Counting and Enumeration in

 Combinatorial Geometry
Günter Rote

Freie Universität Berlin

two triangulations
General position: No three points on a line

Counting and Enumeration in

 Combinatorial Geometry
Günter Rote

Freie Universität Berlin

- enumeration
- counting and sampling
- bounds
- optimization
- . .

two triangulations
General position: No three points on a line

Background

Given a set of n points in the plane in general position, how many

- triangulations
- non-crossing spanning trees
- non-crossing Hamiltonian cycles
- non-crossing matchings
- non-crossing perfect matchings
- [your favorite straight-line geometric graph structure] can it have?

Datei Bearbeiten \underline{A} nsicht Chronik Lesezeichen Extras Hilfe
(1) Numbers of Plane Graphs | Som... $ఔ$
~ (https://adamsheffer.wordpress.com/numbers-of-plane-graphs/

We first consider the more popular variants - those with new works studying them every several years.

Polynomial Method

GRAPH TYPE	LOWER Bound	REFERENCE	UPPER Bound	REFERENCE
Plane Graphs	$\Omega\left(41.18^{N}\right)$	[AHHHKV]	$O\left(187.53^{N}\right)$	[SS12]
Triangulations	$\Omega\left(8.65^{N}\right)$	[DSST11]	30^{N}	[SS11]
Spanning Cycles	$\Omega\left(4.64^{N}\right)$	[GNT00]	$O\left(54.55^{N}\right)$	[SSW13]
Perfect Matchings	$\Omega\left(3.09^{N}\right)$	[AR15]	$O\left(10.05^{N}\right)$	[SW06]
Spanning Trees	$\Omega\left(12.52^{N}\right)$	[HM13]	$O\left(141.07^{N}\right)$	[HSSTW11; SS11]
Cycle-Free Graphs	$\Omega\left(13.61^{N}\right)$	[HM13]	$O\left(160.55^{N}\right)$	[HSSTW11; [S11]

Lecture Notes

Recent Comments Incidences: Bo... on Incidences: Bounds (par

Incidences: Bo... on

Formulation the Sz...

Some less common variants:

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe
Q Numbers of Plane Graphs｜Som．．．\＆
々（ https：／／adamsheffer．wordpress．com／numbers－of－plane－graphs／

We first consider the more popular variants－those with new works studying them every several years．

Polynomial Method Lecture Notes

GRAPH TYPE	Lower bound	Reference	UPPER bound	REference
Plane Graphs	$\Omega\left(41.18^{N}\right)$	［AHHHKV］	$O\left(187.53^{N}\right)$	［SS12］
Triangulations	$\Omega\left(8.65^{N}\right)$	［DSST11］	30^{N}	［SS11］

Min \＃Triangulations：$\Omega\left(2.43^{n}\right) \quad O\left(3.455^{n}\right)$

Perfect Matchings	$\Omega\left(3.09^{N}\right)$	［AR15］	$O\left(10.05^{N}\right)$	${ }_{\text {［SW06］}}$
Spanning Trees	$\Omega\left(12.52^{N}\right)$	［HM13］	$O\left(141.07^{N}\right)$	［HSSTW11； SS11］
Cycle－Free Graphs	$\Omega\left(13.61^{N}\right)$	［HM13］	$O\left(160.55^{N}\right)$	［HSSTW11； ［S11］

Some less common variants：

Previous Results on Perfect Matchings

smallest possible number of perfect matchings: $\Theta^{*}\left(2^{n}\right)$
[García, Noy, Tejel 2000]
Upper bound: $O^{*}\left(10.06^{n}\right)$
[Sharir, Welzl 2006]

* = up to a polynomial factor

The Double-Zigzag Chain

The Proof

$C=\frac{2\left(1+x+x^{3}\right)-\sqrt{2\left(1+x+x^{3}\right)\left(1-2 x-8 x^{2}-3 x^{3}+1\right.}}{4 x(1+x)(1+x+x}$
smallest singularity: $1-9 x-3 x^{2}=0$

