Algorithmen und Programmierung 3, WS 2003/2004 — 1. Übungsblatt

Abgabe bis Donnerstag, 30. Oktober 2003

1. (i) (4 Punkte) Sortieren Sie die folgenden Laufzeiten aufsteigend. (Wenn f(n) = O(g(n)) ist, aber nicht g(n) = O(f(n)), dann soll f(n) vor g(n) kommen.)

```
(a) n^3 (b) \log_2 n (c) 1.8^n (d) n (e) 3^n (f) \sqrt{n} (g) n(\log_2 n)^2 (h) n^2
```

- (ii) (4 Punkte) Wenn ein Programm die Laufzeit f(n) aus Aufgabe (i) hat und die Computer in zehn Jahren um den Faktor 1000 schneller werden, dann kann man Probleme welcher Größe in derselben Zeit lösen, in der man heute Probleme der Größe (1) n = 20, (2) n = 1000 lösen kann?
- 2. (2 Punkte) Die Computer werden immer schneller, die Speicherelemente immer billiger. Wird der Entwurf von effizienten Algorithmen angesichts dieser Entwicklung in Zukunft an Bedeutung verlieren? Bei welchen Computeranwendungen werden Effizienzfragen eine größere/kleinere Rolle spielen?

Diskutieren Sie diese Fragen. (mindestens 5–10 Zeilen)

3. (0 Punkte) Das folgende Programmstück ist ein Versuch, Sortieren durch Einfügen zu implementieren.

Stellen Sie dieses Programm richtig und fügen Sie an den durch † bezeichneten Stellen in Ihrem Programm Schleifeninvarianten in der Form vom Zusicherungen (assertions) ein, aus denen die Korrektheit des Programmes hervorgeht. (Ein formaler Beweis ist nicht erforderlich, aber die Zusicherungen müssen aussagekräftig sein und vor allem zutreffen.)

- 4. (0 Punkte) Kann man Sortieren durch Einfügen schneller machen, indem man die Einfügestelle j schneller findet als oben in Zeile (*), zum Beispiel durch binäres Suchen? Wie ist es im besten und im schlechtesten Fall?
- 5. (0 Punkte) Zeigen Sie:
 - (a) Wenn $f(n) = a_d n^d + a_{d-1} n^{d-1} + \dots + a_1 n + a_0$ ein Polynom vom Grad d mit positivem Leitkoeffizienten $(a_d > 0)$ ist, dann ist

$$f(n) = \Theta(n^d).$$

- (b) $\log_a n = \Theta(\log_b n)$ für a, b > 1.
- (c) Unter welchen Bedingungen folgt $g(n) = \Omega(f(n))$ aus f(n) = O(g(n))?

- 6. (0 Punkte) Welche der beiden folgenden Laufzeiten f(n) und g(n) ist für große Werte von n schneller, und welche für kleine n? Bei welchem Wert von n ändert sich die Antwort?
 - (a) $f(n) = 10n(\log_2 n)^2$, $g(n) = 2n^{3/2}$
 - (b) $f(n) = 5 \cdot 2^n$, $g(n) = 100n^2 \log_2 n$
- 7. (0 Punkte)
 - (a) Beweisen Sie: Wenn f(n) = O(g(n)) ist, dann ist f(n) + g(n) = O(g(n)).
 - (b) Beweisen Sie: $\max\{f(n), g(n)\} = \Theta(f(n) + g(n))$ für f(n), g(n) > 0.
 - (c) Welche der folgenden Aussagen sind richtig (Begründen Sie Ihre Antworten): $n\sqrt{n} = O(n(\log n)^2); \ n(\log n)^2 = O(n\sqrt{n}); \ n\log n \cdot (\log\log n) = O(n^2);$ $n^2 = O(n\log n \cdot (\log\log n)); \ n^2 \cdot 2^n = O(2^{n+2}); \ n^2 \cdot 2^n = O(3^n); \ 3^n = O(n^2 \cdot 2^n);$
- 8. (4 Punkte) Finden Sie möglichst einfache Ausdrücke der Form $\Theta(\cdot)$ für folgende Funktionen: (a) $3n^2 4n + 32 + 27 n \cdot \lceil \log_2 n \rceil / 2$; (b) $\max\{n \lceil \log_2 n \rceil, (\lceil \log_2 n \rceil)^4\}$; (c) $2^{2n + \lceil \log_2 n \rceil}$
- 9. (6 Punkte) Formulieren Sie Sortieren durch Auswahl in Java (als Methode wie in Aufgabe 3) oder in Haskell (als lauffähige Funktion).

