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Abstract

We present an algorithm for approximating a given open polygonal curve with a
minimum number of circular arcs. In computer-aided manufacturing environments,
the paths of cutting tools are usually described with circular arcs and straight line
segments. Greedy algorithms for approximating a polygonal curve with curves of
higher order can be found in the literature. Without theoretical bounds it is difficult
to say anything about the quality of these algorithms. We present an algorithm
which finds a series of circular arcs that approximate the polygonal curve while
remaining within a given tolerance region. This series contains the minimum number
of arcs of any such series. Our algorithm takes O(n2 log n) time for an original
polygonal chain with n vertices. Using a similar approach, we design an algorithm
with a runtime of O(n2 log n), for computing a tangent-continuous approximation
with the minimum number of biarcs, for a sequence of points with given tangent
directions.

1 Introduction

In computer-aided manufacturing environments, tool paths are usually made
of line segments and circular arcs [11–13]. Approximating the data by curves of
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Fig. 1. Polygonal tolerance region R with gates

higher order [5,8,11–13,15,16,20] has been investigated extensively in the past.
In contrast to approximation by polygonal curves, the theoretical bounds of
these problems are not so well studied. There are two types of optimization
problems associated with the polygon approximation problem:

• Min-# problem: Given ε ≥ 0, construct an approximate curve with “error”
within ε and having the minimum number of line segments.

• Min-ε problem: Given m, construct an approximate curve consisting of at
most m line segments with minimum approximation “error”.

As these optimization problems were answered for polygonal approximation
[2,7,9,10,14,18,19] the same questions arise for approximation with curves of
higher order. We were able to answer the min-# problem for approximating
open polygonal curves with circular arcs and for biarcs.

In the first part of this paper we will introduce the basic ideas and the al-
gorithm for approximation of a polygonal curve with the minimum number
of circular arcs. Building on this we later present an algorithm for tangent-
continuous approximation of an open polygonal curve with minimum number
of biarcs.

1.1 Results and Techniques

We assume that we are given a tolerance region around the given curve, which
is split into subregions by gates through the given points, see Figure 1. The
precise formulation is given below.

Our algorithm for the optimal approximation by circular arcs (Section 2) de-
termines a subsequence of the input vertices and connects them by a sequence
of circular arcs, lying in the tolerance region and intersecting the gates in
proper order, thereby remaining close to the input polygon chain. The algo-
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rithm finds the approximation with the minimum number of arcs, subject to
these constraints.

The main idea for this algorithm is the use of a Voronoi diagram of the tol-
erance boundary. We have to incrementally maintain one cell in this Voronoi
diagram of line segments. Geometric considerations (Lemma 2.9) make the
location step in the update easy, leading to constant amortized time per in-
sertion. In total, the algorithm takes O(n2 log n) time and O(n) space.

We also obtain an optimal tangent-continuous approximation with biarcs,
pieces consisting of pairs of circular arcs, with given tangent directions in
O(n2 log n) time and O(n2) space (Section 3). (If such tangent information is
not available, it can be computed from the point data alone, using various
tangent estimation methods.) The algorithm selects a subsequence of the in-
put vertices and connects them by biarcs, respecting the tangent directions
of the chosen vertices. Again, the approximation remains within the tolerance
region. The resulting approximation uses the minimum possible # of biarcs,
subject to these constraints.

Conventional biarc algorithms (also used in industry) operate on discrete sets
of points (and tangent vectors), by fitting biarcs between selected pairs of
points [8]. Therefore the restrictions of our algorithms are common. Neverthe-
less, we are aware that certain restrictions of the solution are not completely
natural. In particular, one might allow arcs and biarcs that do not start and
end at original points. Using these restrictions simplifies the problems, and we
do not know to solve them otherwise.

The results on arc approximations in Section 2 have been presented at the
22nd European Workshop on Computational Geometry (EWCG) in Delphi,
in March 2006 [4].

2 Approximation by Circular Arcs

2.1 Problem Setting

We wish to approximate a polygonal chain P = (p1, . . . , pn) by a series of
circular arcs (which could include straight line segments, as the limiting case
of circles of infinite radius). The endpoints of the arcs are vertices of P . Ideally,
we want our approximating curve to have distance at most ε from P . As a
first approximation to this problem, one can look at a region formed from
strips of width ε centered at the polygon edges. However, in the vicinity of
sharp corners, this does not guarantee that the curve remains close to the
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Fig. 2. Polygonal tolerance region R with gates. Gate g2 has been “shortened” to
fulfill condition B between g1 and g2. Condition C is violated between g2 and g3.

given points. Figure 1 shows a circular piece of a hypothetic curve that can
shortcut the bend at p4 if it is only required to remain in the strips. (Also,
it might overshoot the bend, as indicated in the vicinity of p6, although this
looks like a theoretical possibility only.) To avoid this, we introduce a gate
through every vertex. The approximating curve is required to pass through
all gates in succession, and the curves are not allowed to pass through a gate
twice. This will guarantee that any curve into a point pi can be joined with
any curve out of pi without danger of an intersection other than at pi.

For our problem, we assume that we are given a polygonal “tolerance re-
gion” R and a sequence of gates g1, g2, . . . , gn, which are segments through
the points pi. Each gate crosses P . We will refer to endpoints of gates lying
to the left of P as we walk from p1 to pn as left endpoints and the other end-
points as right endpoints. We require that the gates do not cross each other.
We require that the input satisfies the following assumptions:

(A) R is a simple polygon passing through all gate endpoints; the boundary
of R goes through g1 and gn.

