Counting polyominoes on the twisted cylinder

Gill Barequet and Micha Moffie The Technion, Haifa

Ares Ribó and Günter Rote Freie Universität Berlin

Supported by the Deutsche Forschungsgemeinschaft within the European Graduate Program *Combinatorics, Geometry and Computation* (No. GRK 588/2)

Polyominoes (or lattice animals)

A *polyomino* is a connected subset of squares of the integer grid.

 \Box 1 monomino: $A_1 = 1$ \Box \Box 2 dominoes: $A_2 = 2$ 6 triominoes: $A_3 = 6$ 19 tetrominoes: $A_4 = 19$

 $A_n :=$ the number of *n*-ominoes

ı	ĺ	n	$A_{n}= polyominoes$ with n cells
1		29	4,820,975,409,710,116
2		30	18,946,775,782,611,174
6		31	74,541,651,404,935,148
9		32	293,560,133,910,477,776
3		33	1,157,186,142,148,293,638
6		34	4,565,553,929,115,769,162
0		35	18,027,932,215,016,128,134
5		36	71,242,712,815,411,950,635
0		37	281,746,550,485,032,531,911
6		38	1,115,021,869,572,604,692,100
8		39	4,415,695,134,978,868,448,596
1		40	17,498,111,172,838,312,982,542
0		41	69,381,900,728,932,743,048,483
4		42	275,265,412,856,343,074,274,146
6		43	1,092,687,308,874,612,006,972,082
7		44	4,339,784,013,643,393,384,603,906
4		45	17,244,800,728,846,724,289,191,074
2		46	68,557,762,666,345,165,410,168,738
6		47	272,680,844,424,943,840,614,538,634
0		48	1,085,035,285,182,087,705,685,323,738
3		49	4,319,331,509,344,565,487,555,270,660
8		50	17,201,460,881,287,871,798,942,420,736
4		51	68,530,413,174,845,561,618,160,604,928
8		52	273,126,660,016,519,143,293,320,026,256
1		53	1,088,933,685,559,350,300,820,095,990,030
8		54	4,342,997,469,623,933,155,942,753,899,000
4		55	17,326,987,021,737,904,384,935,434,351,490
3		56	69,150,714,562,532,896,936,574,425,480,218

n	A_n	
1	1	
2	2	
3	6	
4	19	
5	63	
6	216	
7	760	
8	2,725	
9	9,910	
10	36,446	
11	135,268	
12	505,861	
13	1,903,890	
14	7,204,874	
15	27,394,666	
16	104,592,937	
17	400,795,844	
18	1,540,820,542	
19	5,940,738,676	
20	22,964,779,660	
21	88,983,512,783	
22	345,532,572,678	
23	1,344,372,335,524	
24	5,239,988,770,268	
25	20,457,802,016,011	
26	79,992,676,367,108	
27	313,224,032,098,244	
28	1,228,088,671,826,973	

n	
1	1
2	2
3	.Ô
4	19
5	-63
6	216
7	<u> </u> 760
8	2,725
9	<u></u> 9,910
10	36,446
11	135,268
12	505,861
13	<u>1</u> ,903,890
14	<i>₹</i> 7,204,874
15	27,394,666
16	104,592,937
17	<i>3</i> 400,795,844
18	1,540,820,542
19	5,940,738,676
20	22,964,779,660
21	<i>š</i> 88,983,512,783
22	345,532,572,678
23	1,344,372,335,524
24	5,239,988,770,268
25	20,457,802,016,011
26	3 79,992,676,367,108
27	313,224,032,098,244
28	1,228,088,671,826,973