Algorithmen und Programmierung 3, WS 2003/2004 — 2. Übungsblatt

Abgabe bis Donnerstag, 6. November 2003

- 10. (4 Punkte) Was passiert bei Sortieren durch Einfügen, wenn die gegebene Folge bereits (a) aufsteigend oder (b) absteigend sortiert ist? (c) Was passiert, wenn alle Elemente gleich sind? Ist es möglich, dass man bloß O(n) Zeit benötigt?
- 11. (2 Punkte) Beantworten Sie die vorige Frage für Sortieren durch Auswahl.
- 12. (0 Punkte) Nehmen wir an, dass die Eingabefolge fast sortiert ist. Das heißt, dass jedes Element in der Ausgangsreihenfolge höchstens k Stellen von der endgültigen Position in der sortierten Reihenfolge entfernt ist. Geben Sie eine Schranke für die Laufzeit von Sortieren durch Einfügen in Abhängigkeit von n und k an.
- 13. (0 Punkte) Nehmen wir an, wir haben ein Liste mit n sortierten Elementen, gefolgt von k Elementen in beliebiger Reihenfolge. Welchens Sortierverfahren empfehlen Sie zum Sortieren der Gesamtliste für
 - (a) $k = \Theta(1)$,
 - (b) $k = \Theta(\log n)$,
 - (c) $k = \Theta(\sqrt{n})$?
- 14. (0 Punkte) Wie kann man Sortieren durch Einfügen so anpassen, dass es für Folgen, die absteigend oder fast absteigend sortiert sind, möglichst schnell läuft?
- 15. (3 Punkte) Geben Sie alle möglichen topologischen Sortierungen für folgende Eingabe an: n = 6 und $\{(6,4),(3,5),(4,1),(3,4),(5,4),(2,1),(2,6),(3,6)\}.$
- 16. (0 Punkte) Was passiert beim in der Vorlesung angegebenen Algorithmus für *Topologisches Sortieren*, wenn ein Paar (i, j) in der Eingabe mehrfach auftritt? Was passiert, wenn ein Paar (i, i) auftritt?
- 17. (0 Punkte) Untersuchen Sie verschiedene Möglichkeiten, wie man die Liste der freien Elemente beim topologischen Sortieren verwalten kann, im Hinblick auf ihre Effizienz. Kann man auf diese Liste auch gänzlich verzichten?
 - Welche Variablen oder Felder im Programm aus der Vorlesung¹ könnte man ohne Nachteil einsparen?
- 18. (5 Punkte) Erweitern Sie den Algorithmus zum topologischen Sortieren aus der Vorlesung, sodass bei der Existenz eines Kreises nicht einfach mit einer Meldung abgebrochen wird, sondern auch ein Kreis (als "Beweis") ausgegeben wird.
 - Beschreiben Sie Ihren erweiterten Algorithmus auf der Ebene von Pseudo-Code. (Zum Beispiel können Sie eine Schleife "für alle Elemente x..." schreiben.)
 - Erklären Sie Ihren Algorithmus in Worten, ohne notwendigerweise auf Details der Implementierung einzugehen. (Sie müssen nur das erklären, was gegenüber dem ursprünglichen Algorithms neu ist. Ein Korrektheitsbeweis ist nicht verlangt.)
- 19. (6 Punkte) Schreiben Sie ein Java-Programm für die vorige Aufgabe. Sie können das Programm aus der Vorlesung¹ erweitern.
 - Ihr Programm sollte nicht mehr als O(m+n) zusätzliche Zeit und nicht mehr als O(n) zusätzlichen Speicher brauchen.

¹ http://www.inf.fu-berlin.de/~rote/Lere/2003-04-WS/Algorithmen+Programmierung3/TopoSort.java

Algorithmen und Programmierung 3, WS 2003/2004 — 3. Übungsblatt

Abgabe bis Donnerstag, 13. November 2003

- 20. (2 Punkte) Beweisen Sie, dass man zum Finden eines Elementes in einer sortierten Liste mit n Elementen mindestens $\Omega(\log n)$ Vergleiche benötigt.
- 21. (a) (3 Punkte) Schreiben Sie eine Schnittstelle (interface) oder eine abstrakte Klasse PWSchlange für eine Prioritätswarteschlange, die mindestens die beiden Methoden entferneMin und einfügen enthält. Die Prioritätswarteschlange soll Objekte vom Typ Comparable verwalten.
 - (b) (3 Punkte) Schreiben Sie eine Klasse Halde, die eine PWSchlange implementiert beziehungsweise erweitert.
- 22. (12 Punkte) Simulation einer Warteschlange in Java.

