

Enumeration and Counting of Pseudoline Arrangements

Günter Rote Freie Universität Berlin

Pseudoline Arrangements

- *n* curves going to infinity
- Two curves intersect exactly once, and they cross.
- simple pseudoline arrangements: no multiple crossings
- x-monotone curves

Pseudoline Arrangements

a different arrangement

- *n* curves going to infinity
- Two curves intersect exactly once, and they cross.
- simple pseudoline arrangements: no multiple crossings
- x-monotone curves

How many pseudoline arrangements?

How many pseudoline arrangements?

Related concepts

pseudoline n+1= path in the dual DAG

pseudoline n+1= path in the dual DAG

Generation (enumeration) is straightforward. (No dead ends!)

Generation (enumeration) is straightforward. (No dead ends!)

Counting is straightforward. (#paths from B in a DAG)

#paths $\leq 2.49^n$ [Felsner, Valtr 2012]

#paths can be as large as 2.076^n . [O. Bílka 2010]

pseudoline n+1= path in the dual DAG

Threading several pseudolines at once

Take a fixed sweep by a sequence of ropes.

Dynamic programming

For each rope: (s pieces)

Dynamic programming

For each rope:

(s pieces)

- ullet For every distribution of the ℓ strands to the s pieces
- ullet and for every permutation of the ℓ strands,

[
$$s(s+1)(s+2)...(s+\ell-1)$$
 entries]

store the number of possibilities to thread the ℓ strands from the bottom face to the rope.

Dynamic programming

For each rope:

(s pieces)

- ullet For every distribution of the ℓ strands to the s pieces
- ullet and for every permutation of the ℓ strands,

[
$$s(s+1)(s+2)...(s+\ell-1)$$
 entries]

store the number of possibilities to thread the ℓ strands from the bottom face to the rope.

Advancing the rope across a face

What is the contribution to the next rope?

Advancing the rope across a face

What is the contribution to the next rope?

PARTIAL pseudoline arrangements

Pseudolines may not cross at all.

PARTIAL pseudoline arrangements

Pseudolines may not cross at all.

Enumeration is as easy as for full PsA's.

PARTIAL pseudoline arrangements

Pseudolines may not cross at all.

Preprocessing: $\rightarrow \ell! \times \ell!$ table (sparse!)

Algorithm summary

For each PsA of k pseudolines:

- Compute a sweep by ropes
- For each rope:
 - For each distribution and permutation of the ℓ strands:
 - * Compute the contributions to the next rope, and accumulate them.

Some implementation details

- PYTHON, with scipy for large arrays of 32/64-bit integers
- ullet modular arithmetic, using 2^{64} plus two 30-bit moduli
- $n = 16 = k + \ell = 7 + 9$. Large memory! 256 GBytes is enough; 128 GBytes sometimes failed.
- easy to parallelize:
 a large number (24,698) of independent tasks
- total CPU time: about 5.5 months, using various workstations of different speeds
- CPU time for n=15=6+9 (exploiting symmetry): 6 h. By contrast*: PYTHON without scipy took 50 CPU days.
- There is also a version in C (using CWEB) for the task of enumerating PsA's.

- Every arrangement requires $\geq n+1$ pieces (for $n\geq 3$).
- ullet can always do with $\leq 2n-2$ pieces. (greedy sweep)
- Some arrangements require $\lfloor \frac{7n}{4} \rfloor 1$ pieces.

(This is the true maximum for $n \leq 9$.)

NP-hard? (homotopy height, cutwidth)

[Biedl, Chambers, Kostitsyna, Rote, 2020, unpublished, + this week]

- Every arrangement requires $\geq n+1$ pieces (for $n\geq 3$).
- ullet can always do with $\leq 2n-2$ pieces. (greedy sweep)
- Some arrangements require $\lfloor \frac{7n}{4} \rfloor 1$ pieces.

(This is the true maximum for $n \leq 9$.)

NP-hard? (homotopy height, cutwidth)
 [Biedl, Chambers, Kostitsyna, Rote, 2020, unpublished, + this week]

- "leftmost-first" greedy sweep
- → coordinated simultaneous primal-dual sweep

What really matters in practice

- several distribute steps simultaneously, followed by collects
- cross steps separately

What really matters in practice

- several distribute steps simultaneously, followed by collects
- cross steps separately

What really matters in practice

- several distribute steps simultaneously, followed by collects
- cross steps separately