n	$A_n = polyominoes$ with n cells
29	\$4,820,975,409,710,116
30	18,946,775,782,611,174
31	<i>₹</i> 74,541,651,404,935,148
32	293,560,133,910,477,776
33	1 ,157,186,142,148,293,638
34	2 4,565,553,929,115,769,162
35	18,027,932,215,016,128,134
36	71,242,712,815,411,950,635
37	281,746,550,485,032,531,911
38	1 ,115,021,869,572,604,692,100
39	\$4,415,695,134,978,868,448,596
40	17,498,111,172,838,312,982,542
41	<i>§</i> 69,381,900,728,932,743,048,483
42	<i>2</i> 75,265,412,856,343,074,274,146
43	1 ,092,687,308,874,612,006,972,082
44	£4,339,784,013,643,393,384,603,906
45	£17,244,800,728,846,724,289,191,074
46	$ \frac{3}{5} $ 68,557,762,666,345,165,410,168,738
47	<i>2</i> 72,680,844,424,943,840,614,538,634
48	1 ,085,035,285,182,087,705,685,323,738
49	<i>₹</i> 4,319,331,509,344,565,487,555,270,660
50	£17,201,460,881,287,871,798,942,420,736
51	£ 68,530,413,174,845,561,618,160,604,928
52	$\frac{3}{2}$ 273,126,660,016,519,143,293,320,026,256
53	$\underline{31,088,933,685,559,350,300,820,095,990,030}$
54	£4,342,997,469,623,933,155,942,753,899,000
55	£17,326,987,021,737,904,384,935,434,351,490
56	<i>§</i> 69,150,714,562,532,896,936,574,425,480,218

Enumeration and counting of polyominoes

• Ron Read [1962]

• . . .

- the transfer matrix method:
 A. R. Conway and A. J. Guttman [1995],
 I. Jensen [2001], D. E. Knuth [2001].
- I. Jensen [2003] computed A₅₆, using parallel computers.

The asymptotic growth of A_n $\lim_{n \to \infty} \sqrt[n]{A_n} =: \lambda \text{ exists. [D. A. Klarner 1967]}$

 $\lambda = Klarner's \ constant.$

 $3.874 \leq \lambda \leq 4.65$

Lower bound comes from "extrapolation" from the known values A_1, \ldots, A_{56} ("pseudo-renewal sequences" [Rands and Welsh 1981])

 λ is estimated to be ≈ 4.06 .

Does
$$\lim_{n\to\infty} \frac{A_{n+1}}{A_n}$$
 exist? $A_n \sim \text{const} \cdot \lambda^n n^{-1}$?

Best previous lower bound on Klarner's constant:

$3.874 \le \lambda \le 4.65$

We improve the lower bound to

 $\lambda \geq 3.9801$

by counting polyominoes on a twisted cylinder.

A twisted cylinder of width \boldsymbol{W}

identify point (i, j) with (i + 1, j + W) on the integer grid $\mathbb{Z} \times \mathbb{Z}$

A twisted cylinder of width \boldsymbol{W}

identify point (i, j) with (i + 1, j + W) on the integer grid $\mathbb{Z} \times \mathbb{Z}$

A twisted cylinder of width \boldsymbol{W}

identify point (i, j) with (i + 1, j + W) on the integer grid $\mathbb{Z} \times \mathbb{Z}$

 $A_n^W :=$ the number of n-ominoes on a twisted cylinder of width W

The plane contains more polyominoes than the twisted cylinder:

The plane contains more polyominoes than the twisted cylinder:

$$A_n \ge A_n^W$$

$$\lambda^W := \lim_{n \to \infty} \frac{A_{n+1}^W}{A_n^W}$$

 λ^W is a lower bound on Klarner's constant λ .

W	λ^W	W	λ^W	
3	2.6590	13	3.8775	
4	3.0609	14	3.8973	
5	3.3141	15	3.9139	
6	3.4809	16	3.9279	
7	3.5961	17	3.9399	* independently
8	3.6787	18	3.9502	"certified" with MAPLE
9	3.7402	19	3.9592	for $W \leq 20$:
10	3.7872	20	3.9671*	$\lambda^{20} \geq \frac{348080}{87743} > 3.96704$
11	3.8241	21	3.9740	01145
12	3.8535	22	3.9801	

Klarner's constant $\lambda \geq \lambda^W > 3.9801$.