In einer Unfallambulanz müssen sich die ankommenden Patienten zunächst anmelden. Danach werden Sie in der Reihenfolge der Anmeldung von einer der n=2 diensthabenden Ärztinnen befragt und untersucht. Gegebenfalls wird ein Röntgenbild angefertigt, und anschließend werden die Patienten behandelt.

Die Ankunft der Patienten ist ein Poisson-Prozess mit Rate $\lambda=2\,\mathrm{h}^{-1}$. Das heißt, dass der Abstand von der Ankunft eines Patienten bis zur Ankunft des nächsten Patienten exponentialverteilt mit dem Mittelwert $1/\lambda=30$ Minuten ist. Eine exponentialverteilte Zufallsvariable mit Mittelwert μ kann man mit der Formel $-\mu*\mathrm{Math.log}(\mathrm{Math.random}())$ erzeugen. Die Zeit, die zur Anmeldung nötig ist, soll vernachlässigt werden. Die Dauer der ersten Untersuchung ist gleichverteilt im Intervall $[a \dots b]$ mit $a=5\,\mathrm{min}$ und $b=20\,\mathrm{min}$. Eine solche gleichverteilte Zufallsvariable kann man mit der Formel $a+(b-a)*\mathrm{Math.random}()$ erzeugen. Anschließend ist mit Wahrscheinlichkeit p=0,15 die Behandlung beendet, und der Patient wird entlassen. Andernfalls wird der Patient zum Röntgen geschickt. Die Patienten werden dort in der Reihenfolge ihrer Ankunft an der Röntgenstation drangenommen. Die Zeit zur Erstellung eines Röntgenbildes ist gleichverteilt im Intervall $[a \dots b]$ mit $a=5\,\mathrm{min}$ und $b=10\,\mathrm{min}$ (unabhängig von der Dauer der Untersuchung). Die anschließende Behandlung ist wieder eine unabhängige Zufallsvariable im Intervall $[a \dots b]$ mit $a=10\,\mathrm{min}$ und $b=30\,\mathrm{min}$.

Untersuchen Sie nun folgende Varianten:

- (a) Jeder neue Patient wird der ersten freiwerdenden Ärztin zugeteilt. Nach dem Fertigstellen des Röntgenbildes muss der Patient von derselben Ärztin behandelt werden. Wenn eine Ärztin frei wird, nimmt sie als nächstes bevorzugt einen Patienten an, der von der Röntgenabteilung zurückkommt.
- (b) Wie oben, aber die Patienten, die vom Röntgen zurückkommen, reihen sich in dieselbe Schlange ein wie die neuen Patienten.

Simulieren Sie diese Schlange von 7:00 bis 11:00 Uhr eines Tages. (Um 11:00 Uhr wird die Ambulanz geschlossen; es werden keine weiteren Patienten mehr angenommen, aber alle Patienten, die sich schon angemeldet haben, werden noch behandelt.)

Bestimmen Sie für jede Variante die durchschnittliche Wartezeit eines Patienten, die maximale Wartezeit, und die Gesamtzeit, wie lange die Ärztinnen nichts zu tun hatten (von 7:00 Uhr bis zur Behandlung des jeweils letzten Patienten). Führen Sie je drei unabhängige Simulationsläufe durch.

Schreiben Sie Ihr Programm so, dass es möglichst leicht zu ändern oder zu erweitern ist (zum Beispiel für unterschiedliche Werte von λ , p und n). Verwenden Sie ein Objekt vom Typ PWSchlange aus der vorigen Aufgabe zur Verwaltung der nächsten Ereignisse.

Stellen Sie die Hierarchie aller Klassen und Schnittstellen, die Sie definiert haben, dar.

¹siehe das Programm aus der Vorlesung:

