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Abstra
t. We study 
ip graphs of (pseudo-)triangulations whose maximum vertex degree is bounded

by a 
onstant k. In parti
ular, we 
onsider (pseudo-)triangulations of sets of n points in 
onvex position

in the plane and prove that their 
ip graph is 
onne
ted if and only if k > 6; the diameter of the 
ip

graph is O(n

2

). We also show that for general point sets 
ip graphs of minimum pseudo-triangulations


an be dis
onne
ted for k � 9, and 
ip graphs of triangulations 
an be dis
onne
ted for any k.

1 Introdu
tion

An edge 
ip is a 
ommon lo
al and 
onstant size operation that transforms one triangulation into another.

It ex
hanges a diagonal of a 
onvex quadrilateral, formed by two triangles, with its 
ounterpart. The 
ip

graph F

T

(S) of triangulations of a planar point set S has a vertex for every triangulation of S, and two

verti
es are 
onne
ted by an edge if there is a 
ip that transforms the 
orresponding triangulations into ea
h

other. One of the �rst and most fundamental results 
on
erning edge 
ips in triangulations is the fa
t that


ips 
an be used repeatedly to 
onvert any triangulation into the Delaunay triangulation [7, 9℄. This implies

immediately that F

T

(S) is 
onne
ted for any planar point set S.

The 
ip distan
e between two triangulations is the minimum number of 
ips needed to 
onvert one

triangulation into the other. The diameter of F

T

(S) is an upper bound on the 
ip distan
e. For a set S of n

points in the plane it is known that the diameter of F

T

(S) is �(n) if S is in 
onvex position, and �(n

2

) if

S is in general position. However, the 
omputational 
omplexity of 
omputing the 
ip distan
e between two

parti
ular triangulations is not known, even for 
onvex sets [5℄. In higher dimensions the 
ip graph does not

even have to be 
onne
ted [8℄.

Of growing interest are also subgraphs of 
ip graphs whi
h 
orrespond to parti
ular 
lasses of triangu-

lations. Houle et al. [4℄ 
onsider triangulations whi
h 
ontain a perfe
t mat
hing of the underlying point

set. They show that this 
lass of triangulations is 
onne
ted via 
ips, that is, the 
orresponding subgraph of

the 
ip graph is 
onne
ted. Related results exist for order-k Delaunay graphs, whi
h 
onsist of a subset of

k-edges, where a k-edge is an edge for whi
h a 
overing disk exists whi
h 
overs at most k other points of

the set. For general point sets the graph of order-k Delaunay graphs is 
onne
ted via edge 
ips for k � 1,

but there exist examples for k � 2 that 
an not be 
onverted into ea
h other without leaving this 
lass [1℄. If

the underlying point set is in 
onvex position, then [1℄ also shows that the resulting 
ip graph is 
onne
ted

?
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for any k � 0. The 
ip operation has been extended to other planar graphs, see [3℄ for a very re
ent and

extensive survey.

Pseudo-triangulations are a generalization of triangulations. A pseudo-triangle is a planar polygon with

exa
tly three internal angles less than �. A pseudo-triangulation of a point set S is a partition of the 
onvex

hull of S into pseudo-triangles whose vertex set is S. Of parti
ular interest are the so-
alled minimum

pseudo-triangulations whi
h have exa
tly 2n � 3 edges. Contrary to triangulations ea
h internal edge of a

pseudo-triangulation 
an be 
ipped. A 
ip in a pseudo-triangulation ex
hanges the diagonal of a pseudo-

quadrilateral with its unique 
ounterpart. The 
ip graph F

PT

(S) of minimum pseudo-triangulations of a

point set S is 
onne
ted and Bereg [2℄ showed that its diameter is O(n logn).

