The Computational Geometry of Congruence Testing

Günter Rote
Freie Universität Berlin

The Computational Geometry of

 Congruence TestingGünter Rote Freie Universität Berlin

- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions
- d dimensions
- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions \int tomorrow (joint work with Heuna Kim)
- dimensions $O\left(n^{\lceil d / 3\rceil} \log n\right)$ time [Brass and Knauer 2002]
$O\left(n^{(1+\lfloor d / 2\rfloor) / 2} \log n\right)$ Monte Carlo [Akutsu 1998/Matoušek]
- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions \int tomorrow (joint work with Heuna Kim)
- dimensions $O\left(n^{\lceil d / 3\rceil} \log n\right)$ time [Brass and Knauer 2002] $O\left(n^{(1+\lfloor d / 2\rfloor) / 2} \log n\right)$ Monte Carlo [Akutsu 1998/Matoušek]
- Problem statement and variations
- Dimension reduction as in [Alt, Mehlhorn, Wagener, Welzl]
- The birthday paradox [Akutsu]
- Planar graph isomorphism
- Akutsu's canonical form
- Matoušek's closest pairs
- Atkinson's reduction (pruning/condensation)

Rotation or Rotation+Reflection?

We only need to consider proper congruence (orientation-preserving congruence, of determinant +1).

If mirror-congruence is also desired, repeat the test twice, for B and its mirror image B^{\prime}.

Congruence $=$ Rotation + Translation

Translation is easy to determine:
The centroid of A must coincide with the centroid of B.

\rightarrow from now on: All point sets are centered at the origin 0 :

$$
\sum_{a \in A} a=\sum_{b \in B} b=0
$$

We need to find a rotation around the origin (orthogonal matrix T with determinant +1) which maps A to $B: T A=B$

Geometric Shapes

Geometric Shapes

Geometric shapes

can be represented by "marked" (colored) point sets.

Exact Arithmetic

The proper setting for this (mathematical) problem requires real numbers as inputs and exact arithmetic.
\rightarrow the Real RAM model (RAM $=$ random access machine): One elementary operation with real numbers $(+, \div, \sqrt{ }, \sin)$ is counted as one step.

Exact Arithmetic

The proper setting for this (mathematical) problem requires real numbers as inputs and exact arithmetic.
\rightarrow the Real RAM model (RAM $=$ random access machine):
One elementary operation with real numbers $(+, \div, \sqrt{ }, \sin)$ is counted as one step.

A regular 5-gon, 7-gon, 8-gon, ... with rational coordinates does not exist in any dimension.
[Arvind, Rattan 2016]:
Rational coordinates with L bits:
$2^{O(d \log d)} \cdot \operatorname{poly}(n L)$ time
(fixed-parameter tractable, FPT) Previously: $2^{O\left(d^{4}\right)} \cdot \operatorname{poly}(n L)$
[Evdokimov, Ponomarenko 1997]

Congruence testing is the basic problem for many pattern matching tasks

- computer vision
- star matching
- brain matching

The proper setting for this applied problem requires tolerances, partial matchings, and other extensions.

Given two sets A and B in the plane and an error tolerance ε, find a bijection $f: A \rightarrow B$ and a congruence T such that

$$
\|T(a)-f(a)\| \leq \varepsilon, \text { for every } a \in A .
$$

$O\left(n^{8}\right)$ time in the plane

[Alt, Mehlhorn, Wagener, Welzl 1988]

Arbitrary Dimension

$A, B \subset \mathbb{R}^{d},|A|=|B|=n$.
We consider the problem for fixed dimension d.
When d is unrestricted, the problem is equivalent to graph isomorphism:
$G=(V, E), V=\{1,2, \ldots, n\}$
$\begin{aligned} \mapsto A= & \underbrace{\left\{e_{1}, \ldots, e_{n}\right\}}_{\text {regular simplex }} \cup\left\{\left.\frac{e_{i}+e_{j}}{2} \right\rvert\, i j \in E\right\} \subset \mathbb{R}^{n} \\ & e_{i}=(0, \ldots, 0,1,0, \ldots, 0)\end{aligned}$

MAIN CONJECTURE:

Congruence can be tested in $O(n \log n)$ time for every fixed dimension d.

