Available at

www.ElsevierComputerScience.com Journal of
POWERED BY SCIENCE @DIREOT® Algorithms

ELSEVIER Journal of Algorithms 49 (2003) 262—-283 _
www.elsevier.com/locate/jalgor

Matching planar maps

Helmut Alt2 Alon Efrat? Giinter Roté,and Carola Wenk*

@ Freie Universitéat Berlin, Institut fir Informatik, Takustrae 9, 14195 Berlin, Germany
b University of Arizona, Computer Science Department, 1040 E 4th Street, Tucson, AZ 85721-0077, USA

Received 28 October 2002

Abstract

The subject of this paper are algorithms for measuring the similarity of patterns of line segments
in the plane, a standard problemin, e.g., computer vision, geographic information systems, etc. More
precisely, we define feasible distance measures that reflect how close a given Haiteimsome
part of a larger patterw. These distance measures are generalizations of the well-known Fréchet
distance for curves. We first give an efficient algorithm for the case kh& a polygonal curve
and G is a geometric graph. Then, slightly relaxing the definition of distance measure, we give an
algorithm for the general case where bathandG, are geometric graphs.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Patterns consisting of line segments occur in many applications of a geometric nature,
like computer vision, geographic information systems, CAGD, etc. In many cases the
problem occurs to determine whether some given patteis equal to or similar to some
part of a larger patter&. Here, for the case of patterns consisting of straight line segments,
we will give feasible distance measures reflecting this similarity and being compatible to
paths on the pattern. Also, we will give efficient algorithms for computing these distances.

As a first task we consider a given polygonal curve, and an embedded graph with
line segment edges, and we wish to find a path in the graph (which then corresponds

Y Preliminary versions of this paper was presented at the 14th Annual ACM-SIAM Symposium in Baltimore,
January 2003 [Alt et al., in: Proc. 14th ACM—SIAM Sympos. Discrete Algorithms, 2003, pp. 589-598]. The first
part of this work formed part of Carola Wenk’s PhD thesis [C. Wenk, Shape matching in higher dimensions, PhD
thesis, Freie Universitéat Berlin, 2003, to appear].

* Corresponding author.

E-mail addressesalt@inf.fu-berlin.de (H. Alt), alon@cs.arizona.edu (A. Efrat), rote@inf.fu-berlin.de
(G. Rote), carolaw@cs.arizona.edu (C. Wenk).

0196-6774/% — see front mattéi 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0196-6774(03)00085-3

H. Alt et al. / Journal of Algorithms 49 (2003) 262-283 263

to a polygonal curve) such that the Fréchet distance between the curve and the path is
minimized. This is a partial matching variant. The problem in this form already has many
applications. The following one, for example, looked particularly appealing to us: The
Global Positioning System (GPS) is a collection of satellites that provides worldwide
positioning information. A specific position can be determined by using a GPS receiver.
Now consider a given roadmap, and a person travelling on some of the roads, while
recording its positioning information using a GPS receiver. The roadmap can be modelled
by a planar embedded graph, and the path the person travelled is represented by a sequence
of GPS positionsecorded by the GPS receiver, which we connect by straight line segments
to form a polygonal curve. Since the GPS receiver usually introduces noise, the captured
curve will not exactly lie on the roadmap. The task is to identify those roads which have
actually been travelled. This is a prerequisite for incrementally constructing roadmaps from
such GPS curves, which is especially interesting for roads such as hiking trails in a forest
which are not visible on aerial pictures. We present an algorithm solving this problem
in Section 2. It has been implemented, and even without specific optimizations it runs
surprisingly fast. In Section 3 we consider the case of two geometric graphs.

Our distance measures are based on the Fréchet distance for curves which has been
investigated before in [1].

Definition 1 (Fréchet distance Let f:1 = [I;,r;] — R2, g:J =[l;,r;] — R? be two
planar curves, and lét- || denote the Euclidean norm. Then fRgchet distancég(f, g)
is defined as

Sr(f.9) = inf max | f(a@) —g(B®)]

«o:[0,1]—1 t€[0,1]
B:10,1]—J

’

wherea andg range over continuous and non-decreasing reparametrizations (@jth=
l[, Oé(l) =ry, ,3(0) = l], ,3(1) =ry.

If we drop the requirement oa and 8 to be non-decreasing, we obtain a distance
measure that is called thrgeak Fréchet distandeetweens andg.

A popular illustration of the Fréchet distance is the following: Suppose a person is
walking a dog, the person is walking on the one curve and the dog on the other, and the
person is holding the dog at a leash. Both are allowed to control their speeds but they are
not allowed to go backwards. Then the Fréchet distance of the curves is the minimal length
of a leash that is necessary for both to walk the curves from beginning to end.

2. Matchingacurvein agraph

Let G = (V, E) be an undirected connected planar graph with a given straight-line
embedding inR?, |V| =g¢, |E| = O(q), such thatV = {1, ..., ¢} corresponds to points
{ve,...,v4} C R2. We assume, althoughi is an undirected graph, that each undirected
edge between verticésj € V is represented by the two directed edges), (j,i) € E.

Thus E consists of directed edges, but still represents an undirected graph. Each edge
(i, j) € E is embedded as an oriented straight line segmgptfrom v; to v;. s;;

264 H. Alt et al. / Journal of Algorithms 49 (2003) 262-283

is obtained froms; ; by reversing the orientation. Furthermore et[0, p] — R? be
a polygonal curve inR?, which consists ofp line segmentsy; := a|;; ;1) for i €
{0,1,..., p — 1}. We consider each line segment to be parameterized by itsatural
parametrizationi.e.,a(i + A) = (1 — A)a(i) + rx(@ + 1) for all » € [0, 1]. For a vertex
i € V we denote by Adj) C V the set of vertices adjacenttoWe identify a pathr in G
with the polygonal curve that is formed by its edges. GiweandG we wish to find a path
7 in G which minimizessg(«, 7). Note that this definition allows a pathin G to travel
the same edges ifi multiple times.

We attack this minimization problem by first solving the decision problem for which
we fix ¢ > 0 and wish to find a path (if it exists) i@ such that the Fréchet distance is at
moste. Afterwards we apply parametric search, in a manner similar to that of [1], to finally
solve the minimization problem. As a subproblem we consider the task of only deciding
whether there exists a pathdhwith the desired properties. The algorithm for the decision
problem then can be used to design one for the computation of such a path.

2.1. Basic concepts and algorithm outline

If not stated otherwise let > 0 be given. We employ the notion of tliee space-,
and the free space diagram FbBf two curves, which was introduced in [1]:

Definition 2[1]. Let f:1 — R?, g:J — R? be two curves], J CR. The set E(f, g) :=
{(s,t) e I x J || f(s)—g(t)] < e} denotes théree spacef f andg. We call the partition
of I x J into regions belonging or not belonging tq (F, g) the free space diagram

FD:(f. &)

We call points in white or feasibleand points in FQ\ F, blackor infeasible See Fig. 1
for an illustration.

In [1] it has been shown thal=(f, g) < ¢ if and only if there exists a curve within
F:(f, g) from the lower left corner to the upper right corner, which is monotone in both
coordinates. We call a curve within. ¢, g) feasible We thus concentrate on finding a
monotone feasible path in certain free space diagrams. Figure 1 shows polygonal curves
f, g, a distances, and the corresponding free space diagram with the free space F

a

Fig. 1. Free space diagram for two polygonal curyeandg. A monotone curve from the lower left corner to the
upper right corner is drawn in the free space. This illustration is taken from [1].