There are point sets for whi
h every triangulation has a vertex of degree n � 1. But for pseudo-

triangulations it is known [6℄ that any point set in general position has a pseudo-triangulation of maximum

vertex degree 5. For point sets in 
onvex position every pseudo-triangulation is in fa
t a triangulation and

indeed, 
onvex point sets always have triangulations of maximum vertex degree 4. Hen
e the question arises

if the 
ip graphs of (pseudo-)triangulations whose maximum vertex degree is bounded by a 
onstant k are


onne
ted for 
ertain values of k.

Results. The majority of our results 
on
ern (pseudo-)triangulations of point sets in 
onvex position. So

let S be a set of n points in 
onvex position in the plane. In Se
tion 2 we show that the 
ip graphs of

triangulations of S of maximum vertex degree k = 4, k = 5, and k = 6 are not 
onne
ted. Then we prove

that the 
ip graphs are 
onne
ted for any k > 6 and argue that they have diameter O(n

2

). In Se
tion 3 we

brie
y 
onsider point sets in general position and show that 
ip graphs of minimum pseudo-triangulations


an be dis
onne
ted for k � 9, and 
ip graphs of triangulations 
an be dis
onne
ted for any 
onstant k.

2 Point sets in 
onvex position

In this se
tion we study the 
ip graphs of degree-bounded triangulations of a set S of n points in 
onvex

position in the plane. As mentioned above, arbitrary point sets do not ne
essarily have a triangulation of

bounded vertex degree, but point sets in 
onvex position always have a zigzag triangulation of maximum

vertex degree 4. Let k denote the maximum vertex degree of a triangulation T on S. If S has n � 5

points, then k must be at least 4. Every point set S in 
onvex position has in fa
t �(n) di�erent zigzag

triangulations. It is easy to see, though, that one 
an not 
ip even a single edge in su
h a zigzag triangulation

without ex
eeding a vertex degree of 4 (see Fig. 1(a)).

For k = 5 
onsider the triangulation depi
ted in Fig. 1(b). Only the dashed edges 
an be 
ipped, but

there are �(n) rotationally symmetri
 versions of these triangulations, none of whi
h 
an be rea
hed from

any other without ex
eeding a vertex degree of 5. For k = 6 
onsider the triangulation depi
ted in Fig. 1(
).

No edge of this triangulation 
an be 
ipped but again there are �(n) rotationally symmetri
 versions of this

triangulation, none of whi
h 
an be rea
hed from any other without ex
eeding a vertex degree of 6.

De�nitions and notation. Let S be a set of n points in 
onvex position in the plane, let T be a triangulation

of S, and let D be the dual graph of T . Clearly, D is a tree. We distinguish three di�erent types of triangles

in T : ears, whi
h have two edges on the 
onvex hull of S, path triangles, whi
h have one edge on the 
onvex

hull of S, and inner triangles, whi
h have no edge on the 
onvex hull of S. The tip of an ear is the vertex that

(a) (b) (c)

Fig. 1. Triangulations with vertex degree k = 4 (a), k = 5 (b), and k = 6 (
).
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is adja
ent only to two 
onvex hull verti
es. The ears of T are dual to the leaves of D and inner triangles of

T are dual to bran
hing verti
es of degree three. A path in D is any 
onne
ted sub-graph of D that 
onsists

only of verti
es of degree two, so in parti
ular, any vertex of a path is dual to a path triangle. Note that

verti
es of degree one (leaves) 
an not be part of a path with this de�nition. The length of a path is its

number of verti
es. A path that is adja
ent to at least one leaf is 
alled a leaf path. All other paths are 
alled

inner paths. An inner triangle that is adja
ent to at least two leaf paths is referred to as merge triangle.

Consider a path in D of length at least two. If the 
onvex hull edges of its dual path triangles are adja
ent

on the 
onvex hull of S, then we say that they form a fan. The triangles of a fan all share one 
ommon

vertex, the fan handle. The degree in T of a fan handle is always at least �ve. The size of a fan is the degree

of the fan handle minus two, that is, the number of diagonals of the triangles that make up the fan. Path

triangles su
h that the 
onvex hull edges of every se
ond path triangle are adja
ent on the 
onvex hull are

said to form a zigzag. Flipping every se
ond edge of a zigzag is 
alled an inversion of the zigzag.