Current best bound: $O\left(n^{\lceil d / 3\rceil} \log n\right)$ time

Arbitrary Dimension

$A, B \subset \mathbb{R}^{d},|A|=|B|=n$.
We consider the problem for fixed dimension d.
When d is unrestricted, the problem is equivalent to graph isomorphism:
$G=(V, E), V=\{1,2, \ldots, n\}$
$\begin{aligned} \mapsto A= & \underbrace{\left\{e_{1}, \ldots, e_{n}\right\}}_{\text {regular simplex }} \cup\left\{\left.\frac{e_{i}+e_{j}}{2} \right\rvert\, i j \in E\right\} \subset \mathbb{R}^{n} \\ & e_{i}=(0, \ldots, 0,1,0, \ldots, 0)\end{aligned}$

MAIN CONJECTURE:

Congruence can be tested in $O(n \log n)$ time for every fixed dimension d.

Current best bound: $O\left(n^{\lceil d / 3\rceil} \log n\right)$ time

Trivial.

(after shifting the centroid to the origin and getting rid of reflection):

Test if $A=B . O(n \log n)$ time.

Can be done by string matching.
Sort points around the origin.
Encode alternating sequence of distances r_{i} and angles φ_{i}.

$$
\left(r_{1}, \varphi_{1} ; r_{2}, \varphi_{2} ; \ldots ; r_{n}, \varphi_{n}\right)
$$

Check whether the corresponding sequence of B is a cyclic shift.
$\rightarrow O(n \log n)+O(n)$ time.

Can be done by string matching.
[Manacher 1976]
Sort points around the origin.
Encode alternating sequence of distances r_{i} and angles φ_{i}.

Even more can be done:

CANONICAL DIRECTIONS

The canonical set $c(A)$: [Akutsu 1992]

$$
A \cong B \Longleftrightarrow c(A)=c(B)
$$

\rightarrow searching in a database
[Sugihara 1984; Alt, Mehlhorn, Wagener, Welzl 1988]
Project points to the unit sphere, and keep distances as labels.

Compute the convex hulls $P(A)$ and $P(B)$, in $O(n \log n)$ time.
Check isomorphism between the corresponding LABELED planar graphs.
Vertex labels: from the radial projection Edge labels: dihedral angles and face angles.

In $O(n)$ time, or in $O(n \log n)$ time.
[Hopcroft and Wong 1974]
[Hopcroft and Tarjan 1973]

Pruning/Condensing

Pruning/Condensing

Apply some criterion that distinguishes points (distance from the center, number of closest neighbors, ...)

Pruning/Condensing

Apply some criterion that distinguishes points (distance from the center, number of closest neighbors, ...)

Throw away all but the smallest resulting class, and repeat.
Simultaneously apply this procedure to B. A^{\prime} and B^{\prime} may have more congruences!

Pruning/Condensing

Make some construction
(midpoints of closest-pair edges, ...)

Simultaneously apply this procedure to B. A^{\prime} and B^{\prime} may have more congruences!

Pruning/Condensing

Make some construction
(midpoints of closest-pair edges, ...)

Simultaneously apply this procedure to B. A^{\prime} and B^{\prime} may have more congruences!

Pruning/Condensing

Simultaneously apply this procedure to B. A^{\prime} and B^{\prime} may have more congruences!

Dimension Reduction

As soon as $\left|A^{\prime}\right|=\left|B^{\prime}\right|=k$ is small:
Choose a point $a_{0} \in A^{\prime}$ and try all k possibilities of mapping it to a point $b \in B^{\prime}$.

Fixing $a_{0} \mapsto b$ reduces the dimension by one.

Project perpendicular to $O a_{0}$ and label projected points a_{i}^{\prime} with the signed projection distance d_{i} as $\left(a_{i}^{\prime}, d_{i}\right)$.
\rightarrow 2-dimensional congruence for LABELLED point sets

Dimension Reduction

As soon as $\left|A^{\prime}\right|=\left|B^{\prime}\right|=k$ is small:
Choose a point $a_{0} \in A^{\prime}$ and try all k possibilities of mapping it to a point $b \in B^{\prime}$.

Fixing $a_{0} \mapsto b$ reduces the dimension by one.

One problem in d dimensions is reduced to k problems in $d-1$ dimensions.