Algorithmen und Programmierung 3, WS 2003/2004 — 4. Übungsblatt

Abgabe bis Donnerstag, 20. November 2003

- 23. (15 Punkte) Eine hash-Funktion zum Speichern ungeordneter Paare. Finden Sie n ganze Zahlen t_1, \ldots, t_n , sodass alle Summen $t_i + t_j$ für $1 \le i < j \le n$ verschieden sind und in einem möglichst kleinen Intervall $\{a, a+1, \ldots, b\}$ enthalten sind, für n = 5, 6, 7, 8, 9, 10.
- 24. (3 Punkte) Speichern ungeordneter Paare in einem Array.
 - (a) (0 Punkte) Wie kann man die Lösung der vorigen Aufgabe dazu verwenden, für eine feste Liste von n Objekten die Paare, die man aus je zwei dieser Objekte bilden kann, möglichst kompakt zu verwalten und zu speichern (wie in einer Hash-Tabelle), sodass man in konstanter Zeit auf jedes Paar $\{u, v\}$ zugreifen kann, wenn man u und v kennt?
 - (b) (3 Punkte) Wie kann man dieses Problem auf andere Art mit einem Array der (optimalen) Länge n(n+1)/2 lösen?
- 25. (0 Punkte) Bestimmen des doppelten Elementes. In einem Array a_0, a_1, \ldots, a_n sind ganzzahlige Werte zwischen 1 und n gespeichert, und zwar kommt jede Zahl mindestens einmal vor. Daraus folgt, dass es genau eine Zahl geben

zwar kommt jede Zahl mindestens einmal vor. Daraus folgt, dass es genau eine Zahl geben muss, die doppelt vorkommt. Schreiben Sie ein Programm, das diese Zahl bestimmt. Das Programm soll lineare Laufzeit haben, auf das Array a nur lesend zugreifen, und nur konstanten zusätzlichen Speicher benötigen.¹

- 26. (0 Punkte) Lösen Sie Aufgabe 23 für geordnete Paare: Finden Sie 2n ganze Zahlen s_1, \ldots, s_n und t_1, \ldots, t_n sodass alle Summen $s_i + t_j$ für $1 \le i, j \le n$ verschieden sind und in einem möglichst kleinen Intervall $\{a, a+1, \ldots, b\}$ enthalten sind.
- 27. Zusatzaufgabe (3 Zusatzpunkte). Finden Sie eine Formel für t_i in Aufgabe 23, die das Problem für allgemeines n löst (nicht unbedingt optimal in dem Sinn, dass das enthaltende Intervall kleinstmöglich ist). Analysieren Sie die Länge des enthaltenden Intervalls bei Ihrer Methode. (Für die beste abgegebene Formel gibt es bis zu 10 weitere Zusatzpunkte.) (Die gleiche Frage kann man natürlich auch für die geordneten Paare aus Aufgabe 26 stellen.)
- 28. (5 Punkte) Entfernen Sie die Endrekursion aus der Methode zugroß im Programm zur Verwaltung einer Halde. 2

¹Diese Aufgabe dient nur zur Unterhaltung und hat mit dem Stoff der Vorlesung nichts zu tun. Wenn Sie das Rätsel aus einer anderen Quelle bereits kennen, dann würde mich sehr interessieren, woher.

²Siehe Aufgabe 21 und das Heapsort-Programm aus der Vorlesung:

http://www.inf.fu-berlin.de/~rote/Lere/2003-04-WS/Algorithmen+Programmierung3/heapsort.java

Algorithmen und Programmierung 3, WS 2003/2004 — 5. Übungsblatt

Abgabe bis Donnerstag, 27. November 2003

- 29. (a) (0 Punkte) In einem vollen binären Baum hat jeder innere Knoten zwei Kinder. Man kann einen beliebigen Binärbaum als vollen Binärbaum darstellen, indem man für jedes fehlende Kind eines Knotens ein neues Blatt (einen externen Knoten) einsetzt. Alle ursprünglichen Knoten werden zu inneren Knoten, und die Blätter repräsentieren die null-Zeiger im ursprünglichen Baum.
 - Beweisen Sie, dass in ein voller binärer Baum mit n Blättern n-1 innere Knoten hat.
 - (b) (4 Punkte) Beweisen Sie, dass in einem vollen binären Baum mit n Blättern auf Tiefe l_1, \ldots, l_n die folgende Gleichung gilt:

$$\sum_{i=1}^{n} 2^{-l_i} = 1$$

- (c) (0 Punkte) Für jede Folge l_1, \ldots, l_n ganzer Zahlen, die obige Gleichung erfüllt, gibt es einen vollen binären Baum mit n Blättern auf Tiefe l_1, \ldots, l_n .
- 30. (0 Punkte) In einem a-b-Baum speichert ein Knoten P mit k Kindern k-1 Schlüssel v_1, \ldots, v_{k-1} , wobei v_i der kleinste Schlüssel im (i+1)-ten Teilbaum ist. Beweisen Sie, dass jeder Schlüssel fast genau einmal gespeichert wird. (Mit welcher Ausnahme?)
- 31. (a) (0 Punkte) Nehmen wir an, dass jeder innere Knoten genau 2 Kinder hat. Was können Sie aus der vorigen Aufgabe über die Beziehung zwischen der Anzahl der inneren Knoten und der Anzahl der Blätter schließen?
 - (b) (0 Punkte) Welche Beziehung besteht im allgemeinen Fall (bei beliebigen Knotengraden) zwischen der Anzahl der inneren Knoten, der Anzahl der Blätter, und der Summe der Grade (Anzahlen der Kinder) der inneren Knoten? Gilt diese Beziehung auch für Bäume, die keine a-b-Bäume sind, wo also die Blätter auf verschiedenen Ebenen sein können?
 - Man kann die Aussage auf mehrere verschiedene Arten beweisen.
- 32. (0 Punkte) Konstruieren Sie für jede Höhe h einen 2-3-Baum mit Höhe h, bei dem man einen neues Element einfügen kann, sodass man den gesamten Weg zur Wurzel durchlaufen muss und sich die Höhe um 1 erhöht, und beim anschließenden Entfernen dieses Elementes der ursprünglich Zustand wiederhergestellt wird. (Bei 2-4-Bäumen kann das nicht passieren.)
- 33. (4 Punkte) Geben Sie ein Beispiel eines 2-3-Baums mit Höhe h=6 an, bei dem man ein Element entfernen kann, sodass man mit dem Umbau des Baumes in Tiefe 4 aufhören kann, aber dennoch den gesamten Weg zur Wurzel durchlaufen muss, um die Schlüssel richtigzustellen. (Sie müssen nicht den gesamten Baum aufzeichnen, sondern nur die betroffenen Teile.)
 - (Zusatzfrage, 0 Punkte.) Warum kann so etwas beim Einfügen nicht passieren?
- 34. (0 Punkte) Um die Schwierigkeit, die in der vorigen Aufgabe behandelt wurde, zu umgehen, kann man die vierte Bedingung bei der Definition von a-b-Bäumen abschwächen:

In einem a-b-Baum speichert ein innerer Knoten P mit k Kindern k-1 Schlüssel v_1, \ldots, v_{k-1} , wobei v_i größer als alle Schlüssel im i-ten Teilbaum und kleiner oder gleich allen Schlüsseln im (i+1)-ten Teilbaum ist.

Wie muss man das Suchen, Einfügen, und Entfernen an diese veränderten Definition anpassen?

35. (12 Punkte) Implementieren Sie 2-3-Bäume zum Speichern von Zahlen in Java oder Haskell.

Algorithmen und Programmierung 3, WS 2003/2004 — 6. Übungsblatt

Abgabe bis Donnerstag, 11. Dezember 2003

- 36. (7 Punkte) Wir wollen eine Variante von a-b-Bäumen konstruieren, bei der weniger Speicher verschwendet wird. Es sei b = 100. Wie groß kann man a wählen, wenn man
 - beim Entfernen bis zu zwei Geschwisterknoten zum Ausborgen in Betracht zieht, und
 - beim Einfügen einen Geschwisterknoten zu Hilfe nimmt, falls dieser den Überlauf aufnehmen kann?
- 37. (9 Punkte) Rot-Schwarz-Bäume sind binäre Bäume mit folgenden Eigenschaften:¹
 - (a) Jeder innere Knoten hat zwei Kinder.
 - (b) Jeder Knoten ist entweder als rot oder als schwarz gekennzeichnet.
 - (c) Die Wurzel und alle Blätter sind schwarz.
 - (d) Die Kinder eines roten Knotens sind schwarz.
 - (e) Ein schwarzer Knoten kann höchstens ein rotes Kind haben.
 - (f) Alle Wege von der Wurzel zu den Blättern enthalten gleich viele schwarzen Knoten.

Zeichnen Sie Rot-Schwarz-Bäume mit 5, 7 und 12 Blättern. Zeigen Sie, dass man aus jedem Rot-Schwarz-Baum einen 2-3-Baum machen kann, und umgekehrt.

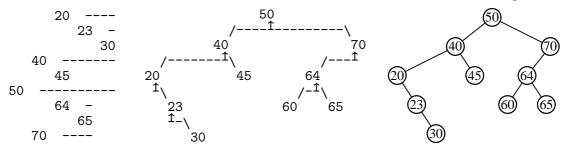
38. (4 Punkte) Es sei A_h die kleinstmögliche Anzahl von Blättern eines AVL-Baumes mit Höhe h. Beweisen Sie, dass die Zahlen A_h die Fibonacci-Zahlen sind.

Was können Sie daraus für die kleinstmögliche Anzahl n(h) von inneren Knoten eines AVL-Baumes mit Höhe h schließen?

39. (0 Punkte) Wir wollen die Algorithmen zum Suchen, Einfügen und Löschen in einem binären Suchbaum so erweitern, dass man jederzeit auch das *i*-größte Element finden kann, und dass alle Operationen Zeit proportional zur Höhe des Baumes benötigen.