A triangulation of S is 
alled a zigzag triangulation if it has pre
isely two ears whi
h are 
onne
ted by a

zigzag. Clearly, the maximum vertex degree of a zigzag triangulation is four and its dual graph is a path. A

zigzag triangulation is uniquely de�ned (up to inversion) by the lo
ation of one of its ears. We 
all the zigzag

triangulation that has the tip of one of its ears on the left-most vertex of S the left-most zigzag triangulation

of S. Finally, a fringe triangulation is a triangulation whi
h has no fans of size greater than four, where ea
h

fan is adja
ent to an inner triangle, and where every leaf path is dual to a zigzag. In parti
ular, every zigzag

triangulation is a fringe triangulation.

Algorithmi
 outline. Let T be a triangulation of S with maximum vertex degree k > 6. In the following

we show how to 
ip from T to the left-most zigzag triangulation of S without ever ex
eeding vertex degree

k. In parti
ular, we show in Subse
tion 2.1 how to �rst 
onvert T into a fringe triangulation with O(n) 
ips.

In Subse
tion 2.2 we prove that ea
h fringe triangulation always has a light merge triangle, that is, a merge

triangle with two verti
es of degree < k. We then show how to remove this light merge triangle by merging

its adja
ent zigzags with O(n) 
ips, resulting in a fringe triangulation that has one less inner triangle. After

repeating this step O(n) times we have 
onverted T into a zigzag triangulation. Finally, in Subse
tion 2.3

we demonstrate how to \rotate" T into any other zigzag triangulation of S, again with O(n) 
ips.

Theorem 1. Let S be a set of n points in 
onvex position and let T be a triangulation of S with maximum

vertex degree k > 6. Then T 
an be 
ipped into the left-most zigzag triangulation of S in O(n

2

) 
ips while

at no time ex
eeding a vertex degree of k.

Corollary 1. Let S be a set of n points in 
onvex position. Then for any k > 6 the set of (pseudo-

)triangulations of S with maximum vertex degree k is 
onne
ted by 
ips. The diameter of the 
orresponding


ip graph is O(n

2

).

2.1 Creating a fringe triangulation

Re
all that a fringe triangulation has no fans of size greater than four, ea
h fan is adja
ent to an inner

triangle, and every leaf path is dual to a zigzag. If T is not a fringe triangulation, then it has at least one

fan F . Let 3 � f � n� 2 be the size of F and let v

1

: : : v

f

denote the \non fan handle" verti
es of the edges

of F ordered 
y
li
ally around the fan handle v

0

(see Fig. 2(a)).

(a) (b)

vf

v0

v2v1 vf

v0

v2v1

Fig. 2. A fan adja
ent to a zigzag. Inverting the zigzag (
ipping the dashed edges to the dotted edges) redu
es the

degree of the fan.
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(b) (c)

v1 vf

1

v0

2 3

v2 vf−1

(a)

v1 vf

1

v0

2 3
4 5

+2 +1

Fig. 3. Handling fans: The boxed numbers show the degree 
hange, the other numbers indi
ate the order in whi
h


ips are performed.

If a zigzag Z, whi
h is dual to a leaf path, is adja
ent to F , then one inversion of Z 
an de
rease f

by one (see Fig. 2(b)). After the inversion the redu
ed fan is again adja
ent to a zigzag whi
h is dual to a

leaf path. Repeated inversion of the (stepwise expanded) zigzag will eventually remove the fan at a 
ost of

�(f � (~n+ f)) 
ips where ~n is the length of the dual path of Z. In the following we present a more eÆ
ient

method to remove or redu
e fans.

