Congruence Testing in 4 Dimensions

 Günter Rote joint work with Heuna KimFreie Universität Berlin

Congruence Testing in 4 Dimensions

 Günter Rote joint work with Heuna KimFreie Universität Berlin

- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions
- d dimensions
- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions NEW, joint work with Heuna Kim
- dimensions $O\left(n^{\lceil d / 3\rceil} \log n\right)$ time [Brass and Knauer 2002] $O\left(n^{\lfloor d / 2\rfloor / 2} \log n\right)$ time Monte Carlo[Akutsu 1998/Matoušek]
- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions NEW, joint work with Heuna Kim
- d dimensions $O\left(n^{\lceil d / 3\rceil} \log n\right)$ time [Brass and Knauer 2002] $O\left(n^{\lfloor d / 2\rfloor / 2} \log n\right)$ time Monte Carlo[Akutsu 1998/Matoušek]
- Problem statement and variations
- Dimension reduction as in [Alt, Mehlhorn, Wagener, Welzl]
- Atkinson's reduction (pruning/condensation)
- (Planar) graph isomorphism
- Hopf fibrations
- Plücker coordinates
- Coxeter groups

Rotation or Rotation+Reflection?

We only need to consider proper congruence (orientation-preserving congruence, of determinant +1).

If mirror-congruence is also desired, repeat the test twice, for B and its mirror image B^{\prime}.

Congruence $=$ Rotation + Translation

Translation is easy to determine:
The centroid of A must coincide with the centroid of B.

\rightarrow from now on: All point sets are centered at the origin 0 :

$$
\sum_{a \in A} a=\sum_{b \in B} b=0
$$

We need to find a rotation around the origin (orthogonal matrix T with determinant +1) which maps A to $B: T A=B$

Exact Arithmetic

The proper setting for this (mathematical) problem requires real numbers as inputs and exact arithmetic.
\rightarrow the Real RAM model (RAM $=$ random access machine): One elementary operation with real numbers $(+, \div, \sqrt{ }, \sin)$ is counted as one step.

Congruence testing is the basic problem for many pattern matching tasks

- computer vision
- star matching
- brain matching

The proper setting for this applied problem requires tolerances, partial matchings, and other extensions.

Arbitrary Dimension

$A, B \subset \mathbb{R}^{d},|A|=|B|=n$.
We consider the problem for fixed dimension d.
When d is unrestricted, the problem is equivalent to graph isomorphism:
$G=(V, E), V=\{1,2, \ldots, n\}$
$\begin{aligned} \mapsto A=\underbrace{\left\{e_{1}, \ldots, e_{n}\right\}}_{\text {regular simplex }} & \left.\left.\cup \frac{e_{i}+e_{j}}{2} \right\rvert\, i j \in E\right\} \subset \mathbb{R}^{n} \\ & e_{i}=(0, \ldots, 0,1,0, \ldots, 0)\end{aligned}$

CONJECTURE:

Congruence can be tested in $O(n \log n)$ time for every fixed dimension d.
Current best bound: $O\left(n^{\lceil d / 3\rceil} \log n\right)$ time

Arbitrary Dimension

$A, B \subset \mathbb{R}^{d},|A|=|B|=n$.
We consider the problem for fixed dimension d.
When d is unrestricted, the problem is equivalent to graph isomorphism:
$G=(V, E), V=\{1,2, \ldots, n\}$
$\mapsto A=\underbrace{\left\{e_{1}, \ldots, e_{n}\right\}}_{\text {regular simplex }} \cup\left\{\left.\frac{e_{i}+e_{j}}{2} \right\rvert\, i j \in E\right\} \subset \mathbb{R}^{n}, \begin{aligned} & \\ & e_{i}=(0, \ldots, 0,1,0, \ldots, 0)\end{aligned}$

CONJECTURE:

Congruence can be tested in $O(n \log n)$ time for every fixed dimension d.
Current best bound: $O\left(n^{\lceil d / 3\rceil} \log n\right)$ time

Can be done by string matching.

Sort points around the origin.