(B) R does not intersect the interior of gates or cross the segments connecting
corresponding endpoints of successive gates.

(C) No line through two points on successive gates gi and gi+1 crosses the
portion of R connecting gi with gi+1.

(Assumption (B) is actually a consequence of (C).) Ideally, the gate gi at
vertex pi is a line segment of length 2ε centered at pi that bisects the angle
pi−1pipi+1. For a convolved curve with sharp bends close together, we might
have to reduce the width of R in order to fulfill condition A; and we might have
to shorten the gates in order to fulfill condition B, as shown in the right part
of Figure 1 and in the left part of Figure 2. In contrast, condition C, beyond
what is required for condition B, is likely not an issue in practice: it prevents
the boundary of R from making “wild” turns like in the middle of Figure 2.
The end gates g1 and gn partition the boundary of R into a left boundary and
a right boundary. In the illustrations, P will usually be oriented from left to
right; then the left boundary is on top and the right boundary is below.

Modeling the curve approximation problem by an appropriate tolerance re-
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gion with gates is a problem of its own, which we do not treat here. Eibl
and Held [5,8] have methods that can be adapted to produce such gates and
tolerance regions. In Figure 1, we have chosen to approximate the “ideal” cir-
cular boundary at the outer angle of each vertex by a single edge of R. One
can use more edges to get a finer approximation, or one could also choose to
approximate the circular arc from inside, to get a guaranteed upper distance
bound of ε. Our time bounds assume that R has constant complexity between
successive gates and thus the total size of R is proportional to n. See Section 4
for a discussion of further issues about the tolerance region.

Definition 2.1 (proper gate stabbing) A circular arc stabs gates gi, gi+1,

. . . , gj properly, if:

(1) the circular arc passes through each gate gm ∈ {gi, . . . , gj} from the side
of segment pm−1pm to the side of segment pmpm+1

(2) the circle on which the arc lies intersects each gate only once.

Condition 2 of this definition is necessary for our algorithm, but it excludes
arcs that might seem reasonable: an arc from pi to pj might intersect each
intermediate gate only once, but the continuation of the arc beyond pj might
bend back and intersect, say, gj and gj−1 a second time, see Figure 3. This
would be a sensible arc, but it is excluded by our definition. But such a sit-
uation can only happen if the gates are very close together (relative to their
length).

Definition 2.2 (valid circular arc) A circular arc aij with starting point
pi and endpoint pj is a valid arc if:

• the arc stabs the gates gi+1, . . . , gj−1 properly,
• the arc does not cross the boundary of the tolerance region R.
• the arc reaches pi from the correct side of gi and reaches pj from the correct

side of gj.

Note that because R passes through the gate endpoints, any arc that goes
through a series of gates without crossing the tolerance boundary must go
through them in the correct order, so we do not need to test this separately.
In contrast to the intermediate gates, we allow the circle on which the arcs lie
to intersect gi and gj more than once.

We can split the problem of determining if a valid circular arc connects pi with
pj into three parts. First, we compute the set of all arcs between pi and pj that
stab all intermediate gates properly (Sect. 2.2). Second, we compute all arcs
that start at pi and end at pj, reaching both from the correct side (Sect. 2.3).
Third, we compute all arcs between pi and pj that do not intersect with the
tolerance boundary (Sect. 2.4). A valid circular arc has to be a member of all
three result sets.

5



p3
p4

p5
p1

p2

Fig. 3. A circular arc in a hypothetical tolerance region R that is not valid because
it violates Condition 2 of Definition 2.1.

2.2 Stabbing the Gates

Given a point p and a gate g, denote by bl the bisector of p and g’s left
endpoint, and by br the bisector of p and g’s right endpoint.

Lemma 2.3 The centers of all circles passing through a vertex pi and inter-
secting a gate gj exactly once lie in a double-wedge whose boundary is bl and
br. Specifically, they lie in the parts of the double wedge where one of the half
planes bounded by bl and br includes pi and the other excludes it. (Figure 4
illustrates this.) In the degenerate case where bl is parallel to br the region
containing all centers is the strip between the bisectors.

PROOF. Consider the intersection of the half plane bounded by bl that ex-
cludes pi and the half plane bounded by br that includes pi. Points in the
interior of this region are closer to pi than the right endpoint of the gate and
are also closer to the left endpoint than to pi. Disks centered in this region
which have pi on their boundary include the left endpoint and exclude the
right endpoint of the gate. Therefore all circles centered in the wedge inter-
sect the gate exactly once. The case for the second wedge is symmetric. This
argument works for the degenerate case, also, but in this case all circles will
include the nearer gate endpoint and exclude the further one.

Centers of circles that are located in the same region as pi outside of the
double-wedge are always closer to pi than to the endpoints of the gate. There-
fore these circles exclude the endpoints if they pass through pi. These circles
can not intersect the gate only once, unless the circle is tangent to the gate.
Looking at the other side of the double-wedge boundary, all centers of circles
located here are closer to the endpoints of the gate than to pi. Each disk which
includes pi has to include the endpoints and its boundary does not intersect
the gate at all. 2
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Fig. 4. The shaded area is the region of all centers of circles passing through pi and
gate gj . The circles with centers close to the intersection of bl and br, in the region
with the curved boundary, intersect gj twice and are not considered as centers of
valid arcs.

By Definition 2.1, an arc stabs the gates properly only if every gate is in-
tersected only once. Therefore the centers of circular arcs stabbing an inter-
mediate gate are located in the double wedge of the gate. For the first and
last gates of the arc we insist that the arc goes through the original point
located at the gate. Thus the first and last gates are treated differently from
the intermediate gates (see Subsection 2.3).

According to Lemma 2.3, one wedge is the region of the centers of disks includ-
ing the left endpoint of the gate and excluding the right endpoint. Circular
arcs centered in this region pass the gate from the correct side, according to
the stabbing condition, if they are in CCW (counter-clockwise) orientation.
In CW (clockwise) orientation, the arc would walk around the left endpoint
before intersecting the gate. The unbounded part of this wedge lies to the left
of P . Symmetrically the circular arcs in the other wedge need CW orientation
to pass the gate in the correct direction, and the unbounded part of this wedge
lies to the right of P .

So from now on we talk about the left wedge and the right wedge. A circular
arc stabbing through the gates cannot change its orientation.

Lemma 2.4 A circular arc α starting at a point p stabs gates gi, . . . , gj prop-
erly if and only if its center lies in the intersection of the left wedges or the
intersection of the right wedges defined by p and the gates. 2

Lemma 2.5 Incrementally computing the two regions of centers of all valid
circular arcs passing through a point pi and stabbing all gates gi, gi+1, gi+2 . . . , gj

properly, for j = i + 1, . . . , n, can be done in O(n log n) time and O(n) space.

PROOF. It is the incremental intersection of O(n) half-planes. 2
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Fig. 5. Illustration for Lemma 2.6. In this example, arrows labeled ti and tj show the
direction that P passes through gates gi and gj . The dashed segments perpendicular
to the gates at pi and pj show how si and sj are computed. The centers of valid CW
arcs form the line segment sisj . There are no valid CCW arcs. A few representative
candidate arcs are shown. The two solid arcs (with solid radii) centered at points
between si and sj are valid. The two dotted arcs (with dotted radii) centered at
points outside of segment sisj are invalid.

2.3 Arc Endpoints

All arcs that start at pi and end at pj have their centers on the bisector of
the segment connecting pi and pj. Since a valid circular arc from pi to pj must
reach each endpoint from the correct side of its gate, we know for each circle
whether the arc from pi to pj must go in the CW or in the CCW direction,
or if none of the arcs is valid. (When the circle is tangent to both gates,
both directions are possible.) Straightforward geometric arguments lead to
the following characterization of the desired arcs, see Figure 5.

Lemma 2.6 Let b be the perpendicular bisector of the segment between pi and
pj. Let si be the point of b which is the center of a circle tangent to gi at pi,
and let sj be defined symmetrically. The centers of all CW arcs that reach
both pi and pj from the correct side lie in the intersection of two rays that are
subsets of b. One has si as its endpoint and the other has sj as its endpoint.
The same is true for CCW arcs. 2

2.4 Staying within the Tolerance Boundary

The tolerance boundary R consists of two polygonal chains, one on each side
of the original polygonal chain P . For a CW arc we will only check that it does
not cross the boundary on the left side of P . It cannot cross the boundary
on the right side of P if it passes through all gates, by assumption (B), and
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Fig. 6. Schematic illustration for Lemma 2.8.

therefore we need not check for such an intersection explicitly. (For a CCW
arc, the situation is symmetric.)

A circle passing through point p does not intersect or contain any edge on a
polygonal chain C if its center lies closer to p than to any point on C. That
is, if we compute the Voronoi diagram of C ∪ p, the center of the circle must
lie in point p’s region, V (p).

This is not quite the condition that we want, namely that a circular arc does
not cross chain C. The Voronoi region guarantees that an entire circle does
not cross C. However, in our case these are equivalent.

Lemma 2.7 If an arc from gi to gj does not intersect a tolerance boundary
between gi and gj then neither does the circle on which that arc lies.

PROOF. Look at the arc between consecutive gates gk and gk+1. Let q and
q′ be the intersection points with these gates. By assumption (C), the line ℓ

through q and q′ does not intersect the tolerance boundary between gk and
gk+1, i.e., the tolerance boundary lies entirely on one side of ℓ. For a CW arc,
the tolerance boundary in question lies on the left side of ℓ. On the other hand,
ℓ is the line that splits the circle into the arc from q to q′ (on the left side) and
into the opposite part which is not used. Thus the part of the circle which is
not used can never intersect the relevant part of the tolerance boundary. 2

While we could compute the entire Voronoi diagram of C∪p to determine V (p),
this would be too expensive. Fortunately, we can iteratively add n consecutive
segments of C and update p’s Voronoi region V (p) in O(n) total time.

Voronoi regions are “generalized star shaped”. This means that a shortest
segment from a boundary point to a nearest point in the shape defining the
region lies entirely within the region.
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Lemma 2.8 Each segment added will either cause no change to V (p) or will
replace a section of V (p) by at most three new segments (two straight lines
and a parabola). (If V (p) is unbounded we think of an edge “at infinity” con-
necting the two infinite rays, so that these three “segments” are considered
consecutive.)

PROOF. Suppose we add a new segment S to the end of C. First we show
that the added pieces on the boundary of V (p) are connected. Let x and y be
two points on the boundary between V (p) and V (S) (x and y can also be cho-
sen “at infinity”). Draw shortest segments (or rays for the piece “at infinity”)
from x and y to S. Because Voronoi regions are generalized star shaped, both
of these segments lie within V (S) and cannot be crossed by another Voronoi
region. S itself cannot be crossed by another Voronoi region. There is a closed
curve formed by a part of S, the two segments, and the boundary of V (p)
between x and y, cutting the plane into two parts, see Figure 6. Since S is
the (current) last segment of C, one of these parts contains no other segments
of C. It follows that the corresponding part on the boundary of V (p) belongs
completely to V (S), establishing a connection between x and y.

The Voronoi bisector between a point p and a segment S is formed by 2 straight
rays and a parabolic arc. The new parts on the boundary of V (p) must be a
part of this bisector. 2

There are two parts to updating p’s Voronoi region V (p) when adding a seg-
ment S to the diagram. First, we find a place on the boundary of V (p) that
is equidistant from p and S, if such a place exists. If so, we walk around
the boundary of V (p), eliminating boundary sections until we reach the other
place on the boundary where p is equidistant from S. (Note that either of
these places could be “at infinity”.)

The second part is easy — walk around the boundary of V (p) from the starting
point, eliminating obsolete bisector segments until you get to the finish point.

Because C is a polygonal chain, the first part is also easy. V (p) is bounded by
bisector pieces between p and a subset of the segments in C. Of the segments
in this subset, there is a first segment F and a last segment L, according to
the order along the chain.

Lemma 2.9 If V (p) changes, then its boundary with either V (F ) or V (L)
must change.

PROOF. The intuition is, if you can’t go through the chain C, then the only
way to get to V (p) is through V (F ) or V (L).
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If the chain from F to L consists of only F and L (which could be the same
segment), the lemma is trivially true. Otherwise consider the union of the
chain C between F and L exclusive, the boundary of V (F ) from the endpoint
it shares with the next segment on C to the end of its boundary with V (p),
and the boundary of V (L) from the endpoint it shares with the segment before
it on C until the end of its boundary with V (p). If V (p) is bounded these two
boundaries end at the same point — the point where V (p), V (F ), and V (L)
meet. If V (p) is unbounded then its boundaries with V (F ) and V (L) end in
infinite rays. In either case, this union separates the plane into two parts, one
including p (the inside) and the other not including p (the outside). We will
call this union the separator. Note that F and L are defined to lie outside of
this separator (except for the endpoint that is part of the separator).

Suppose that a segment S is added that changes V (p). The previous segment
on C is either L or some segment that did not modify V (p). In either case,
the endpoint shared with that previous segment is outside of the separator,
so we know that at least part of S lies outside of separator.

If S crosses the separator, then it cannot cross C, because the chain is simple.
If it crosses the Voronoi boundary of V (F ) then the part of the boundary
between the crossing point and the end of the boundary between V (p) and
V (F ) will be eliminated. A similar argument holds for L. Thus if S crosses the
separator then the boundary of V (p) with either V (F ) or V (L) must change.

If S does not cross the separator, pick some point q that is on the boundary
of the new V (p) that was not on the boundary of the old V (p) and let E be
the shortest segment from q to a point on S. E must lie entirely in V (S) and
must cross the separator. It cannot cross C. The rest of the analysis is exactly
as in the paragraph above, with E replacing S. 2

Lemma 2.10 For a fixed gate gi, we can incrementally compute the regions
of centers of all circular arcs that pass between gi and each gate gj, without
crossing the tolerance boundary, for j = i + 1, i + 2, . . . , n, in O(n) time and
space.

PROOF. Incrementally add segments from C and amortize the update time.
We have shown that the centers of CW arcs are the region of V (pi) in the
Voronoi diagram of p along with the CW boundary between gi and gj, and
that this statement is true when “CCW” is substituted for “CW”. We can
compute these regions incrementally. It takes constant time to test if segment
S changes the boundary between p and either F or L, so the total time for
finding starting points is O(n).

Walking along the boundary of V (p) will take time proportional to the num-
ber of pieces eliminated. Because an eliminated piece is removed and never
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reappears, the total time for this step in all n insertions is bounded by the
number of boundary pieces added. This is at most 3n, because a bisector curve
between p and a segment consists of at most three pieces. Thus this requires
time O(n). 2

2.5 Computing the Shortest Path

To determine the approximation with the minimum number of arcs we look
at the directed acyclic graph of all possible valid arcs and find the shortest
path from p1 to pn. The following theorem summarizes how to find the valid
arcs from pi to pj.

Theorem 2.11 A point c is the center of a valid CW circular arc from pi to
pj if and only if it is in the intersection of :

• the intersection of the right wedges between pi and each of the gates gi+1

through gj−1;
• the region of V (pi) in the Voronoi diagram of pi and all of the segments on

the left boundary between gi and gj; and
• all points in the intersection of two rays contained in b, one with endpoint

si and the other with endpoint sj, where b, si, and sj are as defined in
Lemma 2.6.

The conditions for valid CCW arcs are symmetric. 2

We find the possible arcs from a point pi to all points further along P incre-
mentally. We maintain the intersection of the right wedges, the intersection
of the left wedges, the Voronoi region of pi with the left boundary, and the
Voronoi region of pi with the right boundary. At each step we update each of
the four items. We intersect each bisector ray with an intersection of wedges
and with a Voronoi region, and then test if the intersections overlap. Because
wedge intersections and V (pi) are convex these intersections require O(log n)
time.

Note that we can quit early as soon as both wedge intersection regions become
empty. This may lead to a better behavior of the algorithm in practice than
the worst-case time bound proved in the theorem below.

Theorem 2.12 Given an open polygonal curve P = (p1, . . . , pn), a polygonal
tolerance boundary of size O(n), and a gate for each pi, we can approximate
P by a minimum number of valid circular arcs in O(n2 log n) time and O(n)
space.
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PROOF. For each starting point pi we can determine the points pj (j > i)
that can be reached by a valid arc in O(n log n) time and O(n) space. In the
shortest path algorithm, we are performing a breadth first search of the graph,
but we need store only the tree edge of the BFS tree. It is therefore sufficient
to scan the outgoing arcs of p1, p2, p3, and so on, in succession as they are
expanded in the BFS. Once the valid arcs out of pi are scanned, we discard all
edges that are not part of the BFS tree, and hence the algorithm needs only
O(n) space. 2

For the Min-# problem for polygonal approximation the best known running
time is O(n2 log n) for three out of the four common error criteria [6,9,10]. Our
algorithm solves this problem with curves of higher order with the same time
complexity. The error criteria refer to the way the error of an approximating
segment is measured. Only for the error criterion where error is defined to be
the maximum distance between the approximating segment and the vertices
of the original polygonal curve that lie between start and endpoint of the
segment is there is an algorithm with a faster running time of O(n2) [10].

Remark. The algorithm can be extended to optimize other criteria than
the number of arcs, e.g. the arc length, or some weighted mixture of criteria.
When the interval of possible centers of valid arcs from pi to pj has been
determined, one must be able to pick the best one of them and compute its
“weight”, which is used for the shortest path calculation.

3 Approximation by Biarcs

3.1 Problem Setting

The sequence of arcs produced in the previous algorithm may have arbitrary
corners at the vertices. In many situations, a smooth curve is desired. We now
assume that an oriented tangent direction ti is specified for each vertex pi

of the open polygonal curve. (If such tangent information is not available, it
can be computed from the point data alone, using various tangent estimation
methods.)

Our algorithm will select a subsequence of the input points and interpolate
between them smoothly by biarcs, pieces consisting of pairs of circular arcs,
respecting the tangent directions ti at the points which are used. Our algorithm
will find such an approximation with the minimum number of biarcs given a
set of gates and a tolerance region. In this setting the gates would ideally
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Fig. 7. The joint circle, and an S-shaped biarc with both tangents pointing outside
the joint circle

be perpendicular to the tangent directions ti, but we do not require this. We
require that the input satisfies the following assumptions:

(A′) R is a simple polygon passing through all gate endpoints;
(B′) R does not intersect the polygon or the interiors of the gates.
(C′) Each tangent ti passes through gate gi in the same direction as the original

polygonal chain P ; that is, from the side of the gate on which pi−1pi lies
to the side on which pipi+1 lies.

Again we first find all valid biarcs and then build the directed graph of these
biarcs from the start point to the end point of the polygonal curve. The last
step is the computation of the shortest path as in the previous section. The dif-
ference between the two algorithms is the computation of the valid arcs/biarcs.
Therefore we will now focus on the computation of valid biarcs.

3.2 Biarcs

Biarc curves were introduced by Bolton [1] and are used for curve approxima-
tion in a tangent-continuous manner. A biarc consists of two circular arcs that
share an endpoint with a common tangent. This common endpoint is called
the joint of the biarc. Given two points pi and pj with two tangent vectors
ti, tj at these points, a biarc Bij between pi and pj is characterized in the
following way [1,8]:

• Bij consists of two consecutive circular arcs, a1, a2

• a1 is an oriented arc from pi to point pjoint and a2 is an oriented arc from
pjoint to pj;

• a1 matches the tangent vector ti at the point pi and a2 matches the tangent
vector tj at pj;

• both arcs have a common tangent at pjoint.
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These conditions leave one degree of freedom. The locus of possible joints
forms a circle J that passes through pi and pj [3,17,21], see Figure 7. For each
point on this joint circle J , there is a unique biarc which uses this point as
the joint. (There are some degenerate cases, which we ignore in the sequel: as
a limiting case, the joint could be one of the points pi or pj: the joint circle
might be a line; if there is a circle through pi and pj with the given tangents,
this is the joint circle, but all joints on this circle lead essentially to the same
biarc.)

Proposition 3.1 One circular arc of the biarc lies outside the joint circle J ,
and the other lies inside J , except for their endpoints, which lie on J . Both
tangents ti and tj point to the same side (either inside or outside) of J , and
they form equal angles with J .

(In fact, the last property characterizes the joint circle.)

3.3 Valid Biarcs

Definition 3.2 (Valid biarc) A valid biarc Bij from pi to pj consists of two
circular arcs a1 and a2 and satisfies the following conditions :

• a1 matches ti at the point pi, a2 matches tj at pj, and they meet at a point
on the joint circle.

• Bij stays inside the tolerance boundary.
• Bij intersects the gates gi and gj only in pi and pj.

The joint, which is the ending point of a1 and the starting point of a2, is
not required to be an original point. The joint must of course lie inside the
tolerance region. Note that in comparison to the arc approximation of Defi-
nition 2.2, we have relaxed the gate stabbing condition. The arcs a1 and a2

are allowed to intersect the gates of the starting and ending points only once,
but intermediate gates can be intersected more than once. Forbidding these
multiple intersections would mean that, in a family of biarcs with the same
endpoints, some biarcs that lie between permitted biarcs might be excluded,
which is not natural. See Figure 8. The restrictions on intersecting gi and gj

guarantee that successive biarcs will not intersect except at endpoints.

3.4 Circular Visibility Regions

For each possible starting point pi of a biarc, the tangent direction ti is fixed.
The pencil of circular arcs starting in this direction forms a circular visibility
region Wi inside the feasible region R, see Figure 9. The arcs forming Wi

15



Fig. 8. We allow a biarc to intersect an intermediate gate three times.

ti
pi

Fig. 9. A circular visibility region Wi

terminate when they reach gi; since we want to construct valid biarcs, we are
not interested in arcs that intersect gi a second time.

To find a valid biarc that starts at pi and ends at pj we need to reach a point
on the joint circle J via a valid arc from pi and then continue via a valid arc to
pj. The possible joints from the perspective of pi are the intersection of J and
the circular visibility region of pi. By reversing the direction of the second arc
and tangent we can compute the second arc in the same way. We will use arc
ã2, which has opposite orientation and whose tangent at pj is t̃j, the reverse of
tj. We will call this circular visibility region W̃j. Our goal is to find all points
on J which are in both circular visibility regions Wi and W̃j.

As a first step in this process we determine the portion of each gate that is
within Wi for each point pi and the portion of each gate that is in W̃j for each
point pj. These portions consist of at most three intervals and can be stored
in O(n2) space (see Lemma 3.3). In the second step we check the existence of
a valid biarc between every pair of vertices pi and pj. For each pair pipj, we
will identify an interval gl−1, . . . , gr+1 of gates where the joint is restricted to
lie. Between gl and gr, the joint circle is not intersected by the boundary of R.
This makes it easy to test for the existence of a valid joint. This step uses the
pre-computed information about the intersection of circular visibility regions
with gates.

We could compute the intersection of Wi with all later gates by using intersec-
tions of wedges and Voronoi regions, as we did in Section 2. However, because
we know the tangent at pi we can do this more efficiently by computing Wi di-
rectly. The pencil of circular arcs consists of an interval of possible curvatures.
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pi

ti

gi

gk

Fig. 10. Forward and backward visibility segments of region Wi on gate gk. The
intervals of forward visibility and counter-clockwise backward visibility are adjacent.

As we proceed from gate to gate and walk along the left and right tolerance
boundaries, the interval of curvatures either remains unchanged or shrinks,
but it always remains a single interval.

Lemma 3.3 For a given point pi, the oriented circular visibility regions of
Wi and their intersection with all gates can be computed in O(n) time. The
part of a gate that is visible in Wi consists of at most three intervals: one
interval where the gate is reachable in the forward direction, and two segments
where the gate is reachable in the backward direction by clockwise and counter-
clockwise arcs, respectively. These intervals may be adjacent.

PROOF. We cut each oriented visibility region into two pieces, forward and
backward visibility. The forward visibility region is the part of the visibility
region which is reached by portions of arcs that do not intersect any gate
twice. The backward visibility is the part reached by portions of arcs after
they have intersected a gate twice, so they are moving backwards through the
gates.

We walk along the left and right boundaries of the tolerance region, deter-
mining the intersection between each boundary and the pencil of arcs, and in
this way compute the forward visible region. When the last reachable gate is
known, we can compute for each gate moving backwards the arcs that build
the backward visibility region. The backward part of the visibility region for a
gate gi consists of the arcs that intersect gate gi+1 a second time (possibly after
passing through even higher-numbered gates twice) and reach back to gi, plus
the arcs that don’t cross gi+1 but intersect the gate gi a second time. These
arcs correspond to a connected piece of the pencil of arcs and we need to de-
termine the intersection of this pencil part with the corresponding boundary
of the tolerance region moving from gi+1 to gi. Because the complexity of the

17



tolerance boundary between two gates is constant we can do the forward and
backward visibility computations between two gates in constant time, so the
total time required is O(n). The intervals on the gates can be stored for all
point pairs in O(n2) space. 2

Note that the interval on a gate reachable by forward portions of arcs is
disjoint from the interval reachable by backward portions of arcs, because a
given point is reachable by exactly one arc leaving pi with tangent ti. These
regions (if non-empty) may join at the point where an arc is tangent to the
gate, but if this arc is invalid (because it intersects the boundary) the regions
will be separated. See Figure 10.

3.5 Computing Valid Biarcs

We now look at a fixed pair pipj and test for a valid biarc between pi and
pj. The tangent directions ti and tj define a joint circle J . For the rest of the
paper we will deal with the situation that the first arc starting at pi is outside
the joint circle J and the second arc is inside. The other case is symmetic.

Each gate gi+1, . . . , gj−1 may or may not fulfill the following conditions:

Condition (Out)
The visibility region Wi from pi intersects the gate OUTSIDE the joint circle.

Condition (In)
The visibility region W̃j from pj intersects the gate INSIDE the joint circle.

We can test the conditions (In) and (Out) in constant time for every gate.

In the following, we will refer to the region bounded by two successive gates
gk−1 and gk and the boundary of R, as the cell between these gates, or simply
the cell gk−1, gk.

Lemma 3.4 (a) If the joint circle contains a joint point for a valid biarc in
the cell between gk−1 and gk then gk−1 satisfies (Out), and gk satisfies
(In).