Consider the fan depi
ted in Fig. 3(a). If one of v

1

and v

f

has degree less than k and the other one less

than k � 1, then we 
an 
onvert the fan to an inner triangle and a zigzag (whi
h might be empty) ending

in an ear, see Fig. 3(a). The degree requirement for v

1

and v

f

is always satis�ed, unless v

1

or v

f

is the fan

handle of another fan or is adja
ent to an inner triangle.

In the �rst 
ase the 
ommon diagonal of the two fans 
an be 
ipped to 
reate two fans separated by

a zigzag while de
reasing the fan degrees by one ea
h, see Fig. 3(b) (the dashed edge shows the situation

before, the dotted edge after the 
ip). In the se
ond 
ase we distinguish two sub 
ases.

If f � 5, then we 
onvert the fan without the diagonals in
ident to points of too high degree (v

1

and/or

v

f

) to an inner triangle and a zigzag, as before. If, for example, both, v

1

and v

f

, have degree k, then the

new inner triangle will be spanned by v

0

, v

2

, and v

f�1

, see Fig. 3(
). If f < 5, then we 
an only remove this

(
onstant sized) fan if it is adja
ent to a zigzag Z dual to a leaf path. As des
ribed above, we 
an invert Z

at most three times to remove the fan.

Lemma 1. Let S be a set of n points in 
onvex position and let T be a triangulation of S with maximum

vertex degree k > 6. Then T 
an be transformed into a fringe triangulation of S with maximum vertex degree

k in O(n) 
ips, while at no time ex
eeding a vertex degree of k.

Proof. We �rst separate any fans whose handles are 
onne
ted by an edge with one 
ip per pair. Then we

turn any fan that satis�es the degree 
ondition into an inner triangle and a zigzag. This requires a number

of 
ips linear in the sizes of the 
onverted fans. The remaining fans are ne
essarily adja
ent to an inner

triangle. We either remove them or redu
e them to a fan of size at most four, again with a number of 
ips

linear in their sizes. If one of the remaining, 
onstant size, fans is adja
ent to a zigzag that is dual to a leaf

path, then we remove this fan by inverting the zigzag at most three times. Sin
e ea
h zigzag dual to a leaf

path 
an be adja
ent to at most one 
onstant size fan, the bound follows. ut

2.2 Merging zigzags

Re
all that a merge triangle is an inner triangle that is adja
ent to at least two leaf paths. In a fringe

triangulation, all leaf paths are dual to a zigzag. In the following we �rst prove that ea
h fringe triangulation

has a light merge triangle, that is, a merge triangle with two verti
es of degree < k. Then we show how to

remove a light merge triangle by merging two of the adja
ent zigzags.

Let T be a fringe triangulation with maximum vertex degree k > 6. If T is not a zigzag triangulation,

then T has at least one merge triangle 4. 4 is adja
ent to two zigzags Z

1

and Z

2

whi
h are dual to leaf

paths. Either or both of these zigzags 
an be empty, that is,4 
an be adja
ent to one or two ears. W.l.o.g. we

assume that both zigzags are non-empty { empty zigzags 
ontribute less edges and hen
e are never involved

4



in worst 
ase situations for our proofs. We 
all the vertex v

tip

of 4 that is also a vertex of Z

1

and Z

2

the tip

of 4. The edge e of 4 that is not adja
ent to v

tip

is the base edge of 4. Observe that the degree of v

tip

is

at most 6: Two edges from 4, two 
onvex hull edges, and at most one edge ea
h from Z

1

and Z

2

.

Lemma 2. Let S be a set of n points in 
onvex position and let T be a fringe triangulation of S with

maximum vertex degree k > 6. Then T has a light merge triangle.

Proof. Sin
e T is not a zigzag triangulation it has at least one merge triangle 4 whi
h is adja
ent to two

zigzags Z

1

and Z

2

whi
h are dual to leaf paths. Sin
e the tip v

tip

of ea
h merge triangle has degree at most

6 we have to prove that there exists a merge triangle whose base edge e has a vertex with degree < k.