Encode alternating sequence of distances r_{i} and angles φ_{i}.

$$
\left(r_{1}, \varphi_{1}, r_{2}, \varphi_{2}, \ldots, r_{n}, \varphi_{n}\right)
$$

Check whether the corresponding sequence of B is a cyclic shift.
$\rightarrow O(n \log n)+O(n)$ time.

Can be done by string matching.
[Manacher 1976]
Sort points around the origin.
Encode alternating sequence of distances r_{i} and angles φ_{i}.

Even more can be done:

CANONICAL DIRECTIONS

The canonical set $c(A)$: [Akutsu 1992]

$$
A \cong B \Longleftrightarrow c(A)=c(B)
$$

\rightarrow searching in a database
[Sugihara 1984; Alt, Mehlhorn, Wagener, Welzl 1988]
Project points to the unit sphere, and keep distances as labels.

Compute the convex hulls $P(A)$ and $P(B)$, in $O(n \log n)$ time.
Check isomorphism between the corresponding LABELED planar graphs.
Vertex labels: from the radial projection Edge labels: dihedral angles and face angles.

In $O(n)$ time, or in $O(n \log n)$ time.
[Hopcroft and Wong 1974]
[Hopcroft and Tarjan 1973]

Pruning/Condensing

Pruning/Condensing

Apply some criterion that distinguishes points (distance from the center, number of closest neighbors, ...)

Pruning/Condensing

Apply some criterion that distinguishes points (distance from the center, number of closest neighbors, ...)

Throw away all but the smallest resulting class, and repeat.
Simultaneously apply this procedure to B. A^{\prime} and B^{\prime} may have more congruences!

Pruning/Condensing

Make some construction
(midpoints of closest-pair edges, ...)

Simultaneously apply this procedure to B. A^{\prime} and B^{\prime} may have more congruences!

Pruning/Condensing

Make some construction
(midpoints of closest-pair edges, ...)

Simultaneously apply this procedure to B. A^{\prime} and B^{\prime} may have more congruences!

Pruning/Condensing

Simultaneously apply this procedure to B. A^{\prime} and B^{\prime} may have more congruences!

Dimension Reduction

As soon as $\left|A^{\prime}\right|=\left|B^{\prime}\right|=k$ is small:
Choose a point $a_{0} \in A^{\prime}$ and try all k possibilities of mapping it to a point $b \in B^{\prime}$.

Fixing $a_{0} \mapsto b$ reduces the dimension by one.

Project perpendicular to $O a_{0}$ and label projected points a_{i}^{\prime} with the signed projection distance d_{i} as $\left(a_{i}^{\prime}, d_{i}\right)$.
\rightarrow 2-dimensional congruence for LABELLED point sets

Dimension Reduction

As soon as $\left|A^{\prime}\right|=\left|B^{\prime}\right|=k$ is small:
Choose a point $a_{0} \in A^{\prime}$ and try all k possibilities of mapping it to a point $b \in B^{\prime}$.

Fixing $a_{0} \mapsto b$ reduces the dimension by one.

One problem in d dimensions is reduced to k problems in $d-1$ dimensions.

Three Dimensions [Akutsu 1995]

- PRUNE by distance from the origin. If the points lie in 4 a plane or on a line \rightarrow DIMENSION REDUCTION.
Compute the convex hull.
If there are vertices of different degrees \rightarrow PRUNE
The number n of vertices is reduced to $\leq n / 2$. RESTART.
All n vertices have now degree 3,4 , or 5 .
There are $f=\frac{n}{2}+2$ or $f=n+2$ or $f=\frac{3 n}{2}+2$ faces.
If the face degrees are not all equal
\rightarrow switch to the centroids of the faces and PRUNE them.
n is reduced to $\leq \frac{3 n}{4}+1$. RESTART.
Now $P(A)$ must have the graph of a Platonic solid. $\rightarrow n \leq 20$. \rightarrow DIMENSION REDUCTION.

