Pseudotriangulations, Polytopes, and How to Expand Linkages

Günter Rote Universitat Lliure de Berlin

[joint] work of/with Bob Connelly, Erik Demaine, Paco Santos, Ileana Streinu.

Unfolding of polygons

Theorem. Every polygonal arc in the plane can be brought into straight position, without self-overlap.

Every polygon in the plane can be unfolded into convex position.

Infinitesimal Motion

n vertices p_1, \ldots, p_n .

1. (global) motion $p_i = p_i(t)$, $t \ge 0$

Infinitesimal Motion

 $n \text{ vertices } p_1, \ldots, p_n.$

- 1. (global) motion $p_i = p_i(t)$, $t \ge 0$
- 2. *infinitesimal motion* (local motion)

$$v_i = rac{d}{dt} p_i(t) = \dot{p}_i(0)$$

Velocity vectors v_1, \ldots, v_n .

Expansion

expansion (or strain) exp_{ij} of the segment ij

The Rigidity Map

 $M: (v_1, \ldots, v_n) \mapsto (\exp_{ij})_{ij \in E}$

The Rigidity Map

$$M: (v_1, \ldots, v_n) \mapsto (\exp_{ij})_{ij \in E}$$

The rigidity matrix:

$$M = \left(\begin{array}{c} \text{the} \\ \text{rigidity} \\ \text{matrix} \end{array}\right) \left\{ E \\ \underbrace{2|V|} \right\}$$

Expansive Motions

 $exp_{ij} = 0 \text{ for all } bars ij$ (preservation of length)

 $\exp_{ij} \ge 0$ for all other pairs (*struts*) ij (expansiveness)

 $\begin{bmatrix} \exp_{ij} > 0 \end{bmatrix}$

(strict expansiveness)

Expansive motions cannot overlap

Proof Outline

- 1. Prove that expansive motions *exist*.
- 2. Select an expansive motion and provide a global motion.

Proof Outline

- 1. Prove that expansive motions *exist*. [2 PROOFS]
- 2. Select an expansive motion and provide a global motion.

Proof Outline

Existence of an expansive motion (duality) Self-stresses (rigidity) Self-stresses on planar frameworks

(Maxwell-Cremona correspondence)

polyhedral terrains

[Connelly, Demaine, Rote 2000]

The Expansion Cone

The set of expansive motions forms a convex polyhedral cone \bar{X}_0 in \mathbb{R}^{2n} , defined by homogeneous linear equations and inequalities of the form

$$\langle v_i - v_j, p_i - p_j \rangle \left\{ \begin{array}{c} = \\ \geq \\ [>] \end{array} \right\} 0$$

Bars, Struts, Frameworks, Stresses

Assign a *stress* $\omega_{ij} = \omega_{ji} \in \mathbb{R}$ to each edge.

Equilibrium of forces in vertex *i*:

$$\sum_{j} \omega_{ij}(p_j - p_i) = 0$$

 $\omega_{ij} \leq 0$ for struts: Struts can only push. $\omega_{ij} \in \mathbb{R}$ for bars: Bars can push or pull.

Motions and Stresses

Linear Programming duality:

There is a strictly expansive motion if and only if there is no non-zero stress.

$$\langle v_i - v_j, p_i - p_j \rangle \begin{cases} = 0 \\ > 0 \end{cases}$$

$$\sum_{j} \omega_{ij}(p_j - p_i) = 0, \text{ for all } i$$
$$\omega_{ij} \in \mathbb{R}, \text{ for a bar } ij$$
$$\omega_{ij} \leq 0, \text{ for a strut } ij$$

Motions and Stresses

Linear Programming duality:

There is a strictly expansive motion if and only if there is no non-zero stress.

