Counting polyominoes on the twisted cylinder

Gill Barequet and Micha Moffie The Technion, Haifa

Ares Ribó and Günter Rote Freie Universität Berlin

Supported by the Deutsche Forschungsgemeinschaft within the European Graduate Program Combinatorics, Geometry and Computation (No. GRK 588/2)

Polyominoes (or lattice animals)

A polyomino is a connected subset of squares of the integer grid.
$\square 1$ monomino: $A_{1}=1 \quad \square \square 2$ dominoes: $A_{2}=2$
$\square \square \square \square \square$ triominoes: $A_{3}=6$

19 tetrominoes:

$$
A_{4}=19
$$

$A_{n}:=$ the number of n-ominoes

n	A_{n}
1	1
2	2
3	6
4	19
5	63
6	216
7	760
8	2,725
9	9,910
10	36,446
11	135,268
12	505,861
13	$1,903,890$
14	$7,204,874$
15	$27,394,666$
16	$104,592,937$
17	$400,795,844$
18	$1,540,820,542$
19	$5,940,738,676$
20	$22,964,779,660$
21	$88,983,512,783$
22	$345,532,572,678$
23	$1,344,372,335,524$
24	$5,239,988,770,268$
25	$20,457,802,016,011$
26	$79,992,676,367,108$
27	$313,224,032,098,244$
28	$1,228,088,671,826,973$

n	$A_{n}=$ polyominoes with n cells
29	$4,820,975,409,710,116$
30	$18,946,775,782,611,174$
31	$74,541,651,404,935,148$
32	$293,560,133,910,477,776$
33	$1,157,186,142,148,293,638$
34	$4,565,553,929,115,769,162$
35	$18,027,932,215,016,128,134$
36	$71,242,712,815,411,950,635$
37	$281,746,550,485,032,531,911$
38	$1,115,021,869,572,604,692,100$
39	$4,415,695,134,978,868,448,596$
40	$17,498,111,172,838,312,982,542$
41	$69,381,900,728,932,743,048,483$
42	$275,265,412,856,343,074,274,146$
43	$1,092,687,308,874,612,006,972,082$
44	$4,339,784,013,643,393,384,603,906$
45	$17,244,800,728,846,724,289,191,074$
46	$68,557,762,666,345,165,410,168,738$
47	$272,680,844,424,943,840,614,538,634$
48	$1,085,035,285,182,087,705,685,323,738$
49	$4,319,331,509,344,565,487,555,270,660$
50	$17,201,460,881,287,871,798,942,420,736$
51	$68,530,413,174,845,561,618,160,604,928$
52	$273,126,660,016,519,143,293,320,026,256$
53	$1,088,933,685,559,350,300,820,095,990,030$
54	$4,342,997,469,623,933,155,942,753,899,000$
55	$17,326,987,021,737,904,384,935,434,351,490$
56	$69,150,714,562,532,896,936,574,425,480,218$

n	A_{n} 三	n	$A_{n}=$ polyominoes with n cells
1	1 1ミ	29	ミ4，820，975，409，710，116
2	2	30	ミ18，946，775，782，611，174
3	¢	31	ミ $74,541,651,404,935,148$
4	\％	32	ミ293，560，133，910，477，776
5	ミ163	33	圭，157，186，142，148，293，638
6	ミ16	34	ミ $4,565,553,929,115,769,162$
7	ミ 760	35	这8，027，932，215，016，128，134
8	这，725	36	ミ $71,242,712,815,411,950,635$
9	ミ9，910	37	ミ $281,746,550,485,032,531,911$
10	ミ36，446	38	这，115，021，869，572，604，692，100
11	ミ135，268	39	ミ $4,415,695,134,978,868,448,596$
12	ミ505，861	40	ミ $17,498,111,172,838,312,982,542$
13	込，903，890	41	ミ $69,381,900,728,932,743,048,483$
14	ミ7，204，874	42	ミ $275,265,412,856,343,074,274,146$
15	ミ27，394，666	43	这，092，687，308，874，612，006，972，082
16	ミ104，592，937	44	ミ4，339，784，013，643，393，384，603，906
17	ミ	45	ミ三 $17,244,800,728,846,724,289,191,074$
18	这，540，820，542	46	ミ $68,557,762,666,345,165,410,168,738$
19	ミ5，940，738，676	47	ミ272，680， $844,424,943,840,614,538,634$
20	ミ $22,964,779,660$	48	这，085，035，285，182，087，705，685，323，738
21	ミ	49	ミ4，319，331，509，344，565，487，555，270，660
22	ミ $345,532,572,678$	50	ミ $17,201,460,881,287,871,798,942,420,736$
23	今il，344，372，335，524	51	ミ $68,530,413,174,845,561,618,160,604,928$
24	ミ $5,239,988,770,268$	52	ミ $273,126,660,016,519,143,293,320,026,256$
25	ミ20，457，802，016，011	53	这， $088,933,685,559,350,300,820,095,990,030$
26	$\stackrel{\text { ミ }}{\text {－}}$－ $9,992,676,367,108$	54	ミ $4,342,997,469,623,933,155,942,753,899,000$
27	$\stackrel{\text { ミ }}{\text { ミ }}$－ $13,224,032,098,244$	55	ミ
28	ミ1， 1 ，228，088，671，826，973	56	ミ