Three Dimensions [Akutsu 1995]

- PRUNE by distance from the origin. If the points lie in 4 a plane or on a line \rightarrow DIMENSION REDUCTION.
Compute the convex hull.
If there are vertices of different degrees \rightarrow PRUNE
The number n of vertices is reduced to $\leq n / 2$. RESTART.
All n vertices have now degree 3,4 , or 5 .
There are $f=\frac{n}{2}+2$ or $f=n+2$ or $f=\frac{3 n}{2}+2$ faces.
If the face degrees are not all equal
\rightarrow switch to the centroids of the faces and PRUNE them.
n is reduced to $\leq \frac{3 n}{4}+1$. RESTART.
Now $P(A)$ must have the graph of a Platonic solid. $\rightarrow n \leq 20$. \rightarrow DIMENSION REDUCTION.

Three Dimensions [Akutsu 1995]

- PRUNE by distance from the origin. If the points lie in 4 a plane or on a line \rightarrow DIMENSION REDUCTION.
Compute the convex hull. $\longleftarrow-O(|A| \log |A|)$ time If there are vertices of different degrees \rightarrow PRUNE
The number n of vertices is reduced to $\leq n / 2$. RESTART.
All n vertices have now degree 3,4 , or 5 .
There are $f=\frac{n}{2}+2$ or $f=n+2$ or $f=\frac{3 n}{2}+2$ faces.
If the face degrees are not all equal
\rightarrow switch to the centroids of the faces and PRUNE them.
n is reduced to $\leq \frac{3 n}{4}+1$. RESTART.
TIME =
$O(n \log n)+$
$=O(n \log n)$

Three Dimensions [Akutsu 1995]

The doubly-regular planar graphs:
n vertices of degree d_{V}, f faces of degree d_{F}, m edges.

$$
\begin{gathered}
n d_{V}=2 m=f d_{F} \\
n+f=m+2 \\
\frac{2}{d_{V}}+\frac{2}{d_{F}}=1+\frac{2}{m}
\end{gathered}
$$

(Euler's formula)

d_{V}	d_{F}	m		
3	3	6	tetrahedron	$(n=4)$
3	4	12	cube	$(n=8)$
4	3	12	octahedron	$(n=6)$
3	5	30	dodecahedron	$(n=20)$
5	3	30	icosahedron	$(n=12)$

Three Dimensions [Akutsu 1995]

PRUNE by distance from the origin. If the points lie in
a plane or on a line
Compute the convex hull.
If there are vertices of different degrees \rightarrow PRUNE
The number n of vertices is reduced to $\leq n / 2$. RESTART.
All n vertices have now degree 3,4 , or 5 .
There are $f=\frac{n}{2}+2$ or $f=n+2$ or $f=\frac{3 n}{2}+2$ faces.
If the face degrees are not all equal
\rightarrow switch to the centroids of the faces and PRUNE them. n is reduced to $\leq \frac{3 n}{4}+1$. RESTART.

Now $P(4)$ must have the graphof a Platonic solid. $\rightarrow n \leq 20$. \rightarrow DIMENSION REDUCTION.

Three Dimensions [Akutsu 1995]

PRUNE by distance from the origin If the points lie in
a plane or on a line \rightarrow DIMENSION REDUCTION.

Canonical point sets in 3d:
We get ≤ 20 two-dimensional projected point sets. For each such set:

Rotate the plane to the $x-y$-plane.
Compute the canonical 2-d point set.
$\rightarrow \leq 20$ candidates for canonical 3d point sets:
Choose the lex-smallest one.

Now P(A) must have the graphof a Platonic solid. $\rightarrow n \leq 20$. \rightarrow DIMENSION REDUCTION.

PRUNING/CONDENSING in general

Function $f(A)=A^{\prime}, A^{\prime} \nsubseteq\{0\}$, equivariant under rotations R :

$$
f(R A)=R A^{\prime}
$$

A^{\prime} has all symmetries of A (and maybe more).

Primary goal: $\left|A^{\prime}\right| \leq|A| \cdot c, c<1$.
If there is a chance, PRUNE and start from scratch with A^{\prime} instead of A.

Ultimate goal: $|A| \leq$ const

Continue Atkonson's algorithm with more geometric pruning (instead of just graph-theoretic pruning)

Equivariant condensation on the 2-sphere:
Input: $A \subseteq \mathbb{S}^{2}$.
Output: $A^{\prime} \subseteq \mathbb{S}^{2},\left|A^{\prime}\right| \leq \min \{|A|, 12\}, A^{\prime}=f(A)$ equivariant.