H. Alt et al. / Journal of Algorithms 49 (2003) 262-283 265

P

Fig. 3. Example of a free space surface: Free space diagrams glued together according to the adjacency
information of G. An example pathr in the free space surface is highlighted in grey.

Observe that the monotone curve in(F, g) from the lower left corner to the upper right
corner as a continuous mapping frgf 1] to 7 x J directly gives continuous increasing
reparametrizations andg.

For all (i, j) € E lets; ; be continuously parameterized by valuegOnl] according
to its natural parametrization, thus; : [0, 1] — R?. For every edgéi, j) € E consider
the free space ;F := Fq(a, ;) € [0, p] x [0,1]. The free space diagram EP:=
FD; (e, s;, ;) is the subdivision of0, p] x [0, 1] into thewhite points of F ; and into the
blackpoints of[0, p] x [0, 1]\ F; ;. See Fig. 2 for an illustration.

As shown in [1], FDQ; consists of a row op cells. Each such cell corresponds to a
line segment ok, and the free space in each cell is the intersection of an elliptical disk
with that cell. For a vertey € V let FD; := FD,(«, v;), which is a one-dimensional free
space diagram consisting of at mogt 2 1 black or white intervals. Let F:= F(«, vj)
be the corresponding one-dimensional free space, which consists of a collection of white
intervals. Furthermore, lét; be the left endpoint an@; be the right endpoint of FP

For each e V the free space diagrams Fband FD; ; for all j € Adj(i) have the one-
dimensional free space diagram fiD common—as the bottom of FD and as the top
of FD; ;. Thus we can glue together the two-dimensional free space diagrams along the
one-dimensional free space they have in common, according to the adjacency information
of G. In this manner we obtain a topological structure which we calfréespace surface
of G andw; see Fig. 3 for an example.

The algorithm in [1] computes a monotone feasible path in the free space diagram of
two polygonal curves in a dynamic programming fashion. We apply a related approach to
our more general setting: We search for a feasible path in the free space surface. This path
has to start at some white left corrier and has to end at some white right corRgy, for

266 H. Alt et al. / Journal of Algorithms 49 (2003) 262-283

two verticesj, k € V, since the corresponding pathin G has to start and end in a vertex
of G. Any pathz in G selects a sequence of free space diagrams in the free space surface,
whose concatenation yields E@,). Thus let us consider the following reachability
information.
For every vertexj € V let R(j) be the set of all points € F; for which there exists a
k € V and a pathr from k to j in G such that there is a monotone feasible path ftgm
tou in F¢(a, 7). We call points iR (j) reachable We call an interval of points iR ()
reachableif every point in it is reachable. We thus know that there is a path G with
Or(a, m) < ¢ iff there is a vertexj € V such thaR; € R(j).
Similar to [1] we first decide whether there exists a feasible path in the free space
surface by computingR(j) for all j € V in a dynamic programming manner. In fact
we will not store the wholeR(j) but only parts of it which allow us to arrive at the
correct decision. The algorithm solving the decision problem consists of three stages:
The preprocessing stageee Section 2.2, which computes the free space diagrams FD
together with some additional reachability information; thy@amic programming stage
see Section 2.3, which decides if there exists a feasible path in the free space surface; and
the path reconstruction stagesee Section 2.4, which constructs the patin G along
with feasible reparametrizations af and « that witness the fact tha=(o, 7) < €. In
Section 2.6 we show how to apply parametric search to solve the minimization problem.
In the following we make use of a property of Fpfor each(i, j) € E, which we call
thesimplicity propertyof FD; ;: Each FD ; is a row of cells, and each white region in such
a cellis the intersection of an elliptical disk with the cell boundary. Thus there is no vertical
line at any position in FBD; which contains white, black, and white points alternatingly.
Or in other words, the white points on a vertical line always form an interval. From this we
obtain the following insight:

Lemma l. Let(i, j) € E, andu € F;, v € F; be white points with: < v for which exists
a feasible monotone path iRD; ; from u to v. Then for everyy’ € F; and v’ € F;,
u <u' <v' < v, there exists a feasible monotone patlfrd; ; fromu’ to v'.

Proof. Consider the feasible monotone path franto v. Then due to the simplicity
property of FDQ ; itis possible to go straight up fromt until hitting this path, and similarly

to go straight down from’ until hitting this path, and stay inside the free space all the time.
Stitching those pieces of paths together we obtain the desired feasible monotone path in
FD; j fromu’'tov'. O

2.2. Preprocessing

We compute all one-dimensional free space diagramsféiball i € V. Conceptually
we continue to consider the EDfor all (i, j) € E, but we do not need to compute them
explicitly, for we capture the reachability information in the additional pointers we will
compute. Let(i, j) € E be fixed, then FP; < [0, p] x [0, 1] consists ofp cells, one
for each segment in. Let ¢ be the cell in FI); corresponding to théth segmenty;
of o, 0< k < p—1. Let Ly = [ak, bi] be the white interval on the left boundary gf,
let By = [k + ck, k + di] be the white interval on the bottom boundary @f and let

H. Alt et al. / Journal of Algorithms 49 (2003) 262-283 267

k+ ¢, k + d),
I B! ——e
T b
by |
L Ly
Fig NGk _I.
Ly, et
.
cem- Br— -=imm
k+cp k + dy,

Fig. 4. Intervals of the free space on the boundary of a cell.

Preprocessing:
1. For alli e V compute the one-dimensional free space diagrams FD
2. Foreveryi € V and every white interval of FD; compute for allj € Adj(i) the pointers; ; (1) andr; ; (1),
and store them in an array each, indexedjb$ee Lemma 3.

Fig. 5. Preprocessing steps.

B, = [k + ¢}, k + d}] be the white interval on the top boundarymf See Fig. 4 for an
illustration. If Ly = @ then we sety;, := 1 andby := 0. Similarly if By =@ we setc; :=1
anddy := 0, and if B, =¥} we selc; := 1 andd, := 0. Note that the left boundary af is
part of the vertical line segmeit} x [0, 1] with respect to the free space diagram; FD
We call {k} x R thevertical line atk. We call the black parts igg, of which there are
at most fourspikes In particular we call the spikes bounded from aboveapyor a1
lower spikesand the spikes bounded from below by or by+1 upper spikesWe call
ak, ax+1, by, b 11 the heightsof the corresponding spikes. Similarly, we call ¢, di, d;,
widthsof left andright spikes. We calk theindexof the two spikes bounding,. Note
that the interval endpoints correspond to heights or widths of spikes.

For each(i, j) € E we compute for each white intervdl of FD; the leftmost point
l;,j(I) (left pointeror /-pointer) on FD; and the rightmost point; ; (1) (right pointeror
r-pointer) on FD; which can be reached from some poinfiby a monotone feasible path
in FD; ;. This can be done in linear time for all intervals on FBBee Lemma 3. Note that
l;,;(I) either equals the left endpoint éfor equalsk + ¢, for some 0< k < p — 1. For
the right pointer holds; ; (1) = k + d; for some other & k < p — 1. Note that similar
reachability pointers have been used in [1] for attacking the case of closed curves. Let us
call /(1) the left endpoint of , andr(7) the right endpoint of .