$$\langle v_i - v_j, p_i - p_j \rangle \begin{cases} = 0 \\ > 0 \end{cases}$$
$$\left[Mv \begin{cases} = 0 \\ > 0 \end{cases} \right]$$

$$\sum_{j} \omega_{ij}(p_j - p_i) = 0, \text{ for all } i$$
$$\begin{bmatrix} M^{\mathrm{T}}\omega = 0 \end{bmatrix}$$
$$\omega_{ij} \in \mathbb{R}, \text{ for a bar } ij$$
$$\omega_{ij} \leq 0, \text{ for a strut } ij$$

Making the Framework Planar

- subdivide edges at intersection points
- collapse multiple edges

The Maxwell-Cremona Correspondence [1850]

3-d lifting (polyhedral terrain)

 \uparrow

self-stresses on a planar framework

The Maxwell-Cremona Correspondence [1850]

3-d lifting (polyhedral terrain)

 \uparrow

self-stresses on a planar framework

orthogonal dual

Valley and Mountain Folds

 $\omega_{ij} > 0$ $\omega_{ij} < 0$ valley mountain

bar or strut

bar

Look a the highest peak!

Every polygon has > 3 convex vertices

 $\rightarrow~3$ valleys $\rightarrow~3$ bars.

The general case

There is at least one vertex with angle $> \pi$.

The only remaining possibility

a convex polygon

Constructing a Global Motion

[Connelly, Demaine, Rote 2000]

- Define a point v := v(p) in the *interior* of the expansion cone, by a suitable non-linear convex objective function.
- v(p) depends smoothly on p.
- Solve the differential equation $\dot{p} = v(p)$

Constructing a Global Motion

Alternative approach: Select an *extreme ray* of the expansion cone.

Streinu [2000]: Extreme rays correspond to pseudotriangulations.

[show animation]

Part II: Pseudotriangulations

Part II: Pseudotriangulations

Pseudotriangulations!

Assumption: Points in general position.

Pseudotriangles

A pseudotriangulation has three convex *corners* and an arbitrary number of reflex vertices.

Pseudotriangulations/ Geodesic Triangulations

Other applications:

- data structures for ray shooting [Chazelle, Edelsbrunner, Grigni, Guibas, Hershberger, Sharir, and Snoeyink 1994] and visibility [Pocchiola and Vegter 1996]
- kinetic collision detection [Agarwal, Basch, Erickson, Guibas, Hershberger, Zhang 1999–2001] [Kirkpatrick, Snoeyink, and Speckmann 2000] [Kirkpatrick & Speckmann 2002 this afternoon]
- art gallery problems [Pocchiola and Vegter 1996b], [Speckmann and Tóth 2001]

Minimum (or Pointed) Pseudotriangulations (PPT)

A *pointed* vertex is incident to an angle $> 180^{\circ}$. A *maximal* non-crossing and pointed set of edges decomposes the convex hull into n-2 pseudotriangles using 2n-3 edges.

Characterization of Pointed Pseudotriangulations

An edge set with any two of the following properties:

- 2n-3 edges (or n-2 faces)
- decomposition into pseudotriangles
- non-crossing, and every vertex is pointed.

[Streinu 2002]

Characterization of Trees

An edge set with any two of the following properties:

- n-1 edges
- connected
- acyclic

Characterization of Pointed Pseudotriangulations

An edge set with any two of the following properties:

- 2n-3 edges (or n-2 faces)
- decomposition into pseudotriangles
- non-crossing, and every vertex is pointed.

Characterization of Pointed Pseudotriangulations

An edge set with any two of the following properties:

- 2n-3 edges (or n-2 faces)
- decomposition into pseudotriangles
- non-crossing, and every vertex is pointed.

Caveat: Removing edges from a triangulation does not necessarily lead to a pointed pseudotriangulation.

Rigidity Properties of Pseudotriangulations

- Pseudotriangulations are minimally rigid.
- a Henneberg-type construction
- Removing a hull edge gives an *expansive* mechanism with 1 degree of freedom.

[Streinu 2002]

Flipping of Edges

Any interior edge can be flipped against another edge. That edge is unique.