Three Dimensions [Akutsu 1995]

- PRUNE by distance from the origin. If the points lie in 4 a plane or on a line \rightarrow DIMENSION REDUCTION.
Compute the convex hull. $\longleftarrow-O(|A| \log |A|)$ time If there are vertices of different degrees \rightarrow PRUNE
The number n of vertices is reduced to $\leq n / 2$. RESTART.
All n vertices have now degree 3,4 , or 5 .
There are $f=\frac{n}{2}+2$ or $f=n+2$ or $f=\frac{3 n}{2}+2$ faces.
If the face degrees are not all equal
\rightarrow switch to the centroids of the faces and PRUNE them.
n is reduced to $\leq \frac{3 n}{4}+1$. RESTART.
TIME =
$O(n \log n)+$
$=O(n \log n)$

Three Dimensions [Akutsu 1995]

PRUNE by distance from the origin. If the points lie in
a plane or on a line
Compute the convex hull.
If there are vertices of different degrees \rightarrow PRUNE
The number n of vertices is reduced to $\leq n / 2$. RESTART.
All n vertices have now degree 3,4 , or 5 .
There are $f=\frac{n}{2}+2$ or $f=n+2$ or $f=\frac{3 n}{2}+2$ faces.
If the face degrees are not all equal
\rightarrow switch to the centroids of the faces and PRUNE them. n is reduced to $\leq \frac{3 n}{4}+1$. RESTART.

Now $P(4)$ must have the graphof a Platonic solid. $\rightarrow n \leq 20$. \rightarrow DIMENSION REDUCTION.

Three Dimensions [Akutsu 1995]

PRUNE by distance from the origin. If the points lie in
a plane or on a line \rightarrow DIMENSION REDUCTION.

Canonical point sets in 3d:
We get ≤ 20 two-dimensional projected point sets. Rotate the plane to the $x-y$-plane.
Compute the canonical 2-d point set.
≤ 20 candidates for canonical 3d point sets:
Choose the lex-smallest one.

Now P(A) must have the graphof a Platonic solid. $\rightarrow n \leq 20$. \rightarrow DIMENSION REDUCTION.

PRUNING/CONDENSING in general

Function $f(A)=A^{\prime}, A^{\prime} \nsubseteq\{0\}$, equivariant under rotations R :

$$
f(R A)=R A^{\prime}
$$

A^{\prime} has all symmetries of A (and maybe more).

Primary goal: $\left|A^{\prime}\right| \leq|A| \cdot c, c<1$.
If there is a chance, PRUNE and start from scratch with A^{\prime} instead of A.

Ultimate goal: $|A| \leq$ const

Condensing on the 2-Sphere

Use some more geometric pruning to get:
Equivariant condensation on the 2 -sphere:
Input: $A \subseteq \mathbb{S}^{2}$.
Output: $A^{\prime} \subseteq \mathbb{S}^{2},\left|A^{\prime}\right| \leq \min \{|A|, 12\}, A^{\prime}=f(A)$ equivariant.
5 possibilities:

- $A^{\prime}=$ vertices of a regular icosahedron
- $A^{\prime}=$ vertices of a regular octahedron
- $A^{\prime}=$ vertices of a regular tetrahedron
- $A^{\prime}=$ two antipodal points, or
- $A^{\prime}=$ a single point.

Dimension d

Dimension reduction without pruning:

Pick $a_{0} \in A$. Try $a_{0} \mapsto b$ for all $b \in B$ (n possibilities). $\rightarrow O\left(n^{d-2} \log n\right)$ time
[Alt, Mehlhorn, Wagener, Welzl 1988]

Dimension d

Dimension reduction without pruning:
Pick $a_{0} \in A$. Try $a_{0} \mapsto b$ for all $b \in B$ (n possibilities). $\rightarrow O\left(n^{d-2} \log n\right)$ time $\quad[$ Alt, Mehlhorn, Wagener, Welzl 1988]
Closest pairs $\left(a, a^{\prime}\right)$: [Matoušek ≈ 1998] minimum distance $\delta:=\left\|a-a^{\prime}\right\|$ among all pairs of vertices

Dimension d

Dimension reduction without pruning:
Pick $a_{0} \in A$. Try $a_{0} \mapsto b$ for all $b \in B$ (n possibilities). $\rightarrow O\left(n^{d-2} \log n\right)$ time
[Alt, Mehlhorn, Wagener, Welzl 1988]
Closest pairs $\left(a, a^{\prime}\right): \quad$ [Matoušek $\left.\approx 1998\right]$ minimum distance $\delta:=\left\|a-a^{\prime}\right\|$ among all pairs of vertices