For notation purposes we identify in the following a white interan FD; with a By
for some 0< k < p — 1. If a white interval on FDspans several cells we consider it to be
composed of one white interval per cell.

For each white interval of FD; we store the left pointers and right pointers in two
arrays that are indexed by thies Adj(i). Thus each white intervdl on FD; has|Adj()|
[-pointers and--pointers attached to it. See Fig. 5 for an overview of the preprocessing
steps.

The following lemma gives a characterization when points on &ih be reached from
points on FIQ by a monotone feasible path in ER

268 H. Alt et al. / Journal of Algorithms 49 (2003) 262-283

Lemma 2. Let (i, j) € E be fixed. LeD < k <k’ < p — 1, and assume thaBy, B;, # #.
Then there is a monotone feasible pathd; ; from some point oy to a point onBy, if
and only if

max a; < min b; forall k <I <k'. 1)
i=k+1,...1 i=l,.. K

Proof. Assume there is a monotone patlin F; ; from a point onBy to a point onB,,. For
eachk <[<k’ consider the point where passes the vertical line Atz has to pass above
allg; fori =k+1,...,1 and below allp; for j =1, ..., k', otherwise it would not be a
monotone feasible path. For the other direction, assume that (1) holds foxdll< &'
Leta,,...,a;, be the sequence of different indices that form the partial maxima of the
sequencer, ..., ap—1, When considering its prefixes obtained by reading it from left to
right. We constructr to start in an arbitrary point oB;, go vertically upwards until
the heighta;,, go horizontally until we hit the lower spike in, then visit the points
ajy, ..., a,, and then pass horizontally until it ends under some poinBpnwhich it
then connects to by going vertically straight up. Two poimtsanda;,,, are connected

in 7 by a path that starts horizontally at heigh until it hits the lower spike in,4+1.

It then follows the boundary of this spike (which is monotonically increasing) until the
heighta;, ,,. Since (1) holds fof =1, ..., i, every described piece in the path is indeed
feasible, andr is monotone. O

Lemma3. Let (i, j) € E. Then all pointers; ; (Bi) andr; ; (By) for all white intervalsBy
onFD;, 1<k < p—1, can be computed io(p) time.

Proof. The left pointers; ;(By) for all 0 < k < p — 1 are easily computed by a scan

for increasingk = 0,...,p — 1: Let k be fixed. If cx < d; then we setl; ;(By) :=

k + max(c, ;). Otherwise we greedily search for the first agh, & > k, which contains

a white point on its upper boundary, and such that (1) holds. If such a cell does not exist
then we set; ; (By) := NIL. Otherwise we setl; ; (By) := k' + c]/(/. For the next iteration,

i.e., fork increased by one, we only have to consider cells to the right pfuch that in

total we visit every cell at most once.

The computation of the right pointers is slightly more complicated. We proceed
incrementally fork =0,..., p — 1 as follows: For eaclt, if By # ¢, we compute the
largest valug&’ for which (1) holds. In order to do this we maintain a st&ck= {i1, ..., in}
of indicesk < i1 < iz < --- < iy < k" which are the indices of those lower spikes that
are horizontally visible from the vertical line @t. In other words,S is the sequence
of different indices that form the partial maxima of the sequengce, ..., ar, when
reading it from left to right. Thus each indéxe S is characterized by the property that
a;; > a; for all iy <1 < k. We call S the partial maxima stackwith top elementi,,,
andbottomelementi;. Note that forS = {i1, i2, ..., i,,} We havei; <i» <--- < i, and
aj, > a;, > --- > a;, . See Fig. 6 for an illustration. The significance of these values is as
follows: Letis < is11 € S be two successive indices, andiek i < is4+1. Then the lowest
point on the vertical line at’ that can be reached frol; (if B; # #) by a monotone
feasible pathin FD; isa; ;.

H. Alt et al. / Journal of Algorithms 49 (2003) 262-283 269

1
4
5
7

S

]
!
1 2 p—1p

Fig. 7. Shortcut pointers on FD

We initialize S = {0} andk’ = 1. Letk =0, ..., p — 1 be the current value of the
iteration. We maintain the invariant that (1) holds for the current values ahd &’
throughout the algorithm. This is trivially true for the initialization case. And if we know
that (1) holds fork — 1 andk’, then it immediately holds fok andk’. For fixedk we
now search for the maximal that fulfills (1). (We always denote the top elementSoy
a;,, and the bottom element ly, , although the indices and the valuemefthange during
the algorithm.) Ifa;;, > by41, thenk’ 4+ 1 violates (1), thug’ is the maximal value we
searched for. If;; < by41, then we have mdy;,, a1} = MaX—+1, . wy1ai < b1,
thus (1) holds fok’ 4+ 1 and we can safely increakeby one. Now we have to maintai
to represent the partial maxima of lower spikes betweand the increased valié. For
this we pop the topmost values frashuntil a;, > ay . Finally we pustk’ on top. Then we
start with a new iteration ok

Once we have found the maxinfdithat fulfills (1), we know that there is no monotone
feasible path in FD; from any point onB; (assuming thaBy # ¢) to B/,H. Thus the
rightmost point on FD that can be reached by a monotone feasible path Bpris the
first d;, which bounds a white interval on FQo the left of the vertical line at’ + 1.

In order to obtain alld], efficiently during the run of the algorithm we stor2(p)
shortcut pointersfor each FD: At the kth cell boundary of F), for integer 0O< k < p —1,
we store a pointer to the rightmost white point on;RBat lies to the left ok. If there is
no such white point we set the shortcut pointer to NIL. See Fig. 7 for an illustration. We
construct this pointer structure on the fly by computing a pointer value from the shortcut
pointer to its left. Now we find/;, by greedily searching for the next white point on FD
to the left ofk’ + 1. If possible we follow the next shortcut pointer; otherwise we greedily
search for the first white point and compute the shortcut pointers on the way until we
either hit an already computed shortcut pointer or the beginning ¢f FI2 < w then we
setr; j(By) := w +d,,. If k > w then we set; ;(Bi) :=NIL. If k =w then ifc; <d; we
setr; j(By) :=k + d;, otherwise we set; ; (Bi) := NIL.

Finally, if i1 = k + 1 then we removey, i.e., the bottommost element, frafh Then we
start the next iteration obh with its value increased by one.

For the runtime analysis, note thaandk’ are always increased, and never decreased.
In each such increasing step we perform only constant time operations without counting
the stack operations and the location of #je Once a value is removed from the stack
(either by popping from the top, or by removing from the bottom) it is never inserted in
S again. Thus every integer between 1 gnd- 1 is at most once inserted in the stack

270 H. Alt et al. / Journal of Algorithms 49 (2003) 262-283

and removed from the stack. With respect to the shortcut pointers we charge every cell
boundary for computing its shortcut pointer. Thus the total time to computg All) is
indeedO(p). O

2.3. Dynamic programming

In this stage we decide whether there exists a feasible monotone path in the free space
surface. Note that such a path traverses a sequence of free space diagramé/&ball
the part of a path that traverses one such free space diagsagmeenof the path.

Conceptually we sweep all ED at once with a vertical sweep line from left to right.
Let 0 < x < p denote the position of the sweep line. For each V we store a set
Ci € R(i) € F; of white points, which we compute in a dynamic programming manner.
Throughout the algorithm we maintain the following invariant:

Definition 3 (C;). Leti € V andx be the current position of the sweep line. Thén
consists of all reachable pointse R (i) € FD;, such thatt > x, and for which the last
segment of their associated feasible monotone path crosses or ends at the sweep line.

