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1. PROBLEM STATEMENT AND MOTIVATION

We consider the problem of sandwiching a polytope A with a given number
k of vertices between two nested polytopes P C @ C R% Find A such that
P C A C Q. The polytope P is not necessarily full-dimensional.

Besides the problem of computing A, we study the following question: Assuming
that the given polytopes P and @ are rational polytopes (they have rational vertex
coordinates), does it suffice to look for A among the rational polytopes?

This problem has several applications: (1) When @ is a dilation of P (or an
offset of P), A can serve as a thrifty approximation of P. (2) The polytope nesting
problem can model the nonnegative rank of a matrix, and thereby the extension
complexity of polytopes, as well as other problems in statistics and communication
complexity. It was in this context that question (b) was first asked [3].

2. NESTED POLYGONS IN THE PLANE

In the plane (d = 2), it has been shown in 1989 by Aggarwal, Booth, ORourke,
Suri & Yap [2] that A can be computed in O(nlogk) time, assuming unit-cost
arithmetic operations. This algorithm computes in fact the smallest possible k for
which A exists, while for d > 3, minimizing k is NP-hard [4, 5].

The approach of [2] is as follows: Choose a starting point zg on the boundary
of @ and wind a polygonal path z; = fi(xg), z2 = fo(z1), ..., 2k = fr(zr-1),
around P by putting a sequence of tangents to P and intersecting them with the
boundary of @, see Figure la. If x; > xzg, then a k-gon A can be found. We

FIGURE 1. (a) the chain zgz1z2 ... (b) a hypothetical function F'(z)

parameterize the points xy by arc length along the boundary of @ from some fixed
starting point. Now vary zo and follow the other points. As long as each point
x; moves on a fixed edge of @@ and each segment x;_1x; touches a fixed vertex

of P, the function f; is a rational linear function of the form f;(z) = gfis The
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composition of such functions is also of the same form. The function changes at
the breakpoints, when an edge x;_12; of A lies flush with an edge P or a vertex x;
coincides with a vertex of (). It follows that the function

(1) F(zo) == fe(fu—1(--- f2(f1(@0)) - +)) — w0
is piecewise rational, see Figure 1b. A solution of F(zg) > 0 can be found by
looking at the pieces and solving a quadratic equation for each piece.

Now, for some interval where the function f; is smooth, the graph of the function
is a hyperbola. It is easy to see that, for the range of the variable x;_; that is
of interest, the graph of f;(x;—1) lies on that branch of the hyperbola which is
increasing and convex. The property of being increasing and convex is preserved
under composition. Therefore, the function F in (1) is piecewise convex, unlike
the function in Figure 1b. We obtain the following simplification of the algorithm.

Proposition 1. To find the solutions of F(xg) > 0, it is sufficient to look at the
breakpoints of F.

(For k = 3, this has been established before by Kubjas, Robeva, and Sturm-
fels [7], based on results from [8].) This implies in particular that the solution A
can be found among the rational polygons. The existence of a rational solution has
also been established in [9, Theorem 8] by observing that an isolated solution g
of F(xzg) > 0, like the point A in Figure 1b, would have to be rational for algebraic
reasons, being a double zero of a quadratic equation. Our proof of Proposition 1
shows that such a situation cannot arise.

3. THE QUEST FOR AN IRRATIONAL SOLUTION IN HIGHER DIMENSIONS

A 3-dimensional example, in which the only polytope A with & = 5 vertices
has irrational coordinates, has been constructed in [9], and it has been lifted
to 4-dimensions (with a 3-dimensional polytope P) [10]. The case of a tetra-
hedron (kK = 4) in 3 dimensions is open. It would also be interesting to have
a 4-dimensional example where P is full-dimensional. (This corresponds to the
restricted nonnegative rank [6].)

Figure 2 shows an attempt to construct a 3-dimensional instance which only has
an irrational tetrahedron as a solution. () has a horizontal bottom face Qnottom
and a horizontal top face Qiop. (The edges of @) are not fully shown.) P has six
vertices and sits on Qpottom With three vertices Py P, P3. The tetrahedron A has an
irrational vertex Ay in the interior of Qop. Figure 2b shows Qpottom together with
the projection P; P! P of the remaining vertices as seen from Ay, and it shows how
the bottom face A1 AyA3 of A is squeezed between Py Py P3U P; P, P and Quvottom-

We have tried to construct such an example in reverse by building @) around A:
After choosing a rational polytope P = Py P, P3P, PsPs with P, P,P3 on the hor-
izontal plane of Quottom, We choose A4 as an irrational point with coordinates
in some quadratic extension field Q[y/r]. This leads to irrational projected points
P} P! P§, and from this, the irrational points A; As A3 can be constructed. Through
each of these points, there is a unique rational line ¢, g2, g3, and these lines can
be combined to form the boundary of Quottom. However, no matter how we try
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Qbottom

(a) A

FIGURE 2. (a) P C A C Q; (b) the situation on the bottom face Qpottom

to choose the data, as if by some conspiracy, one of the lines ¢, g2, ¢3 always cuts
into the triangle Ay AsA3, making the completion of the construction impossible.
Some experiments with dynamic geometry software suggest that this might be a
systematic phenomenon: When we adjust the data so that one of the lines ¢1, g2, g3
moves out of the triangle A;AsAg, another lines moves in precisely at the same
time. If such an irrational example is indeed impossible, and examples of a differ-
ent combinatorial type can also be excluded, it is conceivable that the solution for
k = 4 is always rational if it exists. But this would so be for some deeper reason.
A similar “conspiracy” phenomenon has been observed in the construction of
art gallery problems which require irrational guards [1]. The problem could be
circumvented by modifying the construction and using more guards.
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