Flipping of Edges

Any interior edge can be flipped against another edge. That edge is unique.

The flip graph is connected. Its diameter is $O(n^2)$. [Brönnimann, Kettner, Pocchiola, Snoeyink 2001]

Part III: Cones and Polytopes

[Rote, Santos, Streinu 2002]

- The expansion cone $\bar{X}_0 = \{ \exp_{ij} \ge 0 \}$
- The perturbed expansion cone = the PPT polyhedron $\bar{X}_f = \{ \exp_{ij} \ge f_{ij} \}$
- The PPT polytope $X_f = \{ \exp_{ij} \ge f_{ij}, \\ \exp_{ij} = f_{ij} \text{ for } ij \text{ on boundary } \}$

30

Pinning of Vertices

Trivial Motions: Motions of the point set as a whole (translations, rotations).

Pin a vertex and a direction. ("tie-down")

$$v_1 = 0$$
$$v_2 \parallel p_2 - p_1$$

This eliminates 3 degrees of freedom.

Extreme Rays of the Expansion Cone

Pseudotriangulations with one convex hull edge removed yield expansive mechanisms. [Streinu 2000] Rigid substructures can be identified.

A Polyhedron for Pseudotriangulations

Wanted:

A perturbation of the constraints " $\exp_{ij} \ge 0$ " such that the vertices are in 1-1 correspondence with pseudotrian-gulations.

$$\Delta T = |x|^2$$

Length increase $\geq \int_{x \in p_i p_j} |x|^2 ds$

$$\Delta T = |x|^2$$

Length increase $\geq \int\limits_{x\in p_ip_j} |x|^2\,ds$

$$\Delta T = |x|^2$$

Length increase $\geq \int_{x \in p_i p_j} |x|^2 ds$
 $\exp_{ij} \geq |p_i - p_j| \cdot \int_{x \in p_i p_j} |x|^2 ds$

$$\exp_{ij} \ge |p_i - p_j|^2 \cdot (|p_i|^2 + \langle p_i, p_j \rangle + |p_j|^2) \cdot \frac{1}{3}$$

Heating up the Bars — Points in Convex Position

The Perturbed Expansion Cone = PPT Polyhedron

$$\bar{X}_f = \{ (v_1, \ldots, v_n) \mid \exp_{ij} \ge f_{ij} \}$$

•
$$f_{ij} := |p_i - p_j|^2 \cdot (|p_i|^2 + \langle p_i, p_j \rangle + |p_j|^2)$$

Tight Edges

For $v = (v_1, \dots, v_n) \in \overline{X}_f$, $E(v) := \{ ij \mid \exp_{ij} = f_{ij} \}$

is the set of tight edges at v.

Maximal sets of tight edges \equiv vertices of \bar{X}_f .

What are good values of f_{ij} ?

Which configurations of edges can occur in a set of tight edges?

We want:

• no crossing edges

 \bullet no 3-star with all angles $\leq 180^\circ$

It is sufficient to look at 4-point subsets.

Good Values f_{ij} for 4 points

 f_{ij} is given on six edges. Any five values \exp_{ij} determine the last one. Check if the resulting value \exp_{ij} of the last edge is feasible $(\exp_{ij} \ge f_{ij})$ \rightarrow checking the sign of an expression. **Good Values** f_{ij} for 4 points A 4-tuple p_1, p_2, p_3, p_4 has a unique self-stress (up to a scalar factor).

$$\omega_{ij} = \frac{1}{[p_i, p_j, p_k] \cdot [p_i, p_j, p_l]}, \text{ for all } 1 \le i < j \le 4$$

 $\omega_{ij} > 0$ for boundary edges. $\omega_{ij} < 0$ for interior edges.

Why the stress?

If the *equation*

$$\sum_{\leq i < j \le 4} \omega_{ij} f_{ij} = 0$$

holds, then f_{ij} are the expansion values \exp_{ij} of a motion (v_1, v_2, v_3, v_4) .