The transfer matrix method a.k.a. dynamic programming

Build up the cylinder one cell at a time.

Retain information about connectivity of *partial polyomino* = "state" of partial polyomino

The *state* of a partial polyomino

state

$$= \langle \{2, 3, 4, 11, 12, 15, 16\}, \{6\}, \{8, 9\} \rangle$$

Adding a cell

Every state has two *successor states*: *succ*₀ and *succ*₁.

Adding a cell

Every state has two *successor states*: *succ*₀ and *succ*₁.

Adding a cell

Every state has two *successor states*: $succ_0$ and $succ_1$.

 $succ_0$ does not always exist.

This cell is disconnected from the boundary.

The transfer equations

$$\mathbf{x}_{s}^{(i)} := \mathsf{The} \ \mathsf{number} \ \mathsf{of} \ \mathsf{partial} \ \mathsf{polyominoes}$$

• with *i* occupied cells

• in state s

$$\mathbf{x}_{\langle\{W\}\rangle}^{(n)} = A_n^W$$

Recursion:

$$\mathbf{x}_{s}^{(i+1)} = \sum_{s':s=\textit{succ}_{0}(s')} \mathbf{x}_{s'}^{(i+1)} + \sum_{s':s=\textit{succ}_{1}(s')} \mathbf{x}_{s'}^{(i)} \quad (*)$$

No cyclic dependency

$$\mathbf{x}_{s}^{(i+1)} = \sum_{s':s=\textit{succ}_{0}(s')} \mathbf{x}_{s'}^{(i+1)} + \sum_{s':s=\textit{succ}_{1}(s')} \mathbf{x}_{s'}^{(i)} \quad (*)$$

 $\mathbf{x}^{(i+1)}$ depends on itself, but there is no cycle in the chain

s,
$$succ_0(s)$$
, $succ_0(succ_0(s))$,
 $succ_0(succ_0(succ_0(s)))$, ...

 $A_n^W = \mathbf{x}_{\langle \{W\} \rangle}^{(n)} =$ the number of paths from $u_{\langle \{1\} \rangle}^{(1)}$ to $u_{\langle \{W\} \rangle}^{(n)}$

Convergence of the iteration

$$\lambda^{W} = \lim_{n \to \infty} \frac{A_{n+1}^{W}}{A_{n}^{W}} = \lim_{n \to \infty} \frac{\mathbf{x}_{s}^{(n+1)}}{\mathbf{x}_{s}^{(n)}},$$

for any state s.

 λ^W is the Perron-Frobenius eigenvalue of the iteration

 $\mathbf{x}^{(n)} \mapsto \mathbf{x}^{(n+1)},$

and $\mathbf{x}^{(n)}$ converges to the corresponding eigenvector.

Convergence of the iteration

$$\lambda^{W} = \lim_{n \to \infty} \frac{A_{n+1}^{W}}{A_{n}^{W}} = \lim_{n \to \infty} \frac{\mathbf{x}_{s}^{(n+1)}}{\mathbf{x}_{s}^{(n)}},$$

for any state s.

 λ^W is the Perron-Frobenius eigenvalue of the iteration

 $\mathbf{x}^{(n)} \mapsto \mathbf{x}^{(n+1)},$

and $\mathbf{x}^{(n)}$ converges to the corresponding eigenvector.

[Some states are not successors of any state.]

Some states are not successors of any state

$$[A - - - A - BB] = \langle \{1, 6\}, \{8, 9\} \rangle$$

After removing states without predecessor, the "successor graph" is strongly connected, and it is aperiodic.

Some states are not successors of any state

$$[A - - - A - BB] = \langle \{1, 6\}, \{8, 9\} \rangle$$

After removing states without predecessor, the "successor graph" is strongly connected, and it is aperiodic.