Thus we are able to decide wheth®re R(i) by checking ifR; € C; for an advanced
enough position: of the sweep line. Let us call a sequence of consecutive white and black
intervals of F) a consecutive chaiof intervals. For a consecutive chain, as well as for a
single interval,C let [(C) be its left and-(C) be its right endpoint. For two consecutive
chainsC’ € C we callC’ aconsecutive subchaif C.

Lemma 4. EveryC;, fori € V, is a consecutive chain, for every valuexof

Proof. Let x and leti € V be fixed. Letw € C; be the largest point i€;. By definition
of C; there is & € Adj(i) and a white poink € F; with u < x < w, such that is reachable
and there exists a monotone feasible path in Fdom « to w. For any white poinb € F;
with x < v < w there exists by Lemma 1 a monotone feasible path fucimv in FD; ;,
which makes in particular also reachable by the same path that reachesncatenated
with the monotone feasible path framto v. Thusv € C;, andC; is a consecutive chain.
See Fig. 8 for an illustration. O

The algorithm we present is a mixture of a sweep (since we are sweeping with a
sweep line), dynamic programming (on tiewe incrementally build up), and Dijkstra’s

FD;

FD]',I'

FD,

Fig. 8. A consecutive chai@;.

H. Alt et al. / Journal of Algorithms 49 (2003) 262-283 271

algorithm for shortest paths (since we are computing paths using a priority queue to
augment the path in a similar fashion to Dijkstra’s algorithm). We maintain a priority queue
Q of white intervals of FD which are known to be reachable. More precisely, for each
i € V the first white interval ofC; (if C; # 0) is stored inQ. The priority of an interval is
its left endpoint. The events for the sweep line, i.e., the different values afe the left
endpoints of the intervals i@. Every interval inQ is part of a consecutive chain to which
we store a pointer together with the interval. Siige= [I(C;), r(C;)] N FD; we store the
C; implicitly in constant space by storing onlyC;) andr(C;).

We initialize Q with all white L; (which are degenerate intervals). Foria#t V if L;
is white we seC; :=L;, otherwiseC; := J. Then we process these intervals in increasing
order as follows:

1. Extract and delete the leftmost interddlom Q; if there are several intervals with the
same priority pick an arbitrary one. Advancéo /(7).

2. Let C; be the consecutive chain that containdnsert the next white interval af;
which lies to the right of, into Q.

3. For eachj € Adj(i) updateC; to comply with the new value of: [I; ;(I),r; ; (I)]
defines a consecutive chain on FDOwhose white intervals are white intervals on
FD; which have now been identified to be reachable. Thus we need to merge
[5;,; (), r; j(I)] into C;. Knowing thatC; is a consecutive chain for every valuexgf
we can merge both chains together by simply considering the interval endpoints. If
I; j(I) > r(C;) then we discard the old; and replace it withl; ; (1), r; j(I)]. If the
left endpoint has changed then we delete the old first interval;ah Q and insert
the new one. Assuming an appropriate implementation of the priority queue, each
operation onQ takesO (log p) time.

4. Store for each white interval that has been newly added @ (or that has been
enlarged) gath pointerto the intervall (from which it can be reached by a monotone
feasible path in FD;).

We process all intervals i@ until we either find aj € V such thalR; € C;, or until Q

is empty. In the latter case there is no patin G with dg(a, 7) < €. In the first case we

know that such a path exists, and we reconstruct it using the path pointers in the second
stage of the algorithm, which is described in Section 2.4.

2.4. Path reconstruction

We assume that in the dynamic programming stage we foupd & with R; € J,
whereJ is a white interval inC; for some positiornx of the sweep line. In this stage we
use the path pointers to construct a patim G together with a feasible monotone path in
FD, («, 7) which witnesses the fact thét(a, 7) < &.

By construction the interval has a path pointer attached to it. We follow this path
pointer to the right endpoint of an interva) which is a suffix of an interval of FDfor
ani € Adj(j). We repeat following the path pointers until we end at.an This way we
obtain a sequence of paits r) wherei € V andr is the right endpoint of the visited
interval on FB. We call this sequence thgath sequenceNote that it starts withk, L)

272 H. Alt et al. / Journal of Algorithms 49 (2003) 262-283

for ak € V. When we extract the first component of each pair, we obtain a sequence of
i € V thatrepresents the desired patin G. The corresponding feasible monotone path in
FD, (¢, r) can be constructed in an incremental way by following the path sequence and
assuring monotonicity by using again a partial maxima stack of indices of lower spikes,
such as in Lemma 3.

2.5. Time analysis

Theorem 1. The described algorithm decides whether there is a paih G such that
Se(a, m) < ein O(pglogg) time andO (pq) space, wherg is the number of line segments
of o andgq is the complexity of. If such a pathr exists the algorithm computestogether
with a monotone feasible path in the free space surfacé (pg logg) time andO (pq)
space.

Proof. Each FQ has complexityO (p) and can be constructed (p) time. Each interval

I on FD has|Adj(i)| - andr-pointers attached to it. The number of &llandr-pointers
for all FD; sums up taO (p|E|) = O(pgq), and can by Lemma 3 also be constructed in this
time. Thus we need (pq) time and space for the preprocessing.

In the dynamic programming stage we insert and delete a suffix of every white interval
of any FQ, i € V, at most once irQ. Also the left endpoint of a white interval of any FD
might be changefAdj(i)| times. Each priority queue operation ne&2idogq) time, thus
O (pqlogq) altogether. For each interval il we consider eacli in the adjacency list of
its consecutive chain and spend constant time to merge consecutive chains and construct
path pointers for each sugh Altogether this sums up t@ (p|E|) = O(pgq) time, which
together with the priority queue operations@g pqg logq) time for the whole dynamic
programming stage. We store only one consecutive chain per vertexQ amhtains at
most one interval per vertex, which adds uplt@y) space. Additionally we store one path
pointer per interval in FR thus the space complexity for the path pointer®igq).

By construction of the path pointers there is no cycle in the graph of path pointers. Thus
every path pointer can be contained in a monotone feasible path in the free space surface
at most once. We reconstruct a feasible path using a graph travex@épiy) time (since
there areO (pq) path pointers). Clearly the constructionoin G then also need® (pq)
time. O

The program has been implemented in C with a graphical user interface using OpenGL.
It allows to edit the graph and the curve, to solve the decision problem, to perform binary
search ore, and it visualizes the computed feasible parametrizations in a walk-through
animation. See Fig. 9 for a screenshot of an example input; the found paiti is marked
in bold. The decision algorithm runs remarkably fast without specific optimizations. For
example, for graphs with = 700 edges and a curve of length= 420 it runs in 5 s, for
g = 1170 andp = 1000 in 35 s, and foy = 1170 andp = 100 in less than 2 s, on a
Pentium 4 processor. The implementation and the algorithm are shown in a video [5].
Observe that in practice one would prefer to run the algorithm on a pruned gfaph
which consists of those edges@fwhich are in thes-neighborhood of. Those edges can

H. Alt et al. / Journal of Algorithms 49 (2003) 262-283 273

Fig. 9. Screenshot of the program. The cumis drawn in light grey, and the edgesfare marked in bold.

easily be found with a line sweep @nhand thes-neighborhood of. Notice however that
this does not yield a speed-up of the asymptotic runtime.

