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1. Problem Statement and Motivation

We consider the problem of sandwiching a polytope ∆ with a given number
k of vertices between two nested polytopes P ⊂ Q ⊂ Rd: Find ∆ such that
P ⊆ ∆ ⊆ Q. The polytope P is not necessarily full-dimensional.

Besides the problem of computing ∆, we study the following question: Assuming
that the given polytopes P and Q are rational polytopes (they have rational vertex
coordinates), does it suffice to look for ∆ among the rational polytopes?

This problem has several applications: (1) When Q is a dilation of P (or an
offset of P ), ∆ can serve as a thrifty approximation of P . (2) The polytope nesting
problem can model the nonnegative rank of a matrix, and thereby the extension
complexity of polytopes, as well as other problems in statistics and communication
complexity. It was in this context that question (b) was first asked [3].

2. Nested Polygons in the Plane

In the plane (d = 2), it has been shown in 1989 by Aggarwal, Booth, ORourke,
Suri & Yap [2] that ∆ can be computed in O(n log k) time, assuming unit-cost
arithmetic operations. This algorithm computes in fact the smallest possible k for
which ∆ exists, while for d ≥ 3, minimizing k is NP-hard [4, 5].

The approach of [2] is as follows: Choose a starting point x0 on the boundary
of Q and wind a polygonal path x1 = f1(x0), x2 = f2(x1), . . . , xk = fk(xk−1),
around P by putting a sequence of tangents to P and intersecting them with the
boundary of Q, see Figure 1a. If xk ≥ x0, then a k-gon ∆ can be found. We
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Figure 1. (a) the chain x0x1x2 . . . (b) a hypothetical function F (x0)

parameterize the points x0 by arc length along the boundary of Q from some fixed
starting point. Now vary x0 and follow the other points. As long as each point
xi moves on a fixed edge of Q and each segment xi−1xi touches a fixed vertex
of P , the function fi is a rational linear function of the form fi(x) = ax+b

cx+d . The
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composition of such functions is also of the same form. The function changes at
the breakpoints, when an edge xi−1xi of ∆ lies flush with an edge P or a vertex xi

coincides with a vertex of Q. It follows that the function

(1) F (x0) := fk(fk−1(· · · f2(f1(x0)) · · · ))− x0

is piecewise rational, see Figure 1b. A solution of F (x0) ≥ 0 can be found by
looking at the pieces and solving a quadratic equation for each piece.

Now, for some interval where the function fi is smooth, the graph of the function
is a hyperbola. It is easy to see that, for the range of the variable xi−1 that is
of interest, the graph of fi(xi−1) lies on that branch of the hyperbola which is
increasing and convex. The property of being increasing and convex is preserved
under composition. Therefore, the function F in (1) is piecewise convex, unlike
the function in Figure 1b. We obtain the following simplification of the algorithm.

Proposition 1. To find the solutions of F (x0) ≥ 0, it is sufficient to look at the
breakpoints of F .

(For k = 3, this has been established before by Kubjas, Robeva, and Sturm-
fels [7], based on results from [8].) This implies in particular that the solution ∆
can be found among the rational polygons. The existence of a rational solution has
also been established in [9, Theorem 8] by observing that an isolated solution x0

of F (x0) ≥ 0, like the point A in Figure 1b, would have to be rational for algebraic
reasons, being a double zero of a quadratic equation. Our proof of Proposition 1
shows that such a situation cannot arise.

3. The Quest for an Irrational Solution in Higher Dimensions

A 3-dimensional example, in which the only polytope ∆ with k = 5 vertices
has irrational coordinates, has been constructed in [9], and it has been lifted
to 4-dimensions (with a 3-dimensional polytope P ) [10]. The case of a tetra-
hedron (k = 4) in 3 dimensions is open. It would also be interesting to have
a 4-dimensional example where P is full-dimensional. (This corresponds to the
restricted nonnegative rank [6].)

Figure 2 shows an attempt to construct a 3-dimensional instance which only has
an irrational tetrahedron as a solution. Q has a horizontal bottom face Qbottom

and a horizontal top face Qtop. (The edges of Q are not fully shown.) P has six
vertices and sits on Qbottom with three vertices P1P2P3. The tetrahedron ∆ has an
irrational vertex ∆4 in the interior of Qtop. Figure 2b shows Qbottom together with
the projection P ′4P

′
5P
′
6 of the remaining vertices as seen from ∆4, and it shows how

the bottom face ∆1∆2∆3 of ∆ is squeezed between P1P2P3∪P ′4P ′5P ′6 and Qbottom.
We have tried to construct such an example in reverse by building Q around ∆:

After choosing a rational polytope P = P1P2P3P4P5P6 with P1P2P3 on the hor-
izontal plane of Qbottom, we choose ∆4 as an irrational point with coordinates
in some quadratic extension field Q[

√
r]. This leads to irrational projected points

P ′4P
′
5P
′
6, and from this, the irrational points ∆1∆2∆3 can be constructed. Through

each of these points, there is a unique rational line q1, q2, q3, and these lines can
be combined to form the boundary of Qbottom. However, no matter how we try
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Figure 2. (a) P ⊂ ∆ ⊂ Q; (b) the situation on the bottom face Qbottom

to choose the data, as if by some conspiracy, one of the lines q1, q2, q3 always cuts
into the triangle ∆1∆2∆3, making the completion of the construction impossible.
Some experiments with dynamic geometry software suggest that this might be a
systematic phenomenon: When we adjust the data so that one of the lines q1, q2, q3
moves out of the triangle ∆1∆2∆3, another lines moves in precisely at the same
time. If such an irrational example is indeed impossible, and examples of a differ-
ent combinatorial type can also be excluded, it is conceivable that the solution for
k = 4 is always rational if it exists. But this would so be for some deeper reason.

A similar “conspiracy” phenomenon has been observed in the construction of
art gallery problems which require irrational guards [1]. The problem could be
circumvented by modifying the construction and using more guards.
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