Forward and backward recursion

The forward iteration:

$$\mathbf{x}_{s}^{(i+1)} := \sum_{s':s=\textit{succ}_{0}(s')} \mathbf{x}_{s'}^{(i+1)} + \sum_{s':s=\textit{succ}_{1}(s')} \mathbf{x}_{s'}^{(i)} \quad (*)$$

The backward iteration:

$$\mathbf{y}_{s}^{(i-1)} := \mathbf{y}_{\mathsf{succ}_{0}(s)}^{(i-1)} + \mathbf{y}_{\mathsf{succ}_{1}(s)}^{(i)}$$

(Omit $\mathbf{y}_{succ_0(s)}^{(i-1)}$ if $succ_0(s)$ does not exist.)

f(1) = f(1) includes of paths from $a(\{1\}) = a(\{1\})$

Convergence of the iteration

$$\lambda^W = \lim_{n \to \infty} \frac{\mathbf{y}_s^{(-(n+1))}}{\mathbf{y}_s^{(-n)}}, \text{ for any state } s.$$

 λ^W is the Perron-Frobenius eigenvalue of the iteration

$$\mathbf{y}^{(-n)}\mapsto \mathbf{y}^{(-(n+1))},$$

and $\mathbf{y}^{(-n)}$ converges to the corresponding eigenvector.

Convergence of the iteration

$$\lambda^W = \lim_{n \to \infty} rac{\mathbf{y}_s^{(-(n+1))}}{\mathbf{y}_s^{(-n)}}, ext{ for any state } s.$$

Lemma:

$$\min_{s} \frac{\mathbf{y}_{s}^{(-(n+1))}}{\mathbf{y}_{s}^{(-n)}} \leq \lambda^{W} \leq \max_{s} \frac{\mathbf{y}_{s}^{(-(n+1))}}{\mathbf{y}_{s}^{(-n)}}$$

 \implies bounds on λ^W from two successive iterates.

The program

 $succ_0$, $succ_1$ are stored in two arrays.

```
initialize y_old[s] := 1 for all s (for example)
```

while not convergence

for
$$s := 1$$
 to M
if $succ0[s] \neq 0$
then $y_new[s] := y_old[succ1[s]] + y_new[succ0[s]]$
else $y_new[s] := y_old[succ1[s]]$
 $y_old := y_new$

"state" s is an integer between 1 and $M = M_{W+1}$

How to represent states A state is a family of disjoint subsets of $\{1, 2, \ldots, W\}$ with two properties:

 non-crossing: The pattern

is forbidden.

• Adjacent occupied cells belong to the same block.

How to represent states

 \mathbf{y} is a vector whose entries are indexed by states s. Use a bijection between states and *Motzkin paths*.

n steps 0, ± 1 ; nonnegative; start and end at 0.

Motzkin numbers $M_n = \frac{3^n}{n^{3/2}} \cdot \sqrt{\frac{27}{4\pi}} \cdot (1 + O(1/n))$ $M_1, M_2, \ldots = 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, \ldots$

 $\begin{array}{l} \mathsf{states} \leftrightarrow \mathsf{Motzkin} \ \mathsf{paths} \ \mathsf{of} \ \mathsf{length} \ W+1 \\ \\ [\mathsf{suggested} \ \mathsf{by} \ \mathsf{Stefan} \ \mathsf{Felsner}] \end{array}$

• Cells of one component lie on the same odd level.

- Cells of one component lie on the same odd level.
- Cells of successive components on the same level are separated by a valley.

Ranking/unranking of Motzkin paths

Motzkin path $P \mapsto$ integer between 1 and M_n = rank of P in lexicographic order

The program

Preprocessing: store $succ_0$, $succ_1$ in two arrays.

```
initialize y_old[s] := 1 for all s
```

while not convergence

```
for s := 1 to M

if succ0[s] \neq 0

then y_new[s] := y_old[succ1[s]] + y_new[succ0[s]]

else y_new[s] := y_old[succ1[s]]

y_old := y_new
```


Open Questions?

$$\lambda^{W+1} > \lambda^W?$$

(may be easy)

$$\lim_{W \to \infty} \lambda^W = \lambda ?$$