- $A^{\prime}=$ vertices of a regular icosahedron
- $A^{\prime}=$ vertices of a regular octahedron
- $A^{\prime}=$ vertices of a regular tetrahedron
- $A^{\prime}=$ two antipodal points, or
- $A^{\prime}=$ a single point.
(will be needed later)

Symmetry groups

COROLLARY. The symmetry group of a finite full-dimensional point set in 3 -space ($=$ a discrete subgroup of $O(3)$) is

- the symmetry group of a Platonic solid,
- the symmetry group of a regular prism,
- or a subgroup of such a group.

The point groups (discrete subgroups of $O(3)$) are classified (Hessel's Theorem).
[F. Hessel 1830, M. L. Frankenheim 1826]

Dimension d

Dimension reduction without pruning:

Pick $a_{0} \in A$. Try $a_{0} \mapsto b$ for all $b \in B$ (n possibilities). $\rightarrow O\left(n^{d-2} \log n\right)$ time $\quad[$ Alt, Mehlhorn, Wagener, Welzl 1988]

Dimension d

Dimension reduction without pruning:
Pick $a_{0} \in A$. Try $a_{0} \mapsto b$ for all $b \in B$ (n possibilities). $\rightarrow O\left(n^{d-2} \log n\right)$ time $\quad[$ Alt, Mehlhorn, Wagener, Welzl 1988]
Closest pairs $\left(a, a^{\prime}\right)$: [Matoušek ≈ 1998] minimum distance $\delta:=\left\|a-a^{\prime}\right\|$ among all pairs of vertices

Dimension d

Dimension reduction without pruning:
Pick $a_{0} \in A$. Try $a_{0} \mapsto b$ for all $b \in B$ (n possibilities). $\rightarrow O\left(n^{d-2} \log n\right)$ time
[Alt, Mehlhorn, Wagener, Welzl 1988]
Closest pairs $\left(a, a^{\prime}\right)$: [Matoušek $\left.\approx 1998\right]$ minimum distance $\delta:=\left\|a-a^{\prime}\right\|$ among all pairs of vertices

Dimension d

Dimension reduction without pruning:
Pick $a_{0} \in A$. Try $a_{0} \mapsto b$ for all $b \in B$ (n possibilities). $\rightarrow O\left(n^{d-2} \log n\right)$ time
[Alt, Mehlhorn, Wagener, Welzl 1988]
Closest pairs $\left(a, a^{\prime}\right)$: [Matoušek ≈ 1998] minimum distance $\delta:=\left\|a-a^{\prime}\right\|$ among all pairs of vertices

Degree \leq the kissing number K_{d} (by a packing argument). All closest pairs can be computed in $O(n \log n)$ time (d fixed). [Bentley and Shamos, STOC 1976]

Dimension d

Dimension reduction without pruning:
Pick $a_{0} \in A$. Try $a_{0} \mapsto b$ for all $b \in B$ (n possibilities).
$\rightarrow O\left(n^{d-2} \log n\right)$ time
[Alt, Mehlhorn, Wagener, Welzl 1988]

Pick a closest pair $a_{0} a_{1}$ in A. Try $\left(a_{0}, a_{1}\right) \mapsto\left(b, b^{\prime}\right)$ for all closest pairs (b, b^{\prime}) in B.
$O(n)$ possibilities, reducing the dimension by two.
$\rightarrow O\left(n^{\lfloor d / 2\rfloor} \log n\right)$ time $\quad[$ Matoušek ≈ 1998]

Further improvement: Find a "closest triplet" ...

Life in Four Dimensions

Take a random sample $R \subset A$ of size $|R|=m$
Take a random sample $S \subset B$ of size $|S|=m$
If $T A=B$, then with high prob., $\exists a \in R, \exists b \in S$ with $T a=b$

$$
\left[\left(1-\frac{m}{n}\right)^{m} \approx 1-\frac{m^{2}}{n} \text { small }\right]
$$

$\left.\begin{array}{l}\rightarrow \text { labeled } 3 \mathrm{D} \text { sets } A_{1}, A_{2}, \ldots, A_{m} \\ \rightarrow \text { labeled } 3 \mathrm{D} \text { sets } B_{1}, B_{2}, \ldots, B_{m}\end{array}\right\} A_{i} \cong B_{j}$
$m \times m 3 \mathrm{D}$ problems $A_{i} \cong B_{j}$? (instead of $1 \times n 3 \mathrm{D}$ problems)