If there is a merge triangle where v

tip

has degree < 6, then we 
an invert either Z

1

or Z

2

and so de
rease

the degree of one endpoint of e. Sin
e all verti
es of a zigzag, ex
ept v

tip

and the endpoints of e, have degree

at most 4, this inversion maintains the degree bound. Hen
e we 
an assume that the tip of ea
h merge

triangle has degree 6. Let D be the dual graph of T . We 
reate the graph D

0

by removing all leafs and leaf

paths from D. Observe that ea
h triangle 4

0

whi
h is dual to a leaf vertex of D

0

is a merge triangle in T .

We now 
reate a se
ond graph D

00

by removing ea
h leaf of D

0

(see Fig. 4).

w

v

△
′′

△
′

u

w

v

△
′′

△
′

(a) (b) (c)

Fig. 4. The graphs D, D

0

, and D

00

(a); a leaf of D

00

with one/two 
hildren in D

0

(b)/(
).

Sin
e D is a tree, both D

0

and D

00

are trees as well. Hen
e D

00

has at least two leafs. Let 4

00

be dual

to a leaf of D

00

and let 4

0

be a 
hild of 4

00

in D

0

. Consider the vertex v whi
h is a vertex of both 4

00

and

4

0

, but not a vertex of the parent of 4

00

in D

00

(see Fig. 4(b) and (
)). By assumption the tip w of 4

0

has

degree 6, whi
h implies that the zigzag adja
ent to the edge (v; w) has no edge with endpoint v. Hen
e, if

4

00

has only one 
hild in D

0

(see Fig. 4(b)) then v has at most degree 6. If 4

00

has two 
hildren in D

0

(see

Fig. 4(
)) then also 
onsider the tip u of 4

0

s sibling. Sin
e u also has degree 6, we again know that the zigzag

adja
ent to the edge (u; v) has no edge with endpoint v. So also in this 
ase we 
an 
on
lude that v has at

most degree 6. ut

Lemma 2 states that ea
h fringe triangulation has a light merge triangle 4. We now show how to remove 4

by merging its adja
ent zigzags Z

1

and Z

2

. Let us denote the edge of 4 that is adja
ent to Z

1

with e

1

and

the one adja
ent to Z

2

with e

2

. Further, let us denote the vertex of 4 that is shared by e and e

1

by v

1

and

the one shared by e and e

2

by v

2

(see Fig. 5(a)). We 
an assume w.l.o.g. that v

tip

has degree 6, that v

1

has

degree k, and that v

2

has degree k � 1.

(c)(a) (b)

vtip

ev1 v2

e1 e2

△

Z1 Z2

vtip

e
v1 v2

△
′

vtip

e
v1 v2

Q

dQ

Fig. 5. Merging two zigzags: Start 
on�guration (a) and �rst steps (b), (
).
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(a) (b)

vtip

v
′

tip
vtip

v
′

tip

dQ

Fig. 6. The repeating 
ase: Start 
on�guration (a), Z

0

and Z

t

meet (b).

We want to merge Z

1

and Z

2

together with 4 into a new zigzag Z

0

that starts at e. We start by 
ipping

�rst e

1

and then e

2

. These 
ips 
reate the �rst two edges of Z

0

and do not violate the degree bound (see

Fig. 5(b)). Now there is a new triangle 4

0

that lies between (the remains of) Z

1

and Z

2

, similar to 4 before.

We 
ontinue by 
ipping the two edges of 4

0

that are part of Z

1

and Z

2

, respe
tively (see Fig. 5(
)). Now we


reated a quadrilateral Q with a diagonal d

Q

that separates four zigzags: The shrinking zigzags Z

1

and Z

2

,

the zigzag Z

0

growing from e, and a temporary zigzag Z

t

growing from v

tip

(see Fig. 5(
)).