Enumeration and counting of polyominoes

- Ron Read [1962]
- ...
- the transfer matrix method:
A. R. Conway and A. J. Guttman [1995],
I. Jensen [2001], D. E. Knuth [2001].
- I. Jensen [2003] computed A_{56}, using parallel computers.

The asymptotic growth of A_{n}

$$
\lim _{n \rightarrow \infty} \sqrt[n]{A_{n}}=: \lambda \text { exists. [D. A. Klarner 1967] }
$$

$\lambda=$ Klarner's constant .

$$
3.874 \leq \lambda \leq 4.65
$$

Lower bound comes from "extrapolation" from the known values A_{1}, \ldots, A_{56}
("pseudo-renewal sequences" [Rands and Welsh 1981])
λ is estimated to be ≈ 4.06.
Does $\lim _{n \rightarrow \infty} \frac{A_{n+1}}{A_{n}}$ exist? $A_{n} \sim$ const $\cdot \lambda^{n} n^{-1}$?

Best previous lower bound on Klarner's constant:

$$
3.874 \leq \lambda \leq 4.65
$$

We improve the lower bound to

$$
\lambda \geq 3.9801
$$

by counting polyominoes on a twisted cylinder.

A twisted cylinder of width W

identify point (i, j) with $(i+1, j+W)$ on the integer grid $\mathbb{Z} \times \mathbb{Z}$

A twisted cylinder of width W

identify point (i, j) with $(i+1, j+W)$ on the integer grid $\mathbb{Z} \times \mathbb{Z}$

A twisted cylinder of width W

identify point (i, j) with $(i+1, j+W)$ on the integer grid $\mathbb{Z} \times \mathbb{Z}$
$A_{n}^{W}:=$ the number of n-ominoes on a twisted cylinder of width W

The plane contains more polyominoes than the twisted cylinder:
$A_{n} \geq A_{n}^{W}$

UNWRAP: one-to-many
$\mathbb{Z} \times \mathbb{Z}$

The plane contains more polyominoes than the twisted cylinder:

$$
\begin{gathered}
A_{n} \geq A_{n}^{W} \\
\lambda^{W}:=\lim _{n \rightarrow \infty} \frac{A_{n+1}^{W}}{A_{n}^{W}}
\end{gathered}
$$

λ^{W} is a lower bound on Klarner's constant λ.

Klarner's constant $\lambda \geq \lambda^{W}>3.9801$.

The transfer matrix method a.k.a. dynamic programming

Build up the cylinder one cell at a time.
Retain information about connectivity of partial polyomino $=$ "state" of partial polyomino

The state of a partial polyomino

Adding a cell

Every state has two successor states: succ ${ }_{0}$ and succ $_{1}$.

Adding a cell

Every state has two successor states: succ ${ }_{0}$ and succ $_{1}$.

Adding a cell

Every state has two successor states: succ ${ }_{0}$ and succ $_{1}$.

succ $_{0}$ does not always exist.

$$
s=\langle\{1,2\},\{4\}\rangle
$$

$$
\operatorname{succ}_{0}(s)=\emptyset
$$

This cell is disconnected from the boundary.