2.6. Parametric search

In order to find the optimat we apply parametric search—analogously to [1]—to the
algorithm we presented to solve the decision problem. The outcome of this algorithm
depends solely on the relative positions of all possible widths and heights of spikes in
all free space diagrams in the free space surface. For vagyaigthose values depend
oneg, and for the parametric searchais critical if it makes two of these widths or heights
coincide. There ar® (pq) different widths or heights of spikes. As in [1] we now apply a
parallel sorting algorithm on those(pq) values which depend an and generate in that
way a superset of the critical valuesaive need. By utilizing Cole’s trick [2] we obtain a
running time ofO (pq log(pg) 10gq), at no extra storage.

Theorem 2. There is an algorithm that finds a pathin G which minimize$g(a,), in
O (pqlog(pq)logq) time andO (pq) space.

2.7. Variants

There are several variants of the problem setting and of the basic algorithm.

First, observe that the algorithm works in the same way for arbitrary (strongly)
connected but possibly non-planar or directed graphs with straight-line embeddings, as
well as for embeddings of the graph and the curve in higher-dimensional spaces. Since the
algorithm to compute the Fréchet distance does not depend on the dimension of the space
in which the curves are embedded, the runtime of the algorithm remains the samg with
denoting the number of edges and vertice& of

Another straight-forward variant is to allow a pathin G to start and end not only at
vertices ofG but also in the middle of segments; for edges(i, j) € E. In fact this can
be easily integrated into our algorithm by letting a path begin (or end) at any white point
on the left (or right) boundary of any ED.

274 H. Alt et al. / Journal of Algorithms 49 (2003) 262-283

Another variant is to ask for more monotonicity in the patthat is found in the graph.
In our current problem setting we allow a pathin G to travel the same edges @&
multiple times. It seems to be hard to avoid these cases without increasing the runtime
immensely. However we can modify our algorithm to avoid “U-turns,” i.e., to forbid a path
7 in G to travel the edgé, j) and immediately afterwards the edgei). We incorporate
this feature by storing, at every reachable white intefvah FD;, a path pointer te@ach
reachable interval on FDfrom which I can be reached; € Adj(i). Performing a depth
first traversal in this graph of path pointers we can locally exclude the option to travel back
the edge from which we arrived in a vertex, and thus altogether obtain the same results as
before.

The last variant is a time—space tradeoff, which we sketch in Section 2.8 and describe
in detail in Appendix A.

2.8. Time—space tradeoff

In every step of the dynamic programming stage in Section 2.3 we need mostly local
reachability information concerning the current interval, such dsptsinter, itsr-pointer,
the closest shortcut pointer, and the next white interval to the right in its consecutive chain.
We can generate this information on the fly by conducting the former preprocessing in
an incremental way during the algorithm. l.e., we integrate the computation &f émel
r-pointers into the algorithm, such that we compute those pointers only when we need to
access them. If we did this in a straight-forward way, we would maintain at each edge its
partial maxima stack and at each vertex all shortcut pointers (compare Lemma 3), which is
all information we need to construct tiieandr-pointers on the fly. This however would
result in a total storage o®(pq). In order to decrease the storage we still follow this
approach but do not store the full partial maxima stacks and all shortcut pointers, but we
store only equidistant samples of each. Since during the algorithm we need to recompute
the missing information between two sample points,dpacingof this sampling is then
reflected in the runtime. In the path reconstruction stage we apply a standard dynamic
programming trick for saving space, see [3,4], which in our case introduces a logarithmic
factor in the runtime. We refer the interested reader to Appendix A for the detailed
description of this approach. The obtained results are summarized below.

Theorem 3. For any1 < ¢ < p there is an algorithm that decides if there is a patlin G
such thatg(w, B7) < ein O(pq(t +10gq)) time andO (pq/t) space.

If such a pathr exists it can be computed together with a feasible monotone path in
the free space surface i (pq (¢t + logq) log p) time andO (pq/t) space. Forr = 1 the
runtime isO (pq logq).

Theorem 4. For any1 < ¢ < p there is an algorithm which computes a pathin G which
minimizesSe(a, B;) in O (pq(t +1ogq)log(pq)) runtime andO (pq/t) space.

Note that the time—space tradeoff from this section together with the variant to avoid
U-turns can be used to compute the Fréchet distance for two polygonal curves with the
same time—space tradeoff. Thus, at the cost of a logarithmic factpicompared to the

H. Alt et al. / Journal of Algorithms 49 (2003) 262-283 275

algorithm of [1], our algorithms also yields a time—space tradeoff for computing the Fréchet
distance of curves.

3. Graph-to-graph distance

In this section we generalize the Fréchet distance to pairgeoimetric graphs
i.e., embedded, connected grapHs= (Vy, Ey) and G = (Vg, Eg) with straight
edges. Observe, that #ff is not a curve there is, in general, no injective continuous
parameterizatiory : [0, 1] — H, so that we have to relax this condition. In the person—
dog paradigm we would like to define the distance fréfito G as the shortest length
of a leash necessary so that the dog visits each point of the edgésubile the person
traverses some part of.

More formally, identifyingH and G with the points lying on their edges we will call a
mappingf : [0, 1] = H which is continuous and surjectivetraversalof H. A continuous
(but not necessarily surjective) mappigg(0, 1] — G will be called apartial traversal
of G. Thetraversal distancérom H to G is defined as

Sr7(H,G) =inf ma 1) —
r(H,G) 'f,g,e[o,)f]”f() g(0)

)

where f ranges over all traversals &f andg over all partial traversals af;. Observe,

that if H and G are polygonal chains this definition corresponds to the weak Fréchet-
distance, see [1]. Also observe that the traversal distance is not a generalization of the
Fréchet distance between a curve and a graph as defined in Section 2. Figures 10a and 10d
show examples, where the traversal distance fibto G is small, in Figs. 10b and 10citis
large. Let us first consider the decision problem, i.e., determining for div&n, ands > 0
whethersy (H, G) < ¢. In order to find an algorithm for the decision problem, we consider
for all edgese € Ex and f € Eg the cellsC,, s of the free space diagram, which can be
identified with the two-dimensional unit intervgd, 1]2 within which, as was mentioned
before, the freespace is obtained by the intersection with an elliptical disk (i, v) and

f = (x,y), we name the right, left, upper and lower side€gf; asC,, ¢, Cy.r, Ce,y, and

C..x, respectively (see Fig. 11). Then we identify sides with the same name, i.e., we “glue
together” cells of the fornC,, y andC, s (C.,r andC f) if f and f’ (e ande’) have a
common endpoint () at the sides named. . (C.,r). Thus we obtain a generalization

of the free space surface from Section 2.1 which is a two-dimensional cell coiptex

three dimensions, whose facets are the «&llg, whose edges are the sidgg r andC, x,

[
[

G \ H al | |
.'—=é='.

@ (b) (© (d)

Fig. 10. (a), (d) small traversal distance; (b), (c) large traversal distance.

T
J ol

276 H. Alt et al. / Journal of Algorithms 49 (2003) 262-283
/c

Fig. 11. Edges of the traversal graph.

Cey

ef C v.i

C

ex

and whose vertices are the poifig,, withe € Ey, f € Eg,u € Vu, x € V. Please note
that we use a slightly different notation in this section than in Section 2.