We 
ontinue to take turns 
ipping edges 
ommon to Q and Z

1

and Z

2

. This alternatingly adds two edges

to Z

0

and to Z

t

and requires at most one additional 
ip of d

Q

per 
ip. The maximal vertex degree rea
hed

during all 
ips o

urs at the verti
es of Q, whi
h 
an have maximal degree at most 7 � k: two 
onvex hull

verti
es, at most two edges ea
h from both adja
ent zigzags, and d

Q

.

If both Z

1

and Z

2

have equal size { the symmetri
 
ase { then Z

0

and Z

t

ultimately grow into ea
h other,

forming one zigzag. In this 
ase at least every se
ond 
ip adds a new edge to Z

0

whi
h is never 
ipped again.

Let m be the total number of verti
es involved in the merge. Then the merge in the symmetri
 
ase 
an by

exe
uted with at most 2m 
ips.

If Z

1

and Z

2

do not have equal size, 
onsider the lo
ation of Z

0

at the end of the merge, whi
h is uniquely

determined by e, independent of how the merge is exe
uted. Z

0

will end at an ear that has a tip v

0

tip

, whi
h

might lie to the right or to the left of v

tip

. (v

tip

and v

0

tip

are identi
al i� Z

1

and Z

2

have equal length.) We

distinguish two sub 
ases, depending on the intera
tion of Z

t

with v

0

tip

. The �rst is the repeating 
ase, whi
h

o

urs if Z

0

and Z

t

meet before Z

t

rea
hes v

0

tip

(see Fig. 6), and the se
ond is the re
ursive 
ase, whi
h

o

urs if Z

t

rea
hes v

0

tip

before it meets Z

0

(see Fig. 7).

In the repeating 
ase we are in the same situation as the one we started from, just with smaller zigzags.

We have to merge two zigzags { the remainder of either Z

1

or Z

2

and Z

t

{ and we have a light merge triangle

to merge them at: The last edge of Z

0

(d

Q

in Fig. 6(b)) be
omes our new base edge e

0

and both endpoints of

e

0

have degree at most 6 < k (two 
onvex hull edges and at most two edges ea
h from both adja
ent zigzags).

We 
an now 
ontinue 
ipping in su
h a way that Z

0

is 
ontinued. Unlike in the symmetri
 
ase, the edges

of Z

t

are 
ipped again. However, re
all that our 
ips alternatingly add two edges to Z

t

and to Z

0

. Hen
e

we 
an 
harge ea
h edge of Z

0

{ whi
h is never 
ipped again { with an additional two 
ips to a

ount for


ipping the edges of Z

t

again, whi
h implies that the total number of 
ips in the repeating 
ase is also linear

in m.

(b)(a)

vtip

v
′

tip

dQ

(c)

vtip

v
′

tip
vtip

v
′

tip

Fig. 7. The re
ursive 
ase: Start 
on�guration (a), Z

t

rea
hes v

0

tip

(b), after merging re
ursively (
).
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In the re
ursive 
ase d

Q

be
omes the base edge of a new light merge triangle, at whi
h two zigzags {

the remainder of either Z

1

or Z

2

and Z

t

{ have to be merged. Possibly after inverting one or both zigzags

the new v

tip

has again degree 6 and both end-points of the new base edge also have at most degree 6 < k

(see Fig. 7(b)). After solving this instan
e re
ursively, the remaining problem is in the symmetri
 
ase (see

Fig. 7(
)). Let m again be the total number of verti
es involved in the merge and let m

0

be the number of

verti
es in Z

0

when we re
urse. The total number of 
ips satis�es the following re
ursion:

T (m) = �(m

0

) + T

�

m

2

�

m

0

2

�

+�(m�m

0

) � O(m) + T

�

m

2

�

= O(m) :

Thus also in the re
ursive 
ase, the number of 
ips is linear in the size of the two zigzags whi
h are merged.