Dimension d

Dimension reduction without pruning:
Pick $a_{0} \in A$. Try $a_{0} \mapsto b$ for all $b \in B$ (n possibilities). $\rightarrow O\left(n^{d-2} \log n\right)$ time
[Alt, Mehlhorn, Wagener, Welzl 1988]
Closest pairs $\left(a, a^{\prime}\right)$: [Matoušek ≈ 1998] minimum distance $\delta:=\left\|a-a^{\prime}\right\|$ among all pairs of vertices

Degree \leq the kissing number K_{d} (packing argument).
All closest pairs can be computed in $O(n \log n)$ time (d fixed).

Dimension d

Dimension reduction without pruning:
Pick $a_{0} \in A$. Try $a_{0} \mapsto b$ for all $b \in B$ (n possibilities).
$\rightarrow O\left(n^{d-2} \log n\right)$ time
[Alt, Mehlhorn, Wagener, Welzl 1988]

Pick a closest pair $a_{0} a_{1}$ in A. Try $\left(a_{0}, a_{1}\right) \mapsto\left(b, b^{\prime}\right)$ for all closest pairs (b, b^{\prime}) in B.
$O(n)$ possibilities, reducing the dimension by two.
$\rightarrow O\left(n^{\lfloor d / 2\rfloor} \log n\right)$ time $\quad[$ Matoušek ≈ 1998]

Further improvement: Find a "closest triplet" ...

Life in Four Dimensions

Use Randomness in d Dimensions

- Random sampling
- Birthday paradox
- Closest pairs
\rightarrow Monte Carlo algorithm,

$$
O\left(n^{\lfloor d / 2\rfloor / 2} \log n\right) \text { time, } O\left(n^{\lfloor d / 2\rfloor / 2}\right) \text { space }
$$

[Akutsu 1998 + improvement by J. Matoušek, personal communication]

4 Dimensions: Algorithm Overview

joint work with Heuna Kim

4 Dimensions: Algorithm Overview

joint work with Heuna Kim

Initialization: Closest-Pair Graph

1) PRUNE by distance from the origin.

- \Longrightarrow we can assume that A lies on the 3 -sphere \mathbb{S}^{3}.

2) Compute the closest pair graph

$$
G(A)=(A,\{u v:\|u-v\|=\delta\})
$$

where $\delta:=$ the distance of the closest pair, in $O(n \log n)$ time.

- We can assume that δ is SMALL: $\delta \leq \delta_{0}:=0.0005$. (Otherwise, $|A| \leq n_{0}$, by a packing argument.)

Everything Looks the Same!

By the PRUNING principle, we can assume that all points look locally the same:

- All points have congruent neighborhoods in $G(A)$.
(The neighbors of u lie on a 2 -sphere in \mathbb{S}^{3}; There are at most $K_{3}=12$ neighbors.)

Everything Looks the Same!

By the PRUNING principle, we can assume that all points look locally the same:

- All points have congruent neighborhoods in $G(A)$.
(The neighbors of u lie on a 2 -sphere in \mathbb{S}^{3};
There are at most $K_{3}=12$ neighbors.)
- Make a directed graph D from $G(A)$ and PRUNE its arcs $u v$ by
 the joint neighborhood of u and v.

Further Pruning

Pick some $\alpha . \quad s(u v):=\{v w: v w \in E, \angle u v w=\alpha\}$

Construct Orbit Cycles

I For every path $p_{i} p_{i+1} p_{i+2}$ with $\angle p_{i} p_{i+1} p_{i+2}=\alpha$, $\exists p_{i+3}$ with $\angle p_{i+1} p_{i+2} p_{i+3}=\alpha$ and torsion τ_{0}.

Construct Orbit Cycles

I For every path $p_{i} p_{i+1} p_{i+2}$ with $\angle p_{i} p_{i+1} p_{i+2}=\alpha$, $\exists p_{i+3}$ with $\angle p_{i+1} p_{i+2} p_{i+3}=\alpha$ and torsion τ_{0}.

