flip graph is connected. Its diameter is O(n2).
[Brönnimann, Kettner, Pocchiola, Snoeyink 2001]
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Part III: Cones and Polytopes

[Rote, Santos, Streinu 2002]

• The expansion cone

X̄0 = { expij ≥ 0 }

• The perturbed expansion cone

= the PPT polyhedron

X̄f = { expij ≥ fij }

• The PPT polytope

Xf = { expij ≥ fij,

expij = fij for ij on boundary }
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Pinning of Vertices

Trivial Motions: Motions of the point set as a whole

(translations, rotations).

Pin a vertex and a direction. (“tie-down”)

v1 = 0

v2 ‖ p2 − p1

This eliminates 3 degrees of freedom.
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Extreme Rays of the Expansion Cone

Pseudotriangulations with one convex hull edge removed

yield expansive mechanisms. [Streinu 2000]

Rigid substructures can be identified.
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A Polyhedron for Pseudotriangulations

Wanted:

A perturbation of the constraints “expij ≥ 0” such that

the vertices are in 1-1 correspondence with pseudotrian-

gulations.
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Heating up the Bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds
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Heating up the Bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds
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Heating up the Bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds

expij ≥ |pi − pj| ·
∫

x∈pipj

|x|2 ds
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Heating up the Bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds

expij ≥ |pi − pj| ·
∫

x∈pipj

|x|2 ds

expij ≥ |pi − pj|2 · (|pi|2 + 〈pi, pj〉+ |pj|2) · 1
3
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Heating up the Bars — Points in Convex
Position

⇒
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The Perturbed Expansion Cone
= PPT Polyhedron

X̄f = { (v1, . . . , vn) | expij ≥ fij }

• fij := |pi − pj|2 · (|pi|2 + 〈pi, pj〉+ |pj|2)

• f ′
ij := [a, pi, pj] · [b, pi, pj]

[x, y, z] = signed area of the triangle xyz

a, b: two arbitrary points.
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Tight Edges

For v = (v1, . . . , vn) ∈ X̄f ,

E(v) := { ij | expij = fij }

is the set of tight edges at v.

Maximal sets of tight edges ≡ vertices of X̄f .
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What are good values of fij?

Which configurations of edges can occur in a set of tight

edges?

We want:

• no crossing edges

• no 3-star with all angles ≤ 180◦

It is sufficient to look at 4-point subsets.
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Good Values fij for 4 points

fij is given on six edges.

Any five values expij determine

the last one.

Check if the resulting value

expij of the last edge is feasible

(expij ≥ fij)

→ checking the sign of an

expression.
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Good Values fij for 4 points
A 4-tuple p1, p2, p3, p4 has a unique self-stress (up to a

scalar factor).

ωij =
1

[pi, pj, pk] · [pi, pj, pl]
, for all 1 ≤ i < j ≤ 4

i

j

k

l

ωij > 0 for boundary edges.

ωij < 0 for interior edges.
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Why the stress?

If the equation ∑
1≤i<j≤4

ωijfij = 0

holds, then fij are the expansion values expij of a motion

(v1, v2, v3, v4).

Actually, “if and only if”.
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Why the stress?

If the equation ∑
1≤i<j≤4

ωijfij = 0

holds, then fij are the expansion values expij of a motion

(v1, v2, v3, v4).

Actually, “if and only if”.

[ MTω = 0, f = exp = Mv ]
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Good Perturbations

We need ∑
1≤i<j≤4

ωijfij > 0

for all 4-tuples of points.

→ For every vertex v, E(v) is non-crossing and pointed.

→ X̄f is a simple polyhedron.
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The PPT-polyhedron

Every vertex is incident to 2n− 3 edges.

Edge ≡ removing a segment from E(v).

Removing an interior segment leads to an adjacent

pseudotriangulation (flip).

Removing a hull segment is an extreme ray. 2



45

Proof of
ω12f12 + ω13f13 + ω14f14 + ω23f23 + ω24f24 + ω34f34 > 0

R(a, b) :=
∑

1≤i<j≤4

ωij · [a, pi, pj][b, pi, pj]

R ≡ 1!
R is linear in a and linear in b. R(pi, pj) = 1 is sufficient.

R(p1, p2): all fij = 0 except f34

R(p1, p2) = ω34f34 =
det(p1, p3, p4) det(p2, p3, p4)
det(p3, p4, p1) det(p3, p4, p2)

= 1.

2
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The PPT polytope

Cut out all rays:

Change expij > fij to expij = fij for hull edges.
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The PPT polytope

Cut out all rays:

Change expij > fij to expij = fij for hull edges.