$$
x_{0}=\frac{\sqrt{93}}{6}-\frac{3}{2}
$$

$$
1 / \sqrt{x_{0}}=\sqrt{6 /(\sqrt{93}-9)} \approx 3.0532
$$

$\#($ perfect matchings in $P \cup Q)=\Theta^{*}\left(3.0532^{n}\right)$

Longer Arcs

$|P|=n r+1$

3
$r=8: \quad \Theta^{*}\left(3.0930^{n}\right)$

Dynamic Programming Recursion

$X_{B}^{n}=\#$ possibilities after n arcs with B crossing runners

Example: $r=5$

matrix for transforming $\left(X_{0}^{n-1}, X_{1}^{n-1}, X_{2}^{n-1}, \ldots\right)$ into $\left(X_{0}^{n}, X_{1}^{n}, X_{2}^{n}, \ldots\right)$
$\left(\begin{array}{cccccccccccc}10 & 30 & 30 & 20 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 30 & 40 & 50 & 35 & 21 & 5 & 1 & 0 & 0 & 0 & 0 & \ldots \\ 30 & 50 & 45 & 51 & 35 & 21 & 5 & 1 & 0 & 0 & 0 & \ldots \\ 20 & 35 & 51 & 45 & 51 & 35 & 21 & 5 & 1 & 0 & 0 & \ldots \\ 5 & 21 & 35 & 51 & 45 & 51 & 35 & 21 & 5 & 1 & 0 & \ldots \\ 1 & 5 & 21 & 35 & 51 & 45 & 51 & 35 & 21 & 5 & 1 & \ldots \\ 0 & 1 & 5 & 21 & 35 & 51 & 45 & 51 & 35 & 21 & 5 & \ldots \\ 0 & 0 & 1 & 5 & 21 & 35 & 51 & 45 & 51 & 35 & 21 & \ldots \\ 0 & 0 & 0 & 1 & 5 & 21 & 35 & 51 & 45 & 51 & 35 & \ldots \\ 0 & 0 & 0 & 0 & 1 & 5 & 21 & 35 & 51 & 45 & 51 & \ldots \\ 0 & 0 & 0 & 0 & 0 & 1 & 5 & 21 & 35 & 51 & 45 & \ldots \\ \vdots & \ddots\end{array}\right)$
row sum $=271 \Longrightarrow$ vectors grow like $271^{n} / \operatorname{poly}(n)$

Counting Triangulations

Counting, sampling, enumerating [V. Alvarez, R. Seidel 2013]
triangulation

Counting Triangulations

Counting, sampling, enumerating [V. Alvarez, R. Seidel 2013]
triangulation \rightarrow sequence of x-monotone paths

Counting Triangulations

Counting, sampling, enumerating [V. Alvarez, R. Seidel 2013]
triangulation \rightarrow sequence of x-monotone paths

Counting Triangulations

Counting, sampling, enumerating [V. Alvarez, R. Seidel 2013]
triangulation \rightarrow sequence of x-monotone paths

Counting Triangulations

Counting, sampling, enumerating [V. Alvarez, R. Seidel 2013]
triangulation \rightarrow sequence of x-monotone paths

Counting Triangulations

Counting, sampling, enumerating [V. Alvarez, R. Seidel 2013]
triangulation \rightarrow sequence of x-monotone paths

Counting Triangulations

Counting, sampling, enumerating [V. Alvarez, R. Seidel 2013]
triangulation \rightarrow sequence of x-monotone paths

Counting Triangulations

Counting, sampling, enumerating [V. Alvarez, R. Seidel 2013]
triangulation \rightarrow sequence of x-monotone paths

\rightarrow path in a DAG of size $O^{*}\left(2^{n}\right)$

Counting Triangulations

Counting, sampling, enumerating [V. Alvarez, R. Seidel 2013]

Counting Triangulations

Counting, sampling, enumerating [V. Alvarez, R. Seidel 2013]

\rightarrow path in a DAG of size O^{*} always choose the LEFTmost triangle! $O(1)$-delay enumeration, with $O^{*}\left(2^{n}\right)$ preprocessing

Extension to Perfect Matchings

Every point set has at least [Manuel Wettstein 2014] Catalan $(n / 2) \sim 2^{n}$ perfect non-crossing matchings.

Extension to Perfect Matchings

Every point set has at least
[Manuel Wettstein 2014] Catalan $(n / 2) \sim 2^{n}$ perfect non-crossing matchings.

(tight (almost only) for point sets in convex position)

Extension to Perfect Matchings

Every point set has at least
[Manuel Wettstein 2014] Catalan $(n / 2) \sim 2^{n}$ perfect non-crossing matchings.

TRICK to achieve polynomial delay:

Output those "trivial" matchings while preparing the DAG.
(tight (almost only) for point sets in convex position)