Construct Orbit Cycles

I For every path $p_{i} p_{i+1} p_{i+2}$ with $\angle p_{i} p_{i+1} p_{i+2}=\alpha$, $\exists p_{i+3}$ with $\angle p_{i+1} p_{i+2} p_{i+3}=\alpha$ and torsion τ_{0}.

$$
R\left(p_{0}, p_{1}, p_{2}\right)=\left(p_{1}, p_{2}, p_{3}\right)
$$

Construct Orbit Cycles

For every path $p_{i} p_{i+1} p_{i+2}$ with $\angle p_{i} p_{i+1} p_{i+2}=\alpha$, $\exists p_{i+3}$ with $\angle p_{i+1} p_{i+2} p_{i+3}=\alpha$ and torsion τ_{0}.

$$
\begin{aligned}
& R\left(p_{0}, p_{1}, p_{2}\right)=\left(p_{1}, p_{2}, p_{3}\right) \\
& R\left(p_{0}, p_{1}, p_{2}, p_{3}\right)=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)
\end{aligned}
$$

Construct Orbit Cycles

For every path $p_{i} p_{i+1} p_{i+2}$ with $\angle p_{i} p_{i+1} p_{i+2}=\alpha$, $\exists p_{i+3}$ with $\angle p_{i+1} p_{i+2} p_{i+3}=\alpha$ and torsion τ_{0}.

$$
\begin{aligned}
& R\left(p_{0}, p_{1}, p_{2}\right)=\left(p_{1}, p_{2}, p_{3}\right) \\
& R\left(p_{0}, p_{1}, p_{2}, p_{3}\right)=\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \\
& R\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\left(p_{2}, p_{3}, p_{4}, p_{5}\right)
\end{aligned}
$$

$R p_{i}=p_{i+1}$: The orbit of p_{0} under R, a helix

Rotations in 4 Dimensions

$$
R=\left(\begin{array}{cccc}
\cos \varphi & -\sin \varphi & 0 & 0 \\
\sin \varphi & \cos \varphi & 0 & 0 \\
0 & 0 & \cos \psi & -\sin \psi \\
0 & 0 & \sin \psi & \cos \psi
\end{array}\right)=\left(\begin{array}{cc}
R_{\varphi} & 0 \\
0 & R_{\psi}
\end{array}\right)
$$

in some appropriate coordinate system.
$\varphi \neq \pm \psi: \rightarrow$ unique decomposition $\mathbb{R}^{4}=P \oplus Q$ into two completely orthogonal 2-dimensional axis planes P and Q $\varphi= \pm \psi$: isoclinic rotations

The orbit of a point $a_{0}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ lies on a helix on a flat torus $C_{r} \times C_{s}$, with $r=\sqrt{x_{1}^{2}+x_{2}^{2}}, s=\sqrt{x_{3}^{2}+x_{4}^{2}}$ circle with radius r

Rotations in 4 Dimensions

$$
R=\left(\begin{array}{cccc}
\cos \varphi & -\sin \varphi & 0 & 0 \\
\sin \varphi & \cos \varphi & 0 & 0 \\
0 & 0 & \cos \psi & -\sin \psi \\
0 & 0 & \sin \psi & \cos \psi
\end{array}\right)=\left(\begin{array}{cc}
R_{\varphi} & 0 \\
0 & R_{\psi}
\end{array}\right)
$$

The orbit of a point $p_{0}=\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ lies on a helix on a flat torus $C_{r} \times C_{s}$, with $r=\sqrt{x_{1}^{2}+y_{1}^{2}}, s=\sqrt{x_{2}^{2}+y_{2}^{2}}$

Planes in 4 Dimensions

- Every point lies on ≤ 60 orbit cycles.
- Every orbit cycle contains ≥ 12000 points, because δ is small.
- Every orbit cycle generates 1 plane (corresponding to the smaller of φ and ψ.)
\Longrightarrow a collection of $\leq n / 200$ planes (or: great circles)

Algorithm Overview

Marking Points on Great Circles

Marking Points on Great Circles

Marking Points on Great Circles

projection of another unit circle Q a neighbor of P

IDEA: mark those two points in P IDEA 2: Construct the closest-pair graph in the space of great circles, in $O(n \log n)$ time.
Every plane has at most $K_{5} \leq 44$ neighbors.