The transfer equations

$\mathbf{x}_{s}^{(i)}:=$ The number of partial polyominoes

- with i occupied cells
- in state s

$$
\mathbf{x}_{\langle\{W\}\rangle}^{(n)}=A_{n}^{W}
$$

Recursion:

$$
\mathbf{x}_{s}^{(i+1)}=\sum_{s^{\prime}: s=\operatorname{succ}_{0}\left(s^{\prime}\right)} \mathbf{x}_{s^{\prime}}^{(i+1)}+\sum_{s^{\prime}: s=\operatorname{succ}_{1}\left(s^{\prime}\right)} \mathbf{x}_{s^{\prime}}^{(i)}(*)
$$

No cyclic dependency

$$
\mathbf{x}_{s}^{(i+1)}=\sum_{s^{\prime}: s=\operatorname{succ}_{0}\left(s^{\prime}\right)} \mathbf{x}_{s^{\prime}}^{(i+1)}+\sum_{s^{\prime}: s=\operatorname{succ}_{1}\left(s^{\prime}\right)} \mathbf{x}_{s^{\prime}}^{(i)}(*)
$$

$\mathbf{x}^{(i+1)}$ depends on itself, but there is no cycle in the chain

$$
\begin{aligned}
& s, \operatorname{succ}_{0}(s), \operatorname{succ}_{0}\left(\operatorname{succ}_{0}(s)\right) \\
& \qquad \operatorname{succ}_{0}\left(\operatorname{succ}_{0}\left(\operatorname{succ}_{0}(s)\right)\right), \ldots
\end{aligned}
$$

Example:
$W=3$

SuCC $_{0}$

SUCC $_{1}$

$$
\begin{equation*}
\mathbf{x}_{s}^{(i+1)}:=\sum_{s^{\prime}: s=\operatorname{succ}_{0}\left(s^{\prime}\right)} \mathbf{x}_{s^{\prime}}^{(i+1)}+\sum_{s^{\prime}: s=\operatorname{succ}_{1}\left(s^{\prime}\right)} \mathbf{x}_{s^{\prime}}^{(i)} \tag{*}
\end{equation*}
$$

$A_{n}^{W}=\mathbf{x}_{\langle\{W\}\rangle}^{(n)}=$ the number of paths from $u_{\langle\{1\}\rangle}^{(1)}$ to $u_{\langle\{W\}\rangle}^{(n)}$

Convergence of the iteration

$$
\lambda^{W}=\lim _{n \rightarrow \infty} \frac{A_{n+1}^{W}}{A_{n}^{W}}=\lim _{n \rightarrow \infty} \frac{\mathbf{x}_{s}^{(n+1)}}{\mathbf{x}_{s}^{(n)}},
$$

for any state s.
λ^{W} is the Perron-Frobenius eigenvalue of the iteration

$$
\mathbf{x}^{(n)} \mapsto \mathbf{x}^{(n+1)},
$$

and $\mathbf{x}^{(n)}$ converges to the corresponding eigenvector.

Convergence of the iteration

$$
\lambda^{W}=\lim _{n \rightarrow \infty} \frac{A_{n+1}^{W}}{A_{n}^{W}}=\lim _{n \rightarrow \infty} \frac{\mathbf{x}_{s}^{(n+1)}}{\mathbf{x}_{s}^{(n)}}
$$

for any state s.
λ^{W} is the Perron-Frobenius eigenvalue of the iteration

$$
\mathbf{x}^{(n)} \mapsto \mathbf{x}^{(n+1)},
$$

and $\mathbf{x}^{(n)}$ converges to the corresponding eigenvector.
[Some states are not successors of any state.]

Some states are not successors of any state

Some states are not successors of any state

Forward and backward recursion

The forward iteration:

$$
\begin{equation*}
\mathbf{x}_{s}^{(i+1)}:=\sum_{s^{\prime}: s=\operatorname{succ}_{0}\left(s^{\prime}\right)} \mathbf{x}_{s^{\prime}}^{(i+1)}+\sum_{s^{\prime}: s=\operatorname{succ}_{1}\left(s^{\prime}\right)} \mathbf{x}_{s^{\prime}}^{(i)} \tag{*}
\end{equation*}
$$

The backward iteration:

$$
\mathbf{y}_{s}^{(i-1)}:=\mathbf{y}_{\text {succ }_{0}(s)}^{(i-1)}+\mathbf{y}_{\text {succ }_{1}(s)}^{(i)}
$$

(Omit $\mathbf{y}_{\text {succo }_{0}(s)}^{(i-1)}$ if $\operatorname{succ}_{0}(s)$ does not exist.)

$$
\mathbf{y}_{s}^{(i-1)}:=\mathbf{y}_{\text {succ }_{0}(s)}^{(i-1)}+\mathbf{y}_{\text {succ }_{1}(s)}^{(i)}
$$

$A_{n}^{W}=\mathbf{y}_{\langle\{1\}\rangle}^{(-n)}=$ the number of paths from $u_{\langle\{1\}\rangle}^{(1)}$ to $u_{\langle\{W\}\rangle}^{(n)}$

Convergence of the iteration

$$
\lambda^{W}=\lim _{n \rightarrow \infty} \frac{\mathbf{y}_{s}^{(-(n+1))}}{\mathbf{y}_{s}^{((-n)}}, \text { for any state } s .
$$

λ^{W} is the Perron-Frobenius eigenvalue of the iteration

$$
\mathbf{y}^{(-n)} \mapsto \mathbf{y}^{(-(n+1))},
$$

and $\mathbf{y}^{(-n)}$ converges to the corresponding eigenvector.