S contains the combined “white” freespace of all its cells and is a generalization of the
freespace diagram of two curves. A continuous pathSorhich completely lies inside
the free space corresponds to a simultaneous motiai and H keeping a distance of at
moste. Let us call these patHeasible

If a feasible pathr traverses some cdll, ; then letl, . s be the set of those points on
e that are traversed by the corresponding motion on the graphs. The edBg is called
satisfiedby 7 if

U Iner=e.

feEg

It means that all points ot are eventually traversed by the motion on the graphs
corresponding tar. Therefore, we can conclude:

Lemmab. §7(H, G) < ¢, if and only if there exists a feasible pathsatisfying all edges
ecEy.

In order to obtain an algorithm to test the condition of Lemma 5 we introduce the
traversal graph7. The vertices of/” are the one-dimensional facefy, s and C, . of
the cell complexS, withe € Ey, f € Eg,u € Vg, x € V. Two such facets are connected
by an edge off" if and only if they are both incident to some cé€ll and if there is
a connection between both by a curve through the free spa€g pfsee Fig. 11. Thus,
to each edge of we can assign a cell of the free space. On the other hand, each cell is
assigned to at most six edges. It follows tHathas O (pq) edges where = |Eg| and
q=|EH|.

Fore e Ey, f € Eg let J, y be the set of all points oa that have distance at most
from £, i.e., the projection of the freespacedn s to e. Any pathsz with the properties
described in Lemma 5 yields a path in the traversal gfapthose edges are assigned to the
cellsC,, traversed byr. Since any edge € Ey is satisfied byr it must beUf Joy=e
where f ranges over all cell€, ; traversed byr. Consequently, the equation is truefif
ranges over all edges ifig such thatC, ; is an edge in the connected componéraf
7T containingr . Our algorithm for the decision problem is based on the fact that also the
converse is true:

H. Alt et al. / Journal of Algorithms 49 (2003) 262-283 277

Fig. 12. Motion ofz within C, ¢.

Lemma 6. 87 (H, G) < ¢, if and only if there exists a connected comportesat (Ve, E¢)
of the traversal grapl¥ such thatforalle € Ey

UJe,f:ey
f

where f ranges over all edges i whereC, ; is assigned to an edge .

To see the converse suppose tfias a connected component &f with this property.
Then we construct a path on S as follows:r traverses all vertices @f by, say, breadth-
first-search. For each cell, ; visited, r makes sure thak, . s = J. s by visiting the
leftmost and the rightmost point of the freespace (see Fig. 12).

Thenforalle € Ey

U Ie,f,n = U Je,fa
f f

where f ranges over all edges iig such thatC, ; is a cell visited byr. Thereforer
satisfies all edgese Ey ands7(H, G) < ¢ by Lemma 5.

Lemma 6 enables us to give a quite simalgorithmfor solving the decision problem.

In fact, given geometric graph@ and H ande > 0, we first determine all freespace cells
C..r,ec Ep, f € Eg, and the traversal graph. By breadth-first-search we determine
all connected components @f and we check for each of them whether the condition
of Lemma 6 holds for each edgec Ey. If this is the case for at least one connected
component, the algorithm answers “yes,” otherwise “no.”

In order to determine the runtime of this algorithm, we observe that the breadth-first-
search in total visit® (pq) cellsC,, r since there ar® (pq) edges inZ . For each cell we
have to add the interval, ¢ to the portion ok covered so far which takes tin@(log pq).

In order to solve theptimization problenobserve that for the smallestor which the
decision problem has a positive answer, there are two possibilities. On the one hand, it
could be that the left endpoint of some intervial; equals the right endpoint of another
oneJ, s, So that edge gets satisfied at that point. On the other hand, it could be that the
free space in some cdll, s touches one of the sides of the cell, i.e., the traversal graph
7T changes. Therefore, in order to solve the optimization problem we perform a parametric
search using Cole’s approach [2] with a fast parallel sorting algorithm for the endpoints
of the intervals/, , including the values 0 and 1 to take care of the critical values of the

278 H. Alt et al. / Journal of Algorithms 49 (2003) 262-283

second type. Since there abd pg) such endpoints and the decision problem can be solved
in time O (pq log pq) we obtain arD (pq log? pq) algorithm for the computation problem.
We summarize.

Theorem 5. Given two geometric graphG and H ande > 0, it can be decided whether
3r(H, G) < ¢ intime O(pqlog pg) by the algorithm given above, whepeandg are the
numbers of edges @ and H, respectively. The traversal distance frathto G can be
computed in time& (pq log? pq).

Acknowledgment

We thank Scott Howard Morris for introducing us to the application of matching GPS
curves, and Lingeshwaran Palaniappan for implementing the algorithm of Section 2.

Appendix A. Time-space tradeoff

This section presents a detailed description of the time—space tradeoff which was
sketched in Section 2.8.

A.1. Dynamic programming

Observe that in every step of the dynamic programming stage we need mostly local
reachability information concerning the current interval, such dsptsinter, itsr-pointer,
the closest shortcut pointer, and the next white interval to the right in its consecutive chain.
In this section we skip the preprocessing completely, and present a variant of the dynamic
programming algorithm of Section 2.3 that integrates the preprocessing into the algorithm
in such a way that it incorporates a time—space tradeoff.

We store and maintain the following items during the algorithm:

e Asin Section 2.3 we store at each vertexV exactly one consecutive chaih which
is represented by its endpoints.

o Inorder to compute the/, efficiently (see proof of Lemma 3) we store for each vertex
i € V a set of shortcut pointers, which we will describe in more detail below.

e Foreach edgé€, j) € E we maintain a stacl’(i, j) of indices of lower spikes, which
we will describe in more detail below.

o For each edgéi, j) € E we store a curreritpointer/; ; and a current-pointerr; ;.
These are the pointers with respect to;FD;j € Adj(i), that have been computed for
the last processed interval on FDWe update those pointers with every new interval
that we process on ED

We integrate the computation of ttheandr-pointers into the algorithm, such that we
compute those pointers only when we need to access them. If we did this in a straight-
forward way, we would maintain at each edge its partial maxima stack and at each vertex
all shortcut pointers (compare Lemma 3), which is all information we need to construct

H. Alt et al. / Journal of Algorithms 49 (2003) 262-283 279

thel- andr-pointers on the fly. This however would result in a total storagé gg). In

order to decrease the storage we still follow this approach but do not store the full partial
maxima stacks and all shortcut pointers, but we store only equidistant samples of each.
Since during the algorithm we need to recompute the missing information between two
sample points, thepacingof this sampling is then reflected in the runtime. We will first
use a spacing qf/p, and will later generalize it to an arbitrary parametet 1< p.

Let us now go into the details of this approach. The processing of intervals from the
priority queueQ is adapted as follows: For step 2 of the dynamic programming stage we
need to find the leftmost white interval @ty which lies to the right of the current interval
For this we scan the one-dimensional cells to the right aind directly compute each
interval partition until we find the first white interval.

It remains to show how we adjust step 3 of the dynamic programming stage, since in
this stage thé- andr-pointers are needed. For this we follow the lines of the proof of
Lemma 3. We have to show how we maintain the curteandr-pointers efficiently. For
this we store and maintain compressed versions of the partial maxima stack at each edge
(i, j) € E, and of the shortcut pointers at each verntexV .