Lemma 3. Let S be a set of n points in 
onvex position, let T be a fringe triangulation of S with maximum

vertex degree k > 6, let 4 be a light merge triangle of T , and let m be the total number of verti
es of 4 and

its two adja
ent zigzags that end in ears. 4 and both zigzags 
an be merged into one zigzag ending in an ear

in O(m) time, while at no time ex
eeding a vertex degree of k.

Sin
e the light merge triangle4 is an inner triangle of a fringe triangulation, it might be adja
ent to a fan of

size at most four, whi
h in turn is adja
ent to a zigzag Z

00

, followed by another fan of size at most four, whi
h

is adja
ent to the next inner triangle. After removing 4 by merging it with its two adja
ent zigzags into one

new zigzag Z

0

, we might have to invert Z

0

and Z

0

+ Z

00

a 
onstant number of times to remove the fans and

ensure that the new triangulation is again a fringe triangulation. The inversions of Z

0


an be 
harged to the

merge operation and the inversions of Z

00


an be 
harged to Z

00

{ sin
e any inner path be
omes a leaf path

only on
e, the total 
osts for all these inversions is O(n).

2.3 Rotating a zigzag triangulation

Re
all that a zigzag triangulation is uniquely de�ned (up to inversion) by the lo
ation of one if its ears. In

this se
tion we show how to 
ip or \rotate" any zigzag triangulation of S into any other zigzag triangulation

of S. We distinguish the rotations by the \angle" between the sour
e and target ears. Spe
i�
ally, 
onsider

the line `

s

through the ears of the sour
e zigzag and the line `

t

through the ears of the target zigzag. If these

lines partition the verti
es of S into four equal sets (plus or minus one) then we say that they form a 90

Æ

angle. Note that this angle de�nition is not geometri
 but relies solely on the distribution of the points of S.

If S forms a regular 
onvex n-gon then the regular geometri
 and our 
ombinatori
 angle de�nition are the

same.

First, as a basi
 step, we des
ribe a rotation by 90

Æ

. In this spe
ial 
ase the tips of the ears u and v of the

target zigzag are 
onne
ted by an edge of the sour
e zigzag (see Fig. 8(a)). Flipping the edge between u and

v 
reates a diagonal d

Q

, 
ipping the remaining edges adja
ent to u and v 
reates a splitting quadrilateral

Q between the shrinking sour
e and the growing target zigzags (see Fig. 8(b)-(
)). We 
an now 
ip to

alternatingly add edges to the zigzags growing from u and v, just as des
ribed before in the symmetri
 
ase

of the merge. Hen
e a rotation by 90

Æ


an be exe
uted with a linear number of 
ips. The maximal vertex

degree rea
hed during all 
ips o

urs again at the verti
es of Q, whi
h 
an have maximal degree at most

7 � k: two 
onvex hull verti
es, at most two edges ea
h from both adja
ent zigzags, and d

Q

.

Next, we 
onsider rotations by 45

Æ

, that is, rotations where 1/8 of the verti
es lie between the sour
e

and target ears in either 
lo
kwise or 
ounter-
lo
kwise dire
tion (see Fig. 9(a)). The two target ears u and

(a) (b) (c)

u v1
3

2

u vdQ
Q

u v

Fig. 8. Zigzag rotation by 90

Æ

: Start 
on�guration (a), �rst steps (b), (
).
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(a) (b) (c)

u v

u
′

v
′

u v

u
′

v
′

u v

u
′

v
′

Fig. 9. Zigzag rotation by 45

Æ

: Start 
on�guration (a), �rst steps (b), the zigzags growing from u, u

0

, v, and v

0

meet

(
).

v are no longer 
onne
ted by an edge of the sour
e zigzag. We sele
t two temporary tips u

0

and v

0

whi
h are


onne
ted to u and v, respe
tively, and whi
h have the same distan
e (in verti
es) to the ears of the sour
e

zigzag as u and v (see Fig. 9(b)). We now grow zigzags from u, u

0

, v, and v

0

as des
ribed before for the 90

Æ

rotation. When these four zigzags meet (see Fig. 9(
)) then we 
an �nish the rotation as in the 90

Æ

setting.