The Expansion Cone X̄0:

collapse parallel rays into one ray. → pseudotriangulations

minus one hull edge. Rigid subcomponents are identified.
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Expansive motions for a chain
(or a polygon)

• Add edges to form a pseudotriangulation

• Remove a convex hull edge

• → expansive mechanism 2
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Which fij to choose?

• fij := |pi − pj|2 · (|pi|2 + 〈pi, pj〉+ |pj|2)

• f ′
ij := [a, pi, pj] · [b, pi, pj]

Go to the space of the (expij) variables instead of the

(vi) variables.

exp = Mv
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Characterization of the space (expij)i,j

A set of values (expij)1≤i<j≤n forms the expansion values

of a motion (v1, . . . , vn) if and only if the equation∑
1≤i<j≤4

ωij expij = 0

holds for all 4-tuples.

SKIP
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A canonical representation

∑
1≤i<j≤4

ωij expij = 0, for all 4-tuples

expij ≥ fij, for all pairs i, j
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A canonical representation

∑
1≤i<j≤4

ωij expij = 0, for all 4-tuples

expij ≥ fij, for all pairs i, j

∑
1≤i<j≤4

ωijfij = 1, for all 4-tuples

Substitute dij := expij −fij:∑
1≤i<j≤4 dij expij = −1, for all 4-tuples (1)

dij ≥ 0, for all i, j (2)
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The Associahedron

9

11

13

15

4
6

8
10

12

1

3

5

7

v4

v2

v3
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Catalan Structures

• Triangulations of a convex polygon / edge flip

• Binary trees / rotation

• (a ∗ (b ∗ (c ∗ d))) ∗ e / ((a ∗ b) ∗ (c ∗ d)) ∗ e



52

Catalan Structures

• Triangulations of a convex polygon / edge flip

• Binary trees / rotation

• (a ∗ (b ∗ (c ∗ d))) ∗ e / ((a ∗ b) ∗ (c ∗ d)) ∗ e

• non-crossing alternating trees

• . . . . . . . . . . . . . . . . . . . . .
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The Secondary Polytope

Triangulation T 7→ (x1, . . . , xn).

xi := total area of all triangles incident to pi

vertices ≡ regular triangulations of (p1, . . . , pn)

(p1, . . . , pn) in convex position:

pseudotriangulations ≡ triangulations ≡ regular triangu-

lations.

→ two realizations of the associahedron.

These two associahedra are affinely equivalent.
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Expansive Motions in One Dimension

{ (vi) ∈ Rn | vj − vi ≥ fij for 1 ≤ i < j ≤ n }

fil + fjk > fik + fjl, for all i < j < k < l.

fil > fik + fkl, for all i < k < l.

For example, fij := (i− j)2

related to the Monge Property.
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Non-crossing alternating trees

non-crossing: no two edges ik, jl with i < j < k < l.

alternating: no two edges ij, jk with i < j < k.

[Gelfand, Graev, and Postnikov 1997], in a dual setting.

[Postnikov 1997], [Zelevinsky ?]
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The Associahedron

9

11

13

15

4
6

8
10

12

1

3

5

7

v4

v2

v3



57

Open Questions

1. the meaning of
∑

ωijfij = 1

2. Is there essentially only one solution of
∑

ωijfij > 0?

3. canonical pseudotriangulations

4. pseudotriangulations in 3-space
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The meaning of

∑
1≤i<j≤4

ωijfij = 1

“I believe there is some underlying homology in this

situation. Given the fact that motions and stresses also

fit into a setting of cohomology and homology as well,

the authors might, at least, mention possible homology

descriptions.”

[a referee, about the definition of ωij]
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The meaning of

∑
1≤i<j≤4

ωijfij = 1

ωij =
1

[pi, pj, pk] · [pi, pj, pl]

One can define a similar formula for ω for the k-wheel.
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ij∈E ωijfij = 1 for the k-wheel

ωi,i+1 =
1

[pi, pi+1, p0] · [p1, p2, . . . , pk]

ω0i =
1

[pi−1, pi, p0] · [pi, pi+1, p0]
· [pi−1, pi, pi+1]
[p1, p2, . . . , pk]
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Open Questions

1. the meaning of
∑

ωijfij = 1

2. Is there essentially only one solution of
∑

ωijfij > 0?

3. canonical pseudotriangulations

4. pseudotriangulations in 3-space
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Canonical pseudotriangulations

Maximize/minimize
∑n

i=1 ci · vi over the PPT-polytope.

ci := pi:

(a) (b) (c)

Delaunay triangulation Max/Min
∑

pi · vi

(affine invariant)
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Edge flipping criterion for canonical
pseudotriangulations
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Pseudotriangulations in 3-space?

Rigid graphs are not well-understood in 3-space.