For each(, j) € E we use the notion of the partial maxima sta&tik, j), howeverwe do
not storeS(i, j) directly, but only a subset @b (,/p) indices. Let the stack’(i, j) contain
this subset of indicesS (i, j) is defined as in Lemma 3 to be the sequence of indices of the
partial maxima of the sequence of lower spikes between two indieeslk’. We letk be
the right endpoint of the last interval processed on,EDdk’ as in Lemma 3 be the largest
k" > k for which (1) holds. In the beginnin§'(i, j) is initialized to be empty. After that we
directly compute it or update it from the previously stored stack, and we then extract the
currentr; ; from it. However,S(i, j) could contain up ta@ (p) indices, which we cannot
afford to store. Thus we defing'(i, j) to store everyl,/p]th index of S(i, j). More
precisely,S’ (i, j) contains the first (i.e., bottommost) index 8fi, j), and additionally
every|,/p]thindex, and finally the last index &i(i, j), in the same order as §(,).

In order to obtain alld;, efficiently during the run of the algorithm we store only
O(/p) shortcut pointerdfor each FD (as opposed t@ (p) pointers as in Lemma 3).

For every integer X k < ,/p we store at each positigrt,/p] (which corresponds to the
left boundary of the k/p]th cell of FO;) a pointer to the rightmost white point on FD
which lies to the left ofik,/p]. If there is no such white point we set the shortcut pointer
to NIL. We build up this pointer structure on the fly by computing a pointer value from the
next shortcut pointer to its left.

In the following we show that we can process the next intehfadm the priority queue

0 in O(/p) time.

Lemma A.l. Let x be the current position of the sweep line, andllet C; be the next
intervalin Q. ThenallS’(i, j), r;,j, andl; ; can be updated to comply with the new position
I(I) of the sweep line in total tim@ (,/p).

Proof. In the beginning of the algorithm al} ; andr; ; are initialized with NIL. For

an intervall that has been picked fro@ we update those pointers as follows: Assume

I €C; andj e Adj@i). If ; ; > I(I) then it remains unchanged. This is because it has
been the leftmost reachable point of the previous interval, which due to the simplicity of

280 H. Alt et al. / Journal of Algorithms 49 (2003) 262-283

FD; j, see Lemma 1, implies thatitis also reachable from the currentinterval and cannot lie
further to the left. If howevek ; < (1), theni; ; cannot be reached by a feasible monotone
increasing path froni anymore. Thus in this case we greedily scan the cells ¢fikBthe

right of /(1) just as in the proof of Lemma 3 until we find the néw. The only difference

is that we compute the free space in each cell on the fly. Note that, once we have computed
the pointers, we free the storage required for the free space.

Again it is more challenging to update thg;: Note that by construction holds
thatay < by anday > by for I’ = bottomS'(i, j)) andk’ = top(S’(i, j)). First let
r(I) < k. We locater (1) in S'(i, j). If r(I) <! thenr; ; remains the same. Otherwise
we remove all entries from the bottom &f(i, j) that are smaller than(Z). Now, in
order to maintain the property that bottaf(i, j)) = bottomS(i, j)), we find thatk with
r(I) < k < bottomS'(i, j)) which maximizesy,. We append to the bottom ofS’(i, j).

By definition of togS’ (i, j)) we know that the large&t > k for which (1) holds has to
be greater or equal to t6§'(i, j)). We greedily search for this new valueidfexactly as
in Lemma 3 and construct, on the fly, the full partial maxima stack starting a5tGp;))
and ending irk’. We then pop to@S’ (i, j)) and push the spikes of this new stack at spacing
/P ontoS'(i, j), taking care that at the transition between the two stacks the spacing is
correct, and make sure to pushontoS’(i, j). We setr; ; to be the firsi;, which bounds
a white interval on FD to the left oft’ + 1. We find thisd], by greedily searching for the
next white point on FD to the left ofk’ + 1, following shortcut pointers when we meet
them. Now consider the special case that the valué oémains the same. I{I) <r; j,
thenr; ; remains the same. Otherwise there is no point on wBich can be reached by a
monotone feasible path from hencer; ; := NIL.

If »(I) > k', thenwe discaré’ (i, j). We directly construct the full partial maxima stack
starting at-(/) and ending irk’, and store the indices gtp-spacing inS’(i, j) as before.

Note that the size of eacH (i, j) is only O(,/p) during the whole course of the algo-
rithm. Also the number of shortcut pointers stored per veitexy is O(,/p). Thus the
total storage is indeed at moét(q ,/p). For the analysis of the runtime consider a fixed
(i, j) € E. During the whole course of the algorithm bott@(i, j)) increases monotoni-
cally, and every integer between 1 gné- 1 is touched at most a constant number of times,
and is at most once inserted in or removed fr8f, j). The argument is similar to the
proof of Lemma 3. Thus all changes&f(i, j) take O (p) time in total. However the steps
of locatingr (1) in §'(i, j) and findingd,, take O (,/p) time per white intervalin FR O

From Lemma A.1 we know that all data structures can be updatén(jyip) time for
one processed interval @. Thus the processing of all intervals tak@$pg ./p) time in
total. The computation of all shortcut pointers tak¥g) time. The handling of insertions,
deletions, and changes of intervalsintakesO (pq logq) as before. Hence we obtained
the following result:

Lemma A.2. There is an algorithm that decides if there is a pathin G such that
8r(a, Br) < ein O(pg(/p +logg)) time andO (¢./p) space.

Now let 1< r < p be a given tradeoff parameter. We space the spikes (i j) at
distancer instead of,/p. Similarly we store shortcut pointers at each cell boundary

H. Alt et al. / Journal of Algorithms 49 (2003) 262-283 281

instead of| k/p] for every integer K k < p/t. This way the storage becomégpq/1),
and the runtime i® (pq (¢t + logg)) since in both cases the time to process an interval in
Q is linear in the spacing of the spikes and the shortcut pointers.

Corollary A.1. Foranyl1 < ¢t < p there is an algorithm that decides if there is a patiin
G such thabp(a, Br) < e in O(pgq(t +logqg)) time andO(pq/t) space.

A.2. Path reconstruction

Above we only handled the decision problem without any attached path pointers to
support the path reconstruction. However we clearly do not want to stoé&(alf) path
pointers. We overcome this problem by applying a standard dynamic programming trick
for saving space, see [3,4]. However we will not be able to exploit it to its full extent, such
that it will introduce a logarithmic factor in the runtime. We brealdp into several smaller
pieces and compute the solution for those subpariswatiile keeping certain path pointer
information for these subparts.

Fori,je{0,1,..., p} with i < j lete[i, j]:= «|; ;) be the polygonal sub-curve of
« starting in theith and ending in thg'th vertex of«x. We start with applying the above
algorithm to the whole curve = «[0, p].

Lemma A.3. Let j € V. Then in each step of the algorithr@,; contains at most one
consecutive subchain of intervals that can be reached by a monotone feasible path in
FD;,; from points onFD;, for eachi € Adj(j). Each consecutive subchain 6f equals

(L, j (D), ri (1IN FD; for some white interval on FD;.

