Lexicographic Fréchet Matching

Günter Rote

Freie Universität Berlin

Matching between two Curves

```
\(P:\left[0, L_{P}\right] \rightarrow \mathbb{R}^{2}\)
\(Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2}\)
```

two curves

Matching between two Curves

$P:\left[0, L_{P}\right] \rightarrow \mathbb{R}^{2} \quad \alpha:[0, M] \rightarrow\left[0, L_{P}\right]$, monotone bijections
$Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2} \quad \beta:[0, M] \rightarrow\left[0, L_{Q}\right]$
two curves
joint parametrization \rightarrow "matching"

Matching between two Curves

$P:\left[0, L_{P}\right] \rightarrow \mathbb{R}^{2} \quad \alpha:[0, M] \rightarrow\left[0, L_{P}\right]$, monotone bijections
$Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2} \quad \beta:[0, M] \rightarrow\left[0, L_{Q}\right]$
two curves
joint parametrization \rightarrow "matching"

Matching between two Curves

$Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2} \quad \beta:[0, M] \rightarrow\left[0, L_{Q}\right]$
two curves
joint parametrization \rightarrow "matching"

Matching between two Curves

$Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2} \quad \beta:[0, M] \rightarrow\left[0, L_{Q}\right]$
two curves
joint parametrization \rightarrow "matching"

Matching between two Curves

$P:\left[0, L_{P}\right] \rightarrow \mathbb{R}^{2} \quad \alpha:[0, M] \rightarrow\left[0, L_{P}\right]$, monotone bijections
$Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2} \quad \beta:[0, M] \rightarrow\left[0, L_{Q}\right]$
two curves
joint parametrization \rightarrow "matching"

$P:\left[0, L_{P}\right] \rightarrow \mathbb{R}^{2} \quad \alpha:[0, M] \rightarrow\left[0, L_{P}\right]$, monotone bijections
$Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2} \quad \beta:[0, M] \rightarrow\left[0, L_{Q}\right]$
two curves
joint parametrization \rightarrow "matching"

$P:\left[0, L_{P}\right] \rightarrow \mathbb{R}^{2} \quad \alpha:[0, M] \rightarrow\left[0, L_{P}\right]$, monotone bijections
$Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2} \quad \beta:[0, M] \rightarrow\left[0, L_{Q}\right]$
two curves
joint parametrization \rightarrow "matching"

$P:\left[0, L_{P}\right] \rightarrow \mathbb{R}^{2} \quad \alpha:[0, M] \rightarrow\left[0, L_{P}\right]$, monotone bijections
$Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2} \quad \beta:[0, M] \rightarrow\left[0, L_{Q}\right]$
two curves
joint parametrization \rightarrow "matching"

Matching between two Curves

$P:\left[0, L_{P}\right] \rightarrow \mathbb{R}^{2} \quad \alpha:[0, M] \rightarrow\left[0, L_{P}\right]$, monotone bijections
$Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2} \quad \beta:[0, M] \rightarrow\left[0, L_{Q}\right]$
two curves
joint parametrization \rightarrow "matching"

$P:\left[0, L_{P}\right] \rightarrow \mathbb{R}^{2} \quad \alpha:[0, M] \rightarrow\left[0, L_{P}\right]$, monotone bijections
$Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2} \quad \beta:[0, M] \rightarrow\left[0, L_{Q}\right]$
two curves
joint parametrization \rightarrow "matching"

Fréchet distance [Alt Godau 1995]:
$\max \{\|P(\alpha(t))-Q(\beta(t))\|: 0 \leq t \leq M\} \rightarrow \mathrm{MIN}$!
$P:\left[0, L_{P}\right] \rightarrow \mathbb{R}^{2} \quad \alpha:[0, M] \rightarrow\left[0, L_{P}\right]$, monotone bijections
$Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2} \quad \beta:[0, M] \rightarrow\left[0, L_{Q}\right]$
two curves
joint parametrization \rightarrow "matching"

Fréchet distance [Alt Godau 1995]:
$\max \{\|P(\alpha(t))-Q(\beta(t))\|: 0 \leq t \leq M\} \rightarrow \mathrm{MIN}$!
$P:\left[0, L_{P}\right] \rightarrow \mathbb{R}^{2} \quad \alpha:[0, M] \rightarrow\left[0, L_{P}\right]$, monotone bijections
$Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2} \quad \beta:[0, M] \rightarrow\left[0, L_{Q}\right]$
two curves
joint parametrization \rightarrow "matching"

Fréchet distance [Alt Godau 1995]:
$\max \{\|P(\alpha(t))-Q(\beta(t))\|: 0 \leq t \leq M\} \rightarrow \mathrm{MIN}$!

Matching between two Curves

$P:\left[0, L_{P}\right] \rightarrow \mathbb{R}^{2} \quad \alpha:[0, M] \rightarrow\left[0, L_{P}\right]$, monotone bijections
$Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2} \quad \beta:[0, M] \rightarrow\left[0, L_{Q}\right]$
two curves
joint parametrization \rightarrow "matching"

Fréchet distance [Alt Godau 1995]: $\max \{\|P(\alpha(t))-Q(\beta(t))\|: 0 \leq t \leq M\} \rightarrow \mathrm{MIN}$!