Plücker coordinates

planes in 4 -space \Leftrightarrow great circles on $\mathbb{S}^{3} \Leftrightarrow$ a.k.a. lines in $\mathbb{R} P^{3}$ plane through $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ and $\left(x_{1}^{\prime}, y_{1}^{\prime}, x_{2}^{\prime}, y_{2}^{\prime}\right)$:
$\left(v_{1}, \ldots, v_{6}\right)=\left(\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{1}^{\prime} & y_{1}^{\prime}\end{array}\right|,\left|\begin{array}{ll}x_{1} & x_{2} \\ x_{1}^{\prime} & x_{2}^{\prime}\end{array}\right|,\left|\begin{array}{ll}x_{1} & y_{2} \\ x_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|,\left|\begin{array}{ll}y_{1} & x_{2} \\ y_{1}^{\prime} & x_{2}^{\prime}\end{array}\right|,\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|,\left|\begin{array}{ll}x_{2} & y_{2} \\ x_{2}^{\prime} & y_{2}^{\prime}\end{array}\right|\right)$
$\left(v_{1}, \ldots, v_{6}\right) \in \mathbb{R} P^{5} . \quad\left[P l u ̈ c k e r ~ r e l a t i o n s ~ v_{1} v_{6}-v_{2} v_{5}+v_{3} v_{4}=0\right]$
Normalize:
\rightarrow A great circle is represented by two antipodal points on \mathbb{S}^{5}.
This representation is geometrically meaningful: Distances on \mathbb{S}^{5} are preserved under rotations of $\mathbb{R}^{4} / \mathbb{S}^{3}$.
(Packings of 2-planes in 4-space were considered by [Conway, Hardin and Sloan 1996], with different distances.)

Marking Points on Great Circles

projection of another unit circle Q a neighbor of P

IDEA: mark those two points in P IDEA 2: Construct the closest-pair graph in the space of great circles, in $O(n \log n)$ time.
Every plane has at most $K_{5} \leq 44$ neighbors.

Marking Points on Great Circles

$m \leq \frac{n}{200}$ great circles in $\mathbb{R}^{4} \quad \longrightarrow \quad m$ point pairs on \mathbb{S}^{5} At most 88 points are marked on every great circle.

These points replace $A . \rightarrow$ successful PRUNING

Isoclinic Planes

Isoclinic Planes

projection of a neighbor Q of P Where to mark??

Problem if all closest pairs are isoclinic.

Isoclinic Planes

Problem if all closest pairs are isoclinic.

Constant distances from one circle to the other. "Clifford-parallel" \equiv isoclinic

Clifford-parallel circles

$P:\left(\begin{array}{l}x_{1} \\ y_{1} \\ x_{2} \\ y_{2}\end{array}\right)=\left(\begin{array}{c}\cos t \\ \sin t \\ 0 \\ 0\end{array}\right), Q:\left(\begin{array}{c}r \cos t \\ r \sin t \\ s \cos (\alpha+t) \\ s \sin (\alpha+t)\end{array}\right)$
$r^{2}+s^{2}=1$

Clifford-parallel circles

$P:\left(\begin{array}{l}x_{1} \\ y_{1} \\ x_{2} \\ y_{2}\end{array}\right)=\left(\begin{array}{c}\cos t \\ \sin t \\ 0 \\ 0\end{array}\right), Q:\left(\begin{array}{c}r \cos t \\ r \sin t \\ s \cos (\alpha+t) \\ s \sin (\alpha+t)\end{array}\right)$

$$
r^{2}+s^{2}=1
$$

Clifford-parallel circles

$P:\left(\begin{array}{l}x_{1} \\ y_{1} \\ x_{2} \\ y_{2}\end{array}\right)=\left(\begin{array}{c}\cos t \\ \sin t \\ 0 \\ 0\end{array}\right), Q:\left(\begin{array}{c}r \cos t \\ r \sin t \\ s \cos (\alpha+t) \\ s \sin (\alpha+t)\end{array}\right) \quad Q^{\prime}:\left(\begin{array}{c}r \cos t \\ r \sin t \\ s \cos (\alpha-t) \\ s \sin (\alpha-t)\end{array}\right)$

$h\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=\quad$ the right Hopf map $h: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$

$$
\left(2\left(x_{1} y_{2}-y_{1} x_{2}\right), 2\left(x_{1} x_{2}+y_{1} y_{2}\right), 1-2\left(x_{2}^{2}+y_{2}^{2}\right)\right)
$$

[Hopf 1931]

The Hopf Fibration

Right Hopf map $h: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$
The fibers $h^{-1}(p)$ for $p \in \mathbb{S}^{2}$ are great circles: a Hopf bundle Every great circle belongs to a unique right Hopf bundle. Isoclinic \equiv belong to the same Hopf bundle This is a transitive relation.

Right Hopf map $h: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$
The fibers $h^{-1}(p)$ for $p \in \mathbb{S}^{2}$ are great circles: a Hopf bundle
Every great circle belongs to a unique right Hopf bundle. Isoclinic \equiv belong to the same Hopf bundle This is a transitive relation.

If all closest pairs are isoclinic
\rightarrow all great circles in a connected component of the closest-pair graph belong to the same bundle.
$\rightarrow h$ maps them to points on \mathbb{S}^{2}.
We know how to deal with \mathbb{S}^{2} !
http://www.geom.uiuc.edu/~banchoff/script/b3d/hypertorus.html

Equivariant condensation on the 2-sphere:
Input: $A \subseteq \mathbb{S}^{2}$.
Output: $A^{\prime} \subseteq \mathbb{S}^{2},\left|A^{\prime}\right| \leq \min \{|A|, 12\}$.

- $A^{\prime}=$ vertices of a regular icosahedron
- $A^{\prime}=$ vertices of a regular octahedron
- $A^{\prime}=$ vertices of a regular tetrahedron
- $A^{\prime}=$ two antipodal points, or
- $A^{\prime}=$ a single point.

Equivariant condensation on the 2-sphere:
Input: $A \subseteq \mathbb{S}^{2}$.
Output: $A^{\prime} \subseteq \mathbb{S}^{2},\left|A^{\prime}\right| \leq \min \{|A|, 12\}$.

- $A^{\prime}=$ vertices of a regular icosahedron
- $A^{\prime}=$ vertices of a regular octahedron
- $A^{\prime}=$ vertices of a regular tetrahedron
- $A^{\prime}=$ two antipodal points, or
- $A^{\prime}=$ a single point.

Condense each connected component of the closest-pair graph to ≤ 12 great circles.
Compute closest-pair graph (on \mathbb{S}^{5}) from scratch. If no progress, distance between closest pairs is $\geq D_{\text {icosa }}$ $\rightarrow \leq 829$ great circles $\rightarrow 2+2$ DIMENSION REDUCTION

$2+2$ Dimension Reduction

We have a plane P and we know its image in B.

$2+2$ Dimension Reduction

$2+2$ Dimension Reduction

2+2 Dimension Reduction

Are they the same up to translation on the φ_{1}, φ_{2}-torus?

$2+2$ Dimension Reduction

Prune without losing information:
 (CANONICAL SET)

2+2 Dimension Reduction

Prune without losing information:
 (CANONICAL SET)
Pick a color class

2+2 Dimension Reduction

Prune without losing information:
 (CANONICAL SET)
Pick a color class

Prune without losing information:
 (CANONICAL SET)
Pick a color class
Compute the Voronoi diagram

2+2 Dimension Reduction

After recoloring, the reduced set has THE SAME translational symmetries as the old set.

Termination:

All points have the same color and the same cell shape (a modular lattice)

ANY point is as good a representative as any other.

CANONICAL SET $c(A)$: move (any) representative point to $\left(\varphi_{1}, \varphi_{2}\right)=(0,0)$, or to $\left(x_{1}, 0, x_{3}, 0\right)$.
$\exists T$ with $T P=P$ and $T A=B \Longleftrightarrow c(A)=c(B)$

Algorithm Overview

Every edge acts like a perfect mirror of the neighborhood.
\rightarrow Every connnected component is the orbit of a point under a group generated by reflections.

These groups have been classified. (Coxeter groups)

- "small" components \rightarrow pruning
- Cartesian product of 2-dimensional groups (infinite family) $\rightarrow 2+2$ dimension reduction
- "large" components

$$
\rightarrow|A| \leq n_{0}
$$