1

Actually, "if and only if".

Why the stress?

If the *equation*

$$\sum_{\leq i < j \le 4} \omega_{ij} f_{ij} = 0$$

holds, then f_{ij} are the expansion values \exp_{ij} of a motion (v_1, v_2, v_3, v_4) .

Actually, "if and only if".

[
$$M^{\mathrm{T}}\omega=0$$
, $f=\exp=Mv$]

1

Good Perturbations

We need

 $\sum \omega_{ij} f_{ij} > 0$ $1 \le i < j \le 4$

for all 4-tuples of points.

- \rightarrow For every vertex v, E(v) is non-crossing and pointed.
- $\rightarrow \bar{X}_f$ is a simple polyhedron.

The PPT-polyhedron

Every vertex is incident to 2n - 3 edges.

Edge \equiv removing a segment from E(v).

Removing an interior segment leads to an adjacent pseudotriangulation (flip).

Removing a hull segment is an extreme ray.

Proof of

 $\omega_{12}f_{12} + \omega_{13}f_{13} + \omega_{14}f_{14} + \omega_{23}f_{23} + \omega_{24}f_{24} + \omega_{34}f_{34} > 0$

$$egin{aligned} R(a,b) &:= \sum_{1 \leq i < j \leq 4} \omega_{ij} \cdot [a,p_i,p_j][b,p_i,p_j] \ R \equiv 1! \end{aligned}$$

R is linear in a and linear in b. $R(p_i, p_j) = 1$ is sufficient. $R(p_1, p_2)$: all $f_{ij} = 0$ except f_{34}

$$R(p_1, p_2) = \omega_{34} f_{34} = \frac{\det(p_1, p_3, p_4) \det(p_2, p_3, p_4)}{\det(p_3, p_4, p_1) \det(p_3, p_4, p_2)} = 1.$$

The PPT polytope

Cut out all rays: Change $\exp_{ij} > f_{ij}$ to $\exp_{ij} = f_{ij}$ for hull edges.

The PPT polytope

Cut out all rays:

- Change $\exp_{ij} > f_{ij}$ to $\exp_{ij} = f_{ij}$ for hull edges.
- The Expansion Cone \bar{X}_0 :

collapse parallel rays into one ray. \rightarrow pseudotriangulations minus one hull edge. Rigid subcomponents are identified.

Expansive motions for a chain (or a polygon)

- Add edges to form a pseudotriangulation
- Remove a convex hull edge
- \rightarrow expansive mechanism

Which f_{ij} to choose?

•
$$f_{ij} := |p_i - p_j|^2 \cdot (|p_i|^2 + \langle p_i, p_j \rangle + |p_j|^2)$$

• $f'_{ij} := [a, p_i, p_j] \cdot [b, p_i, p_j]$

Go to the space of the (\exp_{ij}) variables instead of the (v_i) variables.

$$\exp = Mv$$

Characterization of the space $(\exp_{ij})_{i,j}$

A set of values $(\exp_{ij})_{1 \le i < j \le n}$ forms the expansion values of a motion (v_1, \ldots, v_n) if and only if the equation

$$\sum_{1 \le i < j \le 4} \omega_{ij} \exp_{ij} = 0$$

holds for all 4-tuples.

A canonical representation

 $\sum_{1 \le i < j \le 4} \omega_{ij} \exp_{ij} = 0, \text{ for all 4-tuples}$ $\exp_{ij} \ge f_{ij}, \text{ for all pairs } i, j$

A canonical representation

$$\sum_{1 \leq i < j \leq 4} \omega_{ij} \exp_{ij} = 0$$
, for all 4-tuples $\exp_{ij} \geq f_{ij}$, for all pairs i, j

$$\sum_{1 \leq i < j \leq 4} \omega_{ij} f_{ij} = 1$$
, for all 4-tuples
Substitute $d_{ij} := \exp_{ij} - f_{ij}$:

$$\sum_{1 \le i < j \le 4} d_{ij} \exp_{ij} = -1, \text{ for all 4-tuples}$$
(1)
$$d_{ij} \ge 0, \text{ for all } i, j$$
(2)