Using the same arguments as before (twi
e) we 
an 
on
lude that also the rotation by 45

Æ


an be exe
uted

with a linear number of 
ips, while at no time ex
eeding a vertex degree of 7 � k.

The �nal 
ase whi
h we 
onsider are rotations between 45

Æ

and 90

Æ

. All other rotations 
an be 
omposed

of a rotation by 90

Æ

followed by a rotation between 45

Æ

and 90

Æ

. We sele
t two temporary tips u

0

and v

0

as

before and start growing four zigzags, also as before (see Fig. 10(a) and (b)). But in this 
ase, when two of

the growing zigzags meet, they do not form a 90

Æ

setting (see Fig. 10(b)). But we 
an exe
ute two merges

at two light merge triangles 4

u

and 4

v

, ea
h time involving one of the zigzags growing from a temporary

tip and a tip from the sour
e zigzag. After the two merges, we are again in the 90

Æ

setting and 
an �nish

the rotation (see Fig. 10(
)). With the same arguments as before we 
an 
on
lude that also rotations by any

angle between 45

Æ

and 90

Æ


an be exe
uted with a linear number of 
ips, while at no time ex
eeding a vertex

degree of 7 � k.

(a)

u v

u
′

v
′

(b) (c)

u v

u
′

v
′

△u

△v

u v

u
′

v
′

Fig. 10. Zigzag rotation between 45

Æ

and 90

Æ

: Start 
on�guration (a), the zigzags growing from u, u

0

, v, and v

0

meet

(b), after the merge (
).

Lemma 4. Let S be a set of n points in 
onvex position and let T be any zigzag triangulation of S. T 
an

be rotated into any other zigzag triangulation of S with O(n) 
ips, while at no time ex
eeding a vertex degree

of k.

3 Point sets in general position

In this se
tion we study 
ip graphs of bounded degree triangulations and pseudo-triangulations of a set S

of n points in general position in the plane. There are point sets for whi
h every triangulation must have a

vertex of degree n�1. Nevertheless we 
an ask the following question: If there are two triangulations T

1

and

T

2

of a point set S, both of whi
h have maximum vertex degree k, is it possible to 
ip from T

1

to T

2

while

at no time ex
eeding a vertex degree of k? For pseudo-triangulations it is know [6℄ that any point set S in

general position has a pseudo-triangulation of maximum vertex degree 5. Hen
e the question arises if there

is a k � 5 su
h that the 
ip graph of pseudo-triangulations with maximum vertex degree k is 
onne
ted.
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(a) (b)

Fig. 11. Two triangulations whi
h 
annot be 
ipped into ea
h other.

For any k there is a point set whi
h has two triangulations T

1

and T

2

of maximum vertex degree k whi
h


annot be 
ipped into ea
h other without ex
eeding a vertex degree of k. Consider the example for k = 8

depi
ted in Fig. 11. The shaded parts indi
ate zigzag triangulations and the dark verti
es have degree 8. In

the left triangulation only edges of the zigzags 
an be 
ipped without ex
eeding vertex degree 8, hen
e it

is impossible to rea
h the triangulation on the right. This example 
an be easily modi�ed for any 
onstant

k > 3.

We do not know if there is a k su
h that the 
ip graph of pseudo-triangulations with maximum vertex

degree k is 
onne
ted, but we do know that k, if it exists, needs to be larger than 9. Consider the pseudo-

triangulation P depi
ted in Fig. 12. P has maximal vertex degree 9, but no edge of P 
an be 
ipped. However,

P is 
learly not the only pseudo-triangulation of this point set with maximum vertex degree 9.

Fig. 12. The \triangular edges" in the left drawing 
onsist of the stru
ture shown on the right, with the indi
ated

orientation. Dark verti
es have degree 9.
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