Proof. Assume that there are two disjoint consecutive subch@irsd C’ of C;, that
can be reached by a monotone feasible path in,Aiom two disjoint intervals/ and/’,
respectively, on FP Let C lie to the left of C’, and[lie to the left of I’. Since the left
endpoints of processed intervals @falways lie to the left of the consecutive chains, we
know thatl(/) < I(C;) < I(C) and alsol({’) < I(C;) < I(C). But from Lemma 1 then
follows thatC can be reached by a monotone feasible path in ;Hibom I’, and thusC
andC’ are not disjoint. Ifl’ lies to the left off then every feasible monotone path frérto
C crosses every feasible monotone path fifrto C’, thusC andC’ are also not disjoint.
For the second part, le€ be a consecutive subchain @f; and assume that
i, j (D), ri,j (D] N FDy, (L j (1N, ri j(IN] N FD; € € with [1, (1), ri, j (D] N [(1),
ri,j(I"] =@, for two disjoint intervals/, I’ on FD,. Let I lie to the left of I’. Then
I(I),I(I") < I(C), such that by Lemma 1 every feasible monotone path fioto C
crosses every feasible monotone path frémto C, such thatl; ; (1) = /; ;(I’) and
r,-,j(I) :ri,j(l/)- O

We maintain a variant of the path pointers that we had in step 4 of the algorithm in
Section 2.3: For eaclie V we maintain a partition of ; into consecutive subchains that
can be reached by a monotone feasible path ifHibm intervals on Ffor i € Adj(j).

From Lemma A.3 we know that there is one interval on ifdm which the corresponding
consecutive subchain on Fzan be reached. Thus we can associate to each consecutive

282 H. Alt et al. / Journal of Algorithms 49 (2003) 262-283

subchain exactly one feasible monotone path in the free space surface tb sdméact,

for each consecutive subchain we maintadiract pointerthat points directly to the point

L, that can be reached from points on this consecutive subchain by a feasible monotone
path in a concatenation of free space diagrams of the free space surface. These pointers
can be maintained by constructing the path pointers as in Section 2.3, but instead of storing
them we follow them to the pointers of the consecutive subchain they can be reached from,
and then we store those direct pointers.

In order to be able to reconstruct one actual feasible path from the direct pointer
information, we compute different direct pointers for different parts of the free space
surface. For an edge, j) € E, let u1; ; be the number of the cell in EQ which contains
the right endpoint of the currer@;. Note thatu, ; changes during the course of the

algorithm. LetV,i’l.,’; =FD.(a(u;,; + 1), 55, ;) be the vertical right boundary of the partial

free space diagram FD := FD, («[0, ui,; + 11, 51,). Note thatV,;/, contains at most one
white interval.

Note that in the regular algorithm we consider one-dimensional free space diagrams
only at the upper and lower boundaries of;F0or (i, j) € E. However we now have to
construct one-dimensional sub free space diagrams at certain vertical cell boundaries of
FD;,j. We wish to compute for each white interval oVg; ,, a direct pointer to ar.;
that can be reached by a monotone path from this intervaIJ. During the algorithm, once we
arrived atu; ; > | p/2], the stored partial maxima stack provides the information which

interval can be reached from the white interval (if it exists at aII)Vt{SFi/ZJ, which in turn
yields the direct pointer we want to store.

Furthermore we wish to compute for each whRgea direct pointer to a white interval
on aVLl}aj/ZJ' For this we maintain for each consecutive subchain whose right endpoint is
larger or equal td p/2| a direct pointer to a white interval on\é{;,’/z . Note that these
direct pointers can be maintained in the same way as the other direct pointers. Thus if a
consecutive subchain lies completely to the left pf2] it stores a direct pointer tolay,
if it lies completely to the right it stores a direct pointer to a white interval dvﬁ}jé}zj, and
if it contains| p/2] it stores both pointers. This nee@%pq (t +10gq)) time andO (pq /1)
storage for the dynamic programming. Since every consecutive €hatontains at most
|Adj(j)| subchains due to Lemma A.3, all direct pointers can be maintained during the
dynamic programming withD (¢) extra space.

Concatenating the direct pointer information of both subproblems we can identify at
most O (¢) paths that start at sonle, end at somdr;, and pass a white interval on a

V[}aj/zj at a known point each. Note that the only information we have for these paths

are their starting point, the point where they pass the white intervaﬂfmJ in the free
space diagram FD, and their endpoint. We only consider exactly one of these paths, and
store its starting point «, its endpoinR;+, and the indices*, j* and the point:*, where
FD;+, j« is the free space diagram where the path crosses the white intervgl}gﬂwin the
pointa*.

In a recursive manner we now solve the subproblem in a second leweldorp/2]]1,
maintaining direct pointers as above with respedtig4|, and with the only start vertex
k* and the end point*. Note that this requires a very slight modification of the algorithm

H. Alt et al. / Journal of Algorithms 49 (2003) 262-283 283

in that the endpoint is now not in a vertex of the graph, but on a fixed point on the edge
(i*, j*), which is similar to one of the variants discussed in Section 2.7. Similarly we
solve the subproblem far[| p/2], p], with respect to|3p/4|, and with the start point

a* and the end vertek*. Concatenating the direct pointers for both subproblems we can
extract four pointers representing one feasible monotone path in the free space surface. This
can be performed ir0 (pq(t + logg)) time, O(pq/t) storage, and (q) extra storage

for the new pointers. We keep repeating this recursive process for legels until we

end at single segments of We keep concatenating the computed pointers, and obtain a
desired feasible path from sorhg to someR; in the end. The whole recursive procedure
needsO (pq(t +10gq) log p) time, O (pq/t) storage, an@ (¢) extra storage for the path
representation. Altogether this yields the following result:

Theorem 3. For any1 < r < p there is an algorithm that decides if there is a pattin G
such thatg(w, B7) < ein O(pq(t +10gq)) time andO (pq/t) space.

If such a pathr exists it can be computed together with a feasible monotone path in
the free space surface i (pq (¢t + logq) log p) time andO (pq/t) space. Forr = 1 the
runtime isO (pq logq).

A.3. Parametric search

In order to find the optimak we can apply parametric search in the same way
as before. We simply plug the time—space tradeoff variant into the parametric search
paradigm and arrive, using the same argumentation as in Section 2.6, at a runtime of
O(pq(t +logq)log(pg)) and space complexit® (pq/t). Now in order to actually find
the path we first run this variant of the parametric search, which determines the ogtimal
for which there exists a path in G such thadg(a, ;) < &*. With this value fors we run
the algorithm that computes the path@(pq (¢ + logq) log p) time andO (pq/t) space.

Thus we can actually compute the optimal patlizim O (pq (¢ +10gq) log(pg)) time and
O(pgq/t) space.

Theorem 4. For any1 < ¢ < p there is an algorithm which computes a pathin G which
minimizesSe (o, B7) in O(pq(t +logq) log(pq)) runtime andO (pq/t) space.

References

[1] H. Alt, M. Godau, Computing the Fréchet distance between two polygonal curves, Internat. J. Comput.
Geom. Appl. 5 (1995) 75-91.

[2] R. Cole, Slowing down sorting networks to obtain faster sorting algorithms, J. Assoc. Comput. Mach. 34 (1)
(1987) 200-208.

[3] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge Univ. Press, 1997.

[4] D.S. Hirschberg, Algorithms for the longest common subsequence problem, J. Assoc. Comput. Mach. 24
(1977) 664—675.

[5] C. Wenk, H. Alt, A. Efrat, L. Palaniappan, G. Rote, Finding a curve in a map (video), in: Proc. 19th Ann.
Symp. Comput. Geom., San Diego, June 2003, Association for Computing Machinery, pp. 384—-385.