Man könnte das lösen, indem man zu jedem Knoten den Rang speichert, das heißt, die Position, die dieser Schlüssel in der sortierten Reihenfolge einnimmt. Warum ist dies keine gute Idee?

40. (0 Punkte) Schreiben Sie ein Programm, das einen (nicht zu großen) binären Baum zweidimensional in übersichtlicher und schön lesbarer Form ausdruckt. Drei Vorschläge²:



¹Es gibt verschiedene andere Versionen von Rot-Schwarz-Bäumen, bei denen zum Beispiel auch die inneren Knoten Werte enthalten (im Gegensatz zu den 2-3-Bäumen, wie sie in der Vorlesung besprochen wurden).

http://www.inf.fu-berlin.de/~rote/Lere/2003-04-WS/Algorithmen+Programmierung3/baum.eps. Ihr Programm kann sich an dieser Datei als Beispiel orientieren.

Eine Implementierung von Rot-Schwarz-Bäumen kann man in der Klasse TreeMap im Paket java.util finden, siehe http://www.inf.fu-berlin.de/~rote/Lere/2003-04-WS/Algorithmen+Programmierung3/TreeMap.java.

²Das dritte Beispiel ist als PostScript-Datei erstellt worden, siehe

- 41. (7 Punkte) Versuchen Sie, den Huffman-Algorithmus zur Konstruktion eines optimalen Kodes auf ein ternäres Kodealphabet (ein Alphabet mit drei Buchstaben) zu verallgemeinern. Konstruieren Sie einen optimalen ternären Kode für n=8 Quellsymbole mit relativen Häufigkeiten $(p_1,\ldots,p_8)=(\frac{2}{56},\frac{3}{56},\frac{4}{56},\frac{6}{56},\frac{7}{56},\frac{10}{56},\frac{11}{56},\frac{13}{56}).$
- 42. (7 Punkte) Eine stückweise konstante Funktionen $f:(u,v]\to\mathbb{R}$ ist durch eine zusammenhängende Folge von Intervallen mit entsprechenden Werten f(x)=a gegeben, z. B.

$$f(x) = \begin{cases} 1, & \text{für } -1 < x \le 0 \\ -1, & \text{für } 0 < x \le 2 \\ 6, & \text{für } 2 < x \le 4 \end{cases}$$

Spezifizieren Sie eine Datenstruktur zur Darstellung solcher Funktionen. Nehmen Sie an, dass alle Intervalle halboffen sind, und zwar links offen und rechts abgeschlossen, wie im obigen Beispiel. Die Datenstruktur soll zumindest folgende Operationen erlauben:

- (a) Berechnung des Wertes einer solche Funktion f(x) an einer gegebenen Stelle x. Falls x nicht im Definitionsbereich liegt, soll der Wert 0 zurückgegeben werden.
- (b) Addition und Multiplikation zweier stückweise konstanter Funktionen. Entscheiden Sie selbst, was der Definitionsbereich von f+g beziehungsweise fg sein soll.
- 43. (6 Punkte) Leiten Sie aus der algebraischen Spezifikation für Mengen

$$istenthalten(x, leer) = falsch$$
 (1)

$$istenthalten(x, einfüge(x, M)) = wahr$$
 (2)

$$istenthalten(x, einfüge(y, M)) = istenthalten(x, M), \quad \text{für } x \neq y$$
 (3)

$$istenthalten(x, l\"{o}sche(x, M)) = falsch$$
 (4)

$$istenthalten(x, lösche(x, M)) = jatsett$$

 $istenthalten(x, lösche(y, M)) = istenthalten(x, M),$ für $x \neq y$ (5)

durch Umformungen folgende Identität her:

istenthalten(u, einfüge(x, lösche(x, M))) = istenthalten(u, einfüge(x, M)).

Geben Sie dabei in jedem Beweisschritt die Nummer der Gleichung an, die Sie verwenden.

44. (0 Punkte) Gegeben sei eine Funktion $f: \{0, \dots, n-1\} \to \{0, \dots, n-1\}$, die einen großen (aber endlichen) Bereich in sich selbst abbildet, zum Beispiel

$$f(x) = x^3 + 2x^2 + 7 \mod 10^6$$
.