Matching between two Curves

$P:\left[0, L_{P}\right] \rightarrow \mathbb{R}^{2} \quad \alpha:[0, M] \rightarrow\left[0, L_{P}\right]$, monotone bijections
$Q:\left[0, L_{Q}\right] \rightarrow \mathbb{R}^{2} \quad \beta:[0, M] \rightarrow\left[0, L_{Q}\right]$
two curves
joint parametrization \rightarrow "matching"

Fréchet distance [Alt Godau 1995]:
$\max \{\|P(\alpha(t))-Q(\beta(t))\|: 0 \leq t \leq M\} \rightarrow \mathrm{MIN}$!
$f(t)=$ distance function

Comparison of Distance Functions

Goal: a finer criterion than $\max \{f(t): 0 \leq t \leq M\}$

profile function $\hat{f}: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$:

$$
\hat{f}(s)=\text { the amount of time that } f(t) \text { is at least } s
$$

$$
=\mu(\{t \mid f(t) \geq s\}) \quad(\mu=\text { Lebesgue measure })
$$

Comparison of Distance Functions

Goal: a finer criterion than $\max \{f(t): 0 \leq t \leq M\}$

profile function $\hat{f}: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$:

$$
\hat{f}(s)=\text { the amount of time that } f(t) \text { is at least } s
$$

$$
=\mu(\{t \mid f(t) \geq s\}) \quad(\mu=\text { Lebesgue measure })
$$

Normalization

Main Assumption:

The speed at which the curves P and Q are traversed by the parametrizations α and β is bounded by 1 .

Normalization

Main Assumption:

The speed at which the curves P and Q are traversed by the parametrizations α and β is bounded by 1 .

Assume arc-length parametrization for P and Q.

PROBLEM STATEMENT:

Minimize the profile \hat{f} of the distance function

$$
f(t)=\|P(\alpha(t))-Q(\beta(t))\|
$$

with respect to $\prec_{\text {lex }}$ under the constraints $\alpha^{\prime}(t), \beta^{\prime}(t) \leq 1$.

Example

Locally Correct Fréchet Matching

Related Work: [Buchin, Buchin, Meulemans, Speckmann 2012]
The maximum distance between any two matched subcurves must be the Fréchet distance between these two curves.

Locally Correct Fréchet Matching

Related Work: [Buchin, Buchin, Meulemans, Speckmann 2012]
The maximum distance between any two matched subcurves must be the Fréchet distance between these two curves.

The Parameter Rectangle R

The Parameter Rectangle R

The Parameter Rectangle R

The Parameter Rectangle R

wanted: monotone path

The Parameter Rectangle R

wanted: monotone path speed limit in $L_{\text {max }}$-norm

The Parameter Rectangle R

wanted: monotone path speed limit in $L_{\text {max }}$-norm

Avoid high values of $\|P(x)-Q(y)\|$

ASSUME: There is a UNIQUE critical passage.

ASSUME: There is a UNIQUE critical passage.

ASSUME: There is a UNIQUE critical passage.

find optimal subpaths
ASSUME: There is a UNIQUE critical passage.

find optimal subpaths
ASSUME: There is a UNIQUE critical passage.

Steepest Descent

Inside one cell: $\delta(x, y):=\|P(x)-Q(y)\|$

$$
=\sqrt{(x-a)^{2}+(y-b)^{2}+\lambda(x-a)(y-b)+c}
$$

Steepest Descent

Inside one cell: $\delta(x, y):=\|P(x)-Q(y)\|$

$$
=\sqrt{(x-a)^{2}+(y-b)^{2}+\lambda(x-a)(y-b)+c}
$$

Steepest Descent

Inside one cell: $\delta(x, y):=\|P(x)-Q(y)\|$

$$
=\sqrt{(x-a)^{2}+(y-b)^{2}+\lambda(x-a)(y-b)+c}
$$

Steepest Descent

Inside one cell: $\delta(x, y):=\|P(x)-Q(y)\|$

$$
=\sqrt{(x-a)^{2}+(y-b)^{2}+\lambda(x-a)(y-b)+c}
$$

Steepest Descent

Inside one cell: $\delta(x, y):=\|P(x)-Q(y)\|$

$$
=\sqrt{(x-a)^{2}+(y-b)^{2}+\lambda(x-a)(y-b)+c}
$$

Searching among Events

standard reduction the decision problem							
				A			
				A			

A follows steepest descent path: decrease height ε while \exists monotone path from A to B with height $\leq \varepsilon$

Searching among Events

A follows steepest descent path: decrease height ε while \exists monotone path from A to B with height $\leq \varepsilon$

Searching among Events

A follows steepest descent path: decrease height ε while \exists monotone path from A to B with height $\leq \varepsilon$

Searching among Events

While A is in one cell (i.e., $O(n)$ times):
Search among new events: $O(\log n) \times$ feasibility $=O\left(n^{2} \log n\right)$ Search among old events: classical Fréchet $=O\left(n^{2} \log n\right)$
\rightarrow Overall time $=O\left(n^{3} \log n\right)_{\text {naten }}$

Other Normalizations

The sum of the speeds is ≤ 1. (L_{1}-norm)

several critical passages