(b) If gk satisfies (In) then so does gk+1, . . . , gj−1. If gk satisfies (Out) then
so does gk−1, . . . , gi+1.

PROOF. We prove only the statements regarding (Out). The arcs starting
at pi in direction ti start outside the joint circle J . If such an arc enters the
joint circle, it remains inside until it returns to pi (see Figure 11). Thus, if
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pi

pj

J

Fig. 11. A family of biarcs from pi to pj and its joint circle J

an arc has reached gk outside J , the initial part must have passed through
gi+1, . . . , gk−1 outside J . This establishes part (b) of the lemma. The same
argument works for an arc that reaches J in the cell between gk−1 and gk

(part (a) of the lemma). 2

It follows that the sequence gi+1, . . . , gj−1 can be partitioned into three con-
secutive parts:

(a) an initial part gi+1, . . . , gl−1 (possibly empty) satisfying (Out) but not
(In);

(b) a middle part gl, . . . , gr, which is either
(b1) a nonempty sequence satisfying neither (In) nor (Out);
(b2) a possibly empty sequence satisfying both (In) and (Out);

(c) a final part gr+1, . . . , gj−1 (possibly empty) satisfying (In) but not (Out).

Since the conditions (In) and (Out) can be tested in constant time, the po-
sitions l and r can be identified by binary search in O(log n) time. From
Lemma 3.4a it is clear that in case (b1), there can be no valid biarc, and in
case (b2), the joint must be in the cells between gl−1 and gr+1.

Let us now concentrate on case (b2): We treat the cells gl−1, gl and gr, gr+1

separately, and test whether some point of J is reachable from pi and pj, in
constant time. (These two cells are the same if the middle part is empty, i.e.
l − 1 = r.)

It may happen that gl or gr intersect J twice, and both pieces outside J are
reachable in Wi. In this case, it is certain a valid biarc exists, and we need not
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J

Fig. 12. A joint circle J intersecting a gate g twice. The shaded region is contained
in R.

proceed.

Lemma 3.5 Let g be a gate that satisfies (In) and (Out) and intersects J

twice, and suppose that both pieces outside J are reachable in Wi. Then there
is a valid biarc between pi and pj.

PROOF. Let s1, s2 be two arcs in Wi, such that s1 reaches one side of the
gate g outside of J and s2 the other. F denotes the segment on g between
the two intersections of J (see Figure 12). If s1 or s2 reaches g as part of the
backward visibility segment on g, then it must reach the same outer piece of g

as part of the forward visibility segment. We can thus assume that s1 and s2

extend from pi until they hit g for the first time. The region bounded by s1, s2

on segment g is contained within R, and therefore the part of J between the
intersections with g is completely in Wi. Let us sweep the circular arc s from
s1 to s2. Each of these arcs is a valid arc and it can be extended to a biarc
ending in pj (not necessarily valid). These biarcs sweep over the segment F .
By condition (In), we know that at least one of the complementary arcs s̃ is
a valid arc, at least to the point where it hits F . Since the region between F

and J lies within R, the whole biarc is in R.

We show that this biarc is also valid biarc, since it does not intersect gi and gj

except at pi and pj: By construction, the first arc s (up to the joint on J) does
not intersect gi twice, since its endpoint is in Wi, and it does not intersect gj

at all, since it terminates before crossing g. Similarly, the second arc s̃ does
not intersect gj twice, its endpoint being in separated from gj by g. It could
possibly intersect gi only in the circular segment between F and J , but since
this region is part of Wi, this is impossible. 2

So, the final case that we have to deal with is the following. We have a sequence
of gates gl, gl+1, . . . , gr, that satisfy (In) and (Out). We therefore know that
gl and gr (as well as all intermediate gates) intersect J in points Ql and Qr
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(see Figure 13). It may happen that gl or gr intersects J twice, but then only
one of the outer parts is intersected by Wi. (Otherwise we are done, by the
previous lemma.) We denote by gout

l and gout
r that outer segment of gl and gr

that is intersected by Wi. The intersection Ql and Qr is chosen (in case there
are two intersections) as the one that is incident to gout

l and gout
r , respectively.

We know that there is a valid arc from pi to gout
r . If the arc reaches gout

r as
part of the backward visiblity, it must have passed through gout

r as part of the
forward visibility region. Thus we denote the first intersection of the arc with
gout

r by Sout
r . Similary, there is an arc from pj that reaches gl inside J for the

first time in some point Sin
l , after passing through gr in the point Sin

r inside J .

Now, the two segments Sin
l Sout

l and Sin
r Sout

r and the two circular arcs Sout
l Sout

r

and Sin
l Sin

r are contained within R. It follows that the four-sided region G en-
closed by these curves (shaded in Figure 13) contains no part of the boundary
of R, and in particular, the arc QlQr of the joint circle that lies in this region
is not intersected by the boundary of R.

Lemma 3.6 In the situation described above, a joint in the region R between
gl and gr can only lie on the arc QlQr.

This lemma seems obvious at first sight, but it is conceivable that this region
contains parts of J besides the arc QlQr, as in the example of Figure 13.

PROOF. Let R̂ denote the region R between gates gl and gr. We denote by Bl

and Br the endpoints of gout
l and gout

r , and by B̄l and B̄r the opposite endpoints
of gl and gr. Since the region G lies inside R̂, it follows that the boundary of R̂

must connect Bl with Br and B̄l with B̄r. (The opposite connection, Bl with
B̄r and B̄l with Br, would lead to a crossing.)