Wir betrachten die Folge $a_0 = 0$, $a_{i+1} = f(a_i)$. Da der Bereich endlich ist, muss die Folge Wiederholungen enthalten. Wie kann man in O(n) Zeit mit konstantem Speicher ein doppeltes Element finden? Wie kann man das kleinste i und das kleinste j finden, sodass $a_i = a_{i+j}$ ist?¹

45. (0 Punkte) Der Weihnachtsmann ist mit seinem Rentierschlitten in die Mitte eines kreisförmigen Sees mit Umfang 100 m gefallen. Am Rande des Sees befindes sich ein Grinch, der nicht schwimmen, aber 4,5-mal so schnell laufen kann wie die Rentiere den Schlitten im Wasser ziehen können. Auf dem Land ist der Rentierschlitten jedoch schneller als der Grinch. Kann der Weihnachtsmann die Rentiere so lenken, dass die Weihnachtsgeschenke nicht dem Grinch in die Hände fallen und er die Pakete noch rechtzeitig abliefern kann? Wenn ja, welchen Mindestabstand vom Grinch kann der Weihnachtsmann erreichen, wenn er das rettende Land erreicht? Der Einfachheit halber stelle man sich Grinch und Rentierschlitten jeweils punktförmig vor.²

¹Diese Aufgabe dient nur zur Erbauung und hat mit dem Stoff der Vorlesung nicht direkt etwas zu tun. Lösungshinweise (für alle, die nicht selbst daraufkommen wollen) finden Sie auf der Netzseite der Vorlesung.

²Mit etwas Kreativität kann man diese Aufgabe auch mit Hilfe eines Computers lösen. Die weihnachtliche Einkleidung dieses Rätsels habe ich teilweise von http://www.fzt86.de/Adventskalender/ übernommen.

46. (0 Punkte) Beweisen Sie folgende Gleichungen für Listen x und y durch strukturelle Rekursion aus den unten angegebenen Definitionen.

$$x ++ [] = x \tag{1}$$

length
$$(x ++ y) = (length x) + (length y)$$
 (2)

$$length (reverse x) = (length x)$$
 (3)

reverse
$$(x ++ y) = (reverse y) ++ (reverse x)$$
 (4)

reverse (reverse x) = x
$$(5)$$

- 47. (0 Punkte) Beweisen Sie (zum Beispiel durch strukturelle Induktion), dass jeder vollständig balancierten ternäre Baum der Höhe h genau $(3^{h+1}-1)/2$ Knoten enthält. (Jeder innere Knoten hat genau 3 Kinder, und alle Blätter befinden sich auf Tiefe h.)
- 48. (0 Punkte) Ein binärer Suchbaum soll Einträge speichern, die außer dem Schlüssel x_i noch ein "Gewicht" w_i enthalten. Die Algorithmen zum Suchen, Einfügen und Löschen in binären Suchbäumen sollen so erweitert werden, dass man jederzeit zu zwei Werten a und b das Gesamtgewicht aller Einträge finden kann, deren Schlüssel x_i im Intervall $a < x_i \le b$ liegt. Die Laufzeit für alle Operationen soll höchstens proportional zur Höhe des Baumes sein. Beschreiben Sie die Felder, die in den Knoten enthalten sind (zusammen mit einer Erklärung der Bedeutung, sofern sie nicht offensichtlich ist), und schreiben Sie ein Programmstück (Methoden in Java oder Funktionen in Haskell) für die oben beschriebene Intervallabfrage und zum Einfügen eines neuen Elementes.
- 49. (8 Punkte) Spezifizieren Sie den abstrakten Datentyp einer Prioritätswarteschlange, die mindestens die Operationen entferneMin, einfügen und istLeer enthält. Die Prioritätswarteschlange soll $Einträge\ (x_i,a_i)$ enthalten, die einen $Schlüssel\ x_i$ (eine Zahl) und einen $Wert\ a_i$ enthalten. (Entscheiden Sie, wie sie mit gleichen Schlüsseln umgehen wollen.)
- 50. (12 Punkte) Modifizieren Sie das Programm zur Warteschlangensimulation aus Aufgabe 22 vom 3. Übungsblatt, Variante (a) folgendermaßen: Die Ankunftsrate der Patienten ist $\lambda = 5/h$, und es gibt n = 3 Ärztinnen. Es gibt eine zusätzliche Kategorie von Notfallpatienten mit Ankunftsrate $\lambda = 0.5/h$. Bei Ankunft eines Notfallpatienten unterbrechen alle n Ärztinnen ihre augenblickliche Tätigkeit und beschäftigen sich für einen Zeitraum, der gleichverteilt im Intervall [a ... b] mit a = 30 min und b = 40 min ist, mit dem neuen Patienten. Danach wird der Notfallpatient zu einer anderen Abteilung geschickt und verlässt das hier untersuchte System, und die Ärztinnen fahren mit der vorher unterbrochenen Tätigkeit fort. Ein neuer Notfallpatient, der während der Behandlung eines Notfallspatienten eintrifft, kommt dran, wenn diese Behandlung abgeschlossen ist.
- 51. (0 Punkte) Bestimmen des doppelten Elementes.¹ In einem Array a_0, a_1, \ldots, a_n sind ganzzahlige Werte zwischen 1 und n gespeichert. Daraus folgt, dass es mindestens eine Zahl geben muss, die doppelt vorkommt. Schreiben Sie ein Programm, das eine dieser Zahlen bestimmt. Das Programm soll lineare Laufzeit haben, auf das Array a nur lesend zugreifen, und nur konstanten zusätzlichen Speicher benötigen.

¹Diese Aufgabe dient zur Entspannung und hat mit dem Stoff der Vorlesung nichts zu tun. Wenn Sie das Rätsel aus einer anderen Quelle bereits kennen, dann würde mich sehr interessieren, woher.

Algorithmen und Programmierung 3, WS 2003/2004 — 9. Übungsblatt

Abgabe bis Donnerstag, 22. Januar 2004

- 52. (6 Punkte) Erweitern Sie die Spezifikation für den abstrakten Datentype Menge (von ganzen Zahlen) aus der Vorlesung mit den Operationen Einfügen, Entfernen, Elementtest, und Erstellen einer leeren Menge um das Erstellen eines Iterators mit den Operationen next und hasNext (wie im Java-Interface Iterator). Spezifizieren Sie diese Operationen formal.
- 53. (0 Punkte) Erweitern Sie die algebraische Spezifikation von Mengenoperationen aus Aufgabe 43 um die Funktionen *Vereinigung* und *Durchschnitt* (von je zwei Mengen).
- 54. (0 Punkte) Definieren Sie in Haskell einen algebraischen Datentyp Menge a für Mengen von Elementen des Typs a, die wahlweise durch Aufzählen der Elemente oder durch Angabe einer charakteristischen Eigenschaft definiert werden können. Schreiben Sie folgende Funktionen:

```
mengeausListe :: [a] -> Menge a --\{x_1,x_2,\ldots,x_n\} mengefürdiegilt :: (a -> Bool) -> Menge a --\{x\mid f(x)\} mengeDurchschnitt :: Menge a -> Menge a -> Menge a mengeVereinigung :: Menge a -> Menge a -> Menge a mengeElementvon :: a -> Menge a -> Bool --x\in M
```

- 55. (0 Punkte) Schreiben Sie eine Spezifikation für Intervallarithmetik. Intervallarithmetik liefert verlässliche Ergebnisse, selbst wenn die Eingabedaten mit Messfehlern behaftet sind und zwischendurch Rechenfehler auftreten. Statt mit Zahlen rechnet man mit Intervallen [a,b], die durch die arithmetischen Grundoperationen, $+,-,\times$ und: miteinander verknüpft und miteinander verglichen werden können (durch $<,>,\leq$, usw.) Das Ergebnis ist wieder eine Intervall.
- 56. (14 Punkte) Graphenalgorithmen in der künstlichen Intelligenz. Die folgende Aufgabe findet sich in einer Sammlung von Rechenaufgaben mit dem Titel *Propositiones ad acuendos juvenes* (Aufgaben zur Schärfung des Geistes der Jugend), die wahrscheinlich um das Jahr 800 am Hof Karls des Großen entstanden ist und Alkuin von York zugeschrieben wird: Die Aufgabe vom Wolf, der Ziege und dem Kohlkopf. Ein Mann musste einen Wolf, eine Ziege und einen Kohlkopf über einen Fluss übersetzen; er konnte aber nur ein Boot auftreiben, das gerade zwei von ihnen tragen konnte. Wie konnte er alles unversehrt hinüberbringen?¹
 - (a) Modellieren Sie diese Aufgabe durch einen Graphen. Die Knoten sollen den möglichen Zuständen des "Systems" Mann–Ziege–Wolf–Kohlkopf–Boot–Fluss entsprechen, und die Kanten den erlaubten Übergängen: Zum Beispiel würde der Wolf die Ziege oder die Ziege den Kohlkopf fressen, wenn sie ohne Aufsichtig gelassen würden; der Mann, der das Boot rudert, kann nur einen Gegenstand oder ein Tier zusätzlich mitnehmen. Eine Lösung soll einem Weg in diesem Graphen entsprechen.
 - (b) Schreiben Sie ein Programm, das diesen Graphen erstellt. Wie viele Knