Coloring Points for Bottomless Rectangles

Andrei Asinowski, Jean Cardinal, Nathann Cohen, Sébastien Collette, Thomas Hackl, Michael Hoffmann, Kolja Knauer, Stefan Langerman, Piotr Micek, Günter Rote, Torsten Ueckerdt

Berlin, Brussels, Graz, Kraków, Prague, Zürich

Problem Statement

GIVEN: point set, $k=3$ colors ○ ○○
FIND a coloring such that every bottomless rectangle with at least $q=7$ points contains all k colors

0
0

0
0
0
0

0
0

0

0
0

Problem Statement

GIVEN: point set, $k=3$ colors ○○○
FIND a coloring such that every bottomless rectangle with at least $q=7$ points contains all k colors

Problem Statement

GIVEN: point set, $k=3$ colors ○ ○○
FIND a coloring such that every bottomless rectangle with at least $q=7$ points contains all k colors

Problem Statement

GIVEN: point set, $k=3$ colors ○ ○○
FIND a coloring such that every bottomless rectangle with at least $q=7$ points contains all k colors

Problem Statement

GIVEN: point set, $k=3$ colors ○ ○○
FIND a coloring such that every bottomless rectangle with at least $q=7$ points contains all k colors

Problem Statement

GIVEN: point set, $k=3$ colors ○ ○○
FIND a coloring such that every bottomless rectangle with at least $q=7$ points contains all k colors
$f(k):=$ the smallest q for which such a coloring always exists

Problem Statement

GIVEN: point set, $k=3$ colors ○ ○○
FIND a coloring such that every bottomless rectangle with at least $q=7$ points contains all k colors
$f(k):=$ the smallest q for which such a coloring always exists

RESULTS: $1.63 k \leq f(k) \leq 3 k-2$

Other Ranges

Axis-aligned rectangles: $f(k)=\infty$, even for $k=2$ colors
[Pach, Tardos 2010]
Aligned equilateral triangles: $f(2) \leq 12$
[Keszegh, Pálvölgyi 2011]
OPEN: $f(k)=$ finite or infinite?
related to cover-decomposability / dual cover-decomposability

Bottom-Up Sweep

IDEA: Color the points from bottom to top

Bottom-Up Sweep

IDEA: Color the points from bottom to top

Bottom-Up Sweep

IDEA: Color the points from bottom to top
ONLINE: without knowing future points

Bottom-Up Sweep

IDEA: Color the points from bottom to top
ONLINE: without knowing future points

legal coloring:
Every interval of q consecutive points must contain all colors.

Bottom-Up Sweep

IDEA: Color the points from bottom to top
ONLINE: without knowing future points
SEMI-ONLINE: Points need not be colored immediately. Points can be colored any time, but then the color remains fixed.

legal coloring:
Every interval of q consecutive points must contain all colors.

Bottom-Up Sweep

IDEA: Color the points from bottom to top
ONLINE: without knowing future points
SEMI-ONLINE: Points need not be colored immediately. Points can be colored any time, but then the color remains fixed.

legal coloring:
Every interval of q consecutive points must contain all colors.

Bottom-Up Sweep

IDEA: Color the points from bottom to top
ONLINE: without knowing future points
SEMI-ONLINE: Points need not be colored immediately. Points can be colored any time, but then the color remains fixed.

legal coloring:
Every interval of q consecutive points must contain all colors.

The Semi-Online Coloring Problem on the Line $-000-0-00-00-0-0$
A new uncolored point arrives:

Any uncolored points can be colored...

... to make the coloring legal:
Every interval of q consecutive points must contain all colors.

The Semi-Online Coloring Problem on the Line $-000-0-00-00-0-0$
A new uncolored point arrives:

Any uncolored points can be colored...

... to make the coloring legal:
Every interval of q consecutive points must contain all colors. $f^{\prime}(k):=$ the smallest q for which there is a semi-online coloring algorithm

$$
\begin{aligned}
& \text { RESULTS: } f(k) \leq f^{\prime}(k) \leq 3 k-2 \\
& \text { COMPUTER LOWER BOUNDS: } \\
& f^{\prime}(2)=4, f^{\prime}(3)=7,9 \leq f^{\prime}(4) \leq 10 \\
& \hline
\end{aligned}
$$

Upper Bound: $f^{\prime}(k) \leq 3 k-2$

INVARIANT: $k-1 \leq$ gap $\leq 3 k-3$ for every color

Each of the remaining $k-1$ colors can occur at most once in the middle part.

(Weaker) Lower Bound: $f(k) \geq 1.58 k$

(Weaker) Lower Bound: $f(k) \geq 1.58 k$

(Weaker) Lower Bound: $f(k) \geq 1.58 k$

$\alpha_{j}=$ gap before the first occurrence of color j

Any $q-\alpha_{j}$ consecutive points of B must contain color j :
frequency of j is $\geq \frac{1}{q-\alpha_{j}}$
FREQUENCY condition

$$
\begin{aligned}
& \quad \sum_{j=1}^{k} \frac{1}{q-\alpha_{j}} \leq 1 \\
& \alpha_{1} \geq 0, \text { w.l.o.g. } \\
& \alpha_{2} \geq 1, \\
& \alpha_{3} \geq 2, \ldots \\
& \quad \sum_{j=1}^{k} \frac{1}{q-j+1} \leq 1
\end{aligned}
$$

Lower Bound: $f(k) \geq 1.58 k$

$$
\begin{aligned}
& \sum_{j=1}^{k} \frac{1}{q-j+1} \leq 1! \\
& \frac{1}{q}+\frac{1}{q-1}+\cdots+\frac{1}{q-k+1} \approx \ln q-\ln (q-k)=\ln \frac{q}{q-k}=1 \\
& \Longrightarrow q=\frac{e}{e-1} k \approx 1.58 k
\end{aligned}
$$

Three Lines: $f(k) \geq 1.63 k$

Three Lines: $f(k) \geq 1.63 k$

Three Lines: $f(k) \geq 1.63 k$

Three Lines: $f(k) \geq 1.63 k$

Three Lines: $f(k) \geq 1.63 k$

Three Lines: $f(k) \geq 1.63 k$

Any initial seqment of B
can play the role of A :

$$
\begin{gathered}
F\left(\beta_{1}, \ldots, \beta_{k}\right):=\sum_{j=1}^{k} \frac{1}{q-\beta_{j}} \\
F\left(\beta_{1}, \ldots, \beta_{k}\right) \leq 1!
\end{gathered}
$$

We know more about β_{j} than about α_{j} :

$$
\beta_{j} \leq q-(j-1)
$$

We can pick an initial segment of B.

Evolution of β_{j}

Evolution of β_{j}

$\beta_{\bullet}=30$
 $\beta_{0}=45$
 $\beta_{\bullet}=0 \quad 1$

Evolution of β_{j}

Evolution of β_{j}

Evolution of β_{j}

Evolution of β_{j}

$x_{j r} \geq x_{j, r+1}$
$x_{1 r}+x_{2 r}+\cdots+x_{j r} \leq 1 \quad$ (all β_{j} values are distinct.)
The average value of $F\left(\beta_{1}, \ldots, \beta_{k}\right)=\sum_{j=1}^{k} \frac{1}{q-\beta_{j}}$ is

$$
\sum_{j=1}^{k} \sum_{r \geq 0} x_{j r} \frac{1}{q-r} \rightarrow \mathrm{MIN}!
$$

If $\min >1$, then q is too small.

A Linear Programming Problem

	$r=0$	$r=1$	\cdots	$q-k+1$	\cdots	$q-3$	$q-2$	$q-1$	$=$
color 1:	x_{10}	x_{11}	\cdots	$x_{1, q-k+1}$	\cdots	$x_{1, q-3}$	$x_{1, q-2}$	$x_{1, q-1}$	$=$
color 2:	x_{20}	x_{21}	\cdots	$x_{2, q-k+1}$	\cdots	$x_{2, q-3}$	$x_{2, q-2}$		$=$
color 3:	x_{30}	x_{31}	\cdots	$x_{3, q-k+1}$	\cdots	$x_{3, q-3}$			$=$
\vdots	\vdots	\vdots	\ddots	\vdots					
color $k:$	$x_{k 0}$	$x_{k 1}$	\cdots	$x_{k, q-k+1}$					$=$
	≤ 1	≤ 1	\cdots	≤ 1	\cdots	≤ 1	≤ 1	≤ 1	$=$

$x_{j r}$ decreasing in rows

$$
\sum_{j=1}^{k} \sum_{r=0}^{q-j} x_{j r} \frac{1}{q-r} \rightarrow \mathrm{MIN}!
$$

The solution can be worked out explicitly.

Semi-Online Coloring as a Game

ADVERSARY inserts an uncolored point.

Semi-Online Coloring as a Game

ADVERSARY inserts an uncolored point. 00000000
If more than s points, ADVERSARY must discard the leftmost or rightmost point

COLORER colors uncolored points, must make the coloring legal.

This becomes a game on a finite bipartite graph.
ADVERSARY wins for $k=2, q=3, s=5 \Longrightarrow f^{\prime}(2) \geq 4$

$$
\begin{aligned}
& k=3, q=6, s=10 \Longrightarrow f^{\prime}(3) \geq 7 \\
& k=4, q=8, s=11 \Longrightarrow f^{\prime}(4) \geq 9
\end{aligned}
$$

ADVERSARY loses for $k=4, q=9, s=13$. ($>10^{8}$ edges)