A valid arc starting from pi enters R̂ through gout
l . This arc is then in the

region R̂out that is bounded by gout
l , gout

r , the arc QlQr, and the boundary of
R̂ between Bl and Br. The arc may leave this region through gout

r , but then
it has to reenter through gout

r in order to become a valid arc ending in R̂. If
the arc hits QlQr it terminates there. The arc must therefore meet J in the
region R̂out.

We can apply a similar argument for the backward arc from pj. This arc is

caught in the complementary region R̂in that is bounded by the arc QlQr, the
boundary of R̂ between B̄l and B̄r, and part of the segments gl and gr. Since
the regions R̂out and R̂in intersect only in the arc QlQr, the joint can only lie
on this arc. 2

Now we can easily determine the points on the arc QlQr that are joints of
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Fig. 13. The region R̂ between gl and gr
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Fig. 14. Determining the valid joint points

valid biarcs.

We have established that the region G does not contain any obstacles. Now
consider the point on gout

l closest to Ql that lies in Wi, and extend the arc
from pi through this point until it hits J in some point A1 (see Figure 14). It
may happen that A1 = Ql if this point is in Wi.

If A1 lies beyond Qr, we conclude that no arc can reach QlQr, because such
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an arc would have to intersect gout
l closer to Ql. Otherwise, by stretching the

arc and sweeping out till the arc piS
out
l Sout

r , we see that the complete interval
between A1 and Qr is reachable from pi by an arc that stays inside R. (It also
follows that A1 cannot lie before Ql: by the above argument, Ql would then
be in Wi, and A1 = Ql would have been chosen instead.)

Similarly, we can look for the point on gr that lies in W̃j, inside J , and is
closest to Qr, and we extend the arc from pj to a point A2 on J . We conclude
that the whole sub-arc QlA2 is reachable from pj, or that no point on the arc
QlQr is reachable.

By intersecting the arcs A1Qr and QlA2, we eventually find the arc A1A2

of possible joints, or we find that no joints are possible. The joints on the
arc A1A2 correspond to biarcs that lie in R. To get valid biarcs, we have to
ensure that they do not intersect gi and gj other than in their endpoints. It
is straightforward to reduce the interval A1A2 in order to exclude the biarcs
violating this condition, in constant time.

We summarize what we have achieved.

Lemma 3.7 After the intersections of all visibility regions Wi and W̃i with
all gates gk have been computed (Lemma 3.3), the existence of a valid biarc
between two given endpoints pi and pj can be tested in O(log n) time.

PROOF. We do binary search on the gates between gi and gj to find the
locations of gl and gr. This is the part of the procedure that takes O(log n)
time. If r < l − 1 there are no valid biarcs between the gates. Otherwise we
test the cell between gl−1 and gl and the cell between gr and gr+1 to see if any
part of J within these cells is a joint for a valid biarc. (The two cells could be
the same cell.) Because the cells have constant complexity these tests can be
done in constant time. We check if gl or gr intersects J twice and Wi intersects
the gate on both sides of J . If so there is a valid biarc. If not, we compute
A1 and A2 as described above and see if the arc A1A2 is non-empty. If not,
there is no valid biarc. If so, we reduce it if necessary to eliminate biarcs that
intersect gi or gj in points other than their endpoints. If any points remain in
the interval we report that a valid biarc exists. All work after finding gl and
gr requires O(1) time. 2

With the help of this test, we can now define the directed graph of reachable
arcs, and the shortest path will give us the approximation with the fewest
biarcs:

Theorem 3.8 Given an open polygonal curve P = (p1, . . . , pn), a polygonal
tolerance boundary of size O(n), and a gate for each pi, we can approximate
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P by a minimum number of valid biarcs in O(n2 log n) time and O(n2) space.

PROOF. For each point pi, determine which part of every other gate is reach-
able by computing Wi and W̃i in O(n2) time and space. For each point pair
pi, pj we check whether a valid biarc exists, by Lemma 3.7. This requires
O(log n) time, for a total run time of O(n2 log n). We use these tests to set up
a directed acyclic graph and compute the shortest path, in O(n2) time. 2

As for arcs, there are instances where this bound is overly pessimistic. The
visibility regions Wi and W̃j will often not extend beyond a few gates, and the
calculation can be shortcut.

4 The Tolerance Boundary

The “approximation error” ε for biarcs enters our problem only through the
tolerance region R. The definition of a useful tolerance boundary for a given
curve is a modeling question that depends very much on the application. For
some applications, like cutting, it makes sense to use asymmetric, one-sided
tolerance boundaries. As long the boundary meets the requirements specified
in the beginning of this paper, our algorithm can deal with it. Note that the
width of the tolerance boundary may change within R. Therefore depending
on the tolerance boundary our algorithm can answer the classical question
for ε approximation (our solution has absolute guarantees for the minimum
number of biarcs that are at most epsilon away from the original curve), as
well as for approximations with changing precision requirements. More sen-
sitive parts of the polygonal curve can be approximated with smaller ε than
less important ones. Allowing variations of the width of the approximation
boundary has no input on the theoretical complexity of the problem. This
ability to vary the width of the approximation boundary makes our algorithm
useful for smoothing paths in robotics motion planning. The corridor used for
the robotics is usually defined by the obstacles which have to be avoided. This
leads naturally to corridors with non-constant width.
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