Take a random sample $R \subset A$ of size $|R|=m$
Take a random sample $S \subset B$ of size $|S|=m$
If $T A=B$, then with high prob., $\exists a \in R, \exists b \in S$ with $T a=b$

$$
\left[\left(1-\frac{m}{n}\right)^{m} \approx 1-\frac{m^{2}}{n} \text { small }\right]
$$

$\left.\begin{array}{l}\rightarrow \text { labeled } 3 \mathrm{D} \text { sets } A_{1}, A_{2}, \ldots, A_{m} \\ \rightarrow \text { labeled } 3 \mathrm{D} \text { sets } B_{1}, B_{2}, \ldots, B_{m}\end{array}\right\} A_{i} \cong B_{j}$
$m \times m 3 \mathrm{D}$ problems $A_{i} \cong B_{j}$? (instead of $1 \times n 3 \mathrm{D}$ problems)
Compute canonical 3D sets $c\left(A_{1}\right), \ldots, c\left(A_{m}\right) ; c\left(B_{1}\right), \ldots, c\left(B_{m}\right)$. Look for duplicates between A and B.
\rightarrow Monte Carlo algorithm, $O\left(n^{3 / 2} \log n\right)$ time, $O\left(n^{3 / 2}\right)$ space in d dimensions: $O\left(n^{(d-2) / 2} \log n\right)$ time, $O\left(n^{(d-2) / 2}\right)$ space

Use Closest Pairs in d Dimensions

$m:=$ const $\cdot \sqrt{n}$. Compute closest-pair graphs $\mathrm{CP}(A), \mathrm{CP}(B)$.
Take a random sample $R \subset \mathrm{CP}(A)$ of size $|R|=m$
Take a random sample $S \subset \mathrm{CP}(B)$ of size $|S|=m$
\rightarrow labeled sets $A_{1}, A_{2}, \ldots, A_{m}$ in $d-2$ dimensions
\rightarrow labeled sets $B_{1}, B_{2}, \ldots, B_{m}$ in $d-2$ dimensions
$\rightarrow O\left(n^{\lfloor(d-2) / 2\rfloor / 2}\right)$ labeled 3 D or 2 D sets $A_{1}^{\prime}, A_{2}^{\prime}, \ldots$ of size n
$\rightarrow O\left(n^{\lfloor(d-2) / 2\rfloor / 2}\right)$ labeled 3 D or 2 D sets $B_{1}^{\prime}, B_{2}^{\prime}, \ldots$ of size n
Monte Carlo algorithm,
$O\left(n^{(\lfloor d / 2\rfloor+1) / 2} \log n\right)$ time, $O\left(n^{(\lfloor d / 2\rfloor+1) / 2}\right)$ space
[Akutsu 1998, improvement due to J. Matoušek, personal communication]

Rational Inputs

Consider the lattice spanned by the points $A=\left\{a_{1}, \ldots, a_{n}\right\}$:

$$
\Lambda_{A}:=\left\{z_{1} a_{1}+\cdots+z_{n} a_{n} \mid z_{i} \in \mathbb{Z}\right\}
$$

Rational Inputs

Consider the lattice spanned by the points $A=\left\{a_{1}, \ldots, a_{n}\right\}$:

$$
\Lambda_{A}:=\left\{z_{1} a_{1}+\cdots+z_{n} a_{n} \mid z_{i} \in \mathbb{Z}\right\}
$$

Shortest vectors in Λ_{A} must be mapped to shortest vectors in Λ_{B}. \rightarrow at most 6 choices.

Integer coordinates with L bits: $O(n \log L+n \log n)$ arithmetic operations

In d dimensions:

- at most $K_{d} \leq 3^{d}$ shortest vectors
- at most $\binom{3^{d}}{d}$ choices of a basis
"Geometric graph isomorphism" [Arvind, Rattan 2016]

Related: Unimodular Transformations

$A, B \subset \mathbb{Z}^{d}$, integer coordinates with L bits
Unimodular transformations:
Integer matrix T (not necessarily orthogonal)
with determinant ± 1, such that $T A=B$
Applications in algebra
Runtime: $O\left(F_{d} \cdot n \log ^{2} n \cdot L\right)$ arithmetic operations [Paolini, DCG 2017]

Fixed-parameter tractable (FPT)

4 Dimensions: Algorithm Overview

joint work with Heuna Kim