Convergence of the iteration

$$
\lambda^{W}=\lim _{n \rightarrow \infty} \frac{\mathbf{y}_{s}^{(-(n+1))}}{\mathbf{y}_{s}^{((-n)}}, \text { for any state } s .
$$

Lemma:

$$
\min _{s} \frac{\mathbf{y}_{s}^{(-(n+1))}}{\mathbf{y}_{s}^{(-n)}} \leq \lambda^{W} \leq \max _{s} \frac{\mathbf{y}_{s}^{(-(n+1))}}{\mathbf{y}_{s}^{(-n)}}
$$

\Longrightarrow bounds on λ^{W} from two successive iterates.

The program

succ $_{0}$, succ $_{1}$ are stored in two arrays.
initialize y_{2} old $[s]:=1$ for all s (for example)
while not convergence
for $s:=1$ to M
if $\operatorname{succ} 0[s] \neq 0$
then y_new $[s]:=y _o l d[\operatorname{succ} 1[s]]+y _n e w[\operatorname{succ} 0[s]]$
else y_new $[s]:=y _o l d[\operatorname{succ} 1[s]]$
y_old $:=$ y_new
"state" s is an integer between 1 and $M=M_{W+1}$

How to represent states

A state is a family of disjoint subsets of $\{1,2, \ldots, W\}$ with two properties:

- non-crossing:

The pattern

$$
\ldots \text { А.... В...А........ }
$$

is forbidden.

- Adjacent occupied cells belong to the same block.

How to represent states

\mathbf{y} is a vector whose entries are indexed by states s. Use a bijection between states and Motzkin paths.

n steps $0, \pm 1$; nonnegative; start and end at 0 .

$$
\begin{aligned}
& \text { Motzkin numbers } M_{n}=\frac{3^{n}}{n^{3 / 2}} \cdot \sqrt{\frac{27}{4 \pi}} \cdot(1+O(1 / n)) \\
& M_{1}, M_{2}, \ldots=1,2,4,9,21,51,127,323,835,2188, \ldots
\end{aligned}
$$

states \leftrightarrow Motzkin paths of length $W+1$ [suggested by Stefan Felsner]

- A A A - B - C C - A A - A A

states \leftrightarrow Motzkin paths of length $W+1$ [suggested by Stefan Felsner]

$W+1$
even levels: free cells
states \leftrightarrow Motzkin paths of length $W+1$ [suggested by Stefan Felsner]

- Cells of one component lie on the same odd level.
states \leftrightarrow Motzkin paths of length $W+1$ [suggested by Stefan Felsner]

- Cells of one component lie on the same odd level.
- Cells of successive components on the same level are separated by a valley.

Ranking/unranking of Motzkin paths

$\mapsto 9+4+0+1+0=14$

Motzkin path $P \mapsto$ integer between 1 and M_{n}
$=$ rank of P in lexicographic order

```
state \(s=\langle\{1,7\},\{4,5\},\{10,11,12\}\rangle\)
```


Computing successors

Computing successors

The program

Preprocessing: store succ_{0}, succ $_{1}$ in two arrays.
initialize y_old $[s]:=1$ for all s
while not convergence
for $s:=1$ to M
if $\operatorname{succ} 0[s] \neq 0$
then $y _n e w[s]:=y _o l d[\operatorname{succ} 1[s]]+y _n e w[\operatorname{succ} 0[s]]$
else y_new $[s]:=y _o l d[\operatorname{succ} 1[s]]$
y_old $:=$ y_new
storage: 4 arrays

storage: 4 arrays

$W=22: M \approx 10^{9}$
18 Gigabytes of main memory (32 available)

240 iterations
6 hours runtime

16 bytes

Open Questions?

$$
\lambda^{W+1}>\lambda^{W} ?
$$

(may be easy)

$$
\lim _{W \rightarrow \infty} \lambda^{W}=\lambda ?
$$