The Associahedron

Catalan Structures

- Triangulations of a convex polygon / edge flip
- Binary trees / rotation
- (a * (b * (c * d))) * e / ((a * b) * (c * d)) * e

Catalan Structures

- Triangulations of a convex polygon / edge flip
- Binary trees / rotation
- (a * (b * (c * d))) * e / ((a * b) * (c * d)) * e

non-crossing alternating trees

The Secondary Polytope

Triangulation $T \mapsto (x_1, \ldots, x_n)$.

 $x_i := \text{total}$ area of all triangles incident to p_i

vertices \equiv regular triangulations of (p_1, \ldots, p_n)

 (p_1, \ldots, p_n) in convex position: pseudotriangulations \equiv triangulations \equiv regular triangulations.

 \rightarrow two realizations of the associahedron.

These two associahedra are affinely equivalent.

Expansive Motions in One Dimension

$$\{ (v_i) \in \mathbb{R}^n \mid v_j - v_i \ge f_{ij} \text{ for } 1 \le i < j \le n \}$$

$$f_{il} + f_{jk} > f_{ik} + f_{jl}$$
, for all $i < j < k < l$.
 $f_{il} > f_{ik} + f_{kl}$, for all $i < k < l$.

For example, $f_{ij} := (i - j)^2$

related to the Monge Property.

Non-crossing alternating trees

non-crossing: no two edges ik, jl with i < j < k < l. alternating: no two edges ij, jk with i < j < k.

[Gelfand, Graev, and Postnikov 1997], in a dual setting. [Postnikov 1997], [Zelevinsky ?]

The Associahedron

Open Questions

- 1. the meaning of $\sum \omega_{ij} f_{ij} = 1$
- 2. Is there essentially only one solution of $\sum \omega_{ij} f_{ij} > 0$?
- 3. canonical pseudotriangulations
- 4. pseudotriangulations in 3-space

The meaning of

$$\sum_{1 \le i < j \le 4} \omega_{ij} f_{ij} = 1$$

"I believe there is some underlying homology in this situation. Given the fact that motions and stresses also fit into a setting of cohomology and homology as well, the authors might, at least, mention possible homology descriptions."

[a referee, about the definition of ω_{ij}]
The meaning of

$$\sum_{1 \leq i < j \leq 4} \omega_{ij} f_{ij} = 1$$
 $\omega_{ij} = rac{1}{[p_i, p_j, p_k] \cdot [p_i, p_j, p_l]}$

One can define a similar formula for ω for the k-wheel.

$\sum_{ij\in E} \omega_{ij} f_{ij} = 1$ for the *k*-wheel

$$\omega_{i,i+1} = \frac{1}{[p_i, p_{i+1}, p_0] \cdot [p_1, p_2, \dots, p_k]}$$
$$\omega_{0i} = \frac{1}{[p_{i-1}, p_i, p_0] \cdot [p_i, p_{i+1}, p_0]} \cdot \frac{[p_{i-1}, p_i, p_{i+1}]}{[p_1, p_2, \dots, p_k]}$$

Open Questions

- 1. the meaning of $\sum \omega_{ij} f_{ij} = 1$
- 2. Is there essentially only one solution of $\sum \omega_{ij} f_{ij} > 0$?
- 3. canonical pseudotriangulations
- 4. pseudotriangulations in 3-space

Canonical pseudotriangulations

Maximize/minimize $\sum_{i=1}^{n} c_i \cdot v_i$ over the PPT-polytope.

Delaunay triangulation

 $Max/Min \sum p_i \cdot v_i$ (affine invariant)

Edge flipping criterion for canonical pseudotriangulations

Pseudotriangulations in 3-space?

Rigid graphs are not well-understood in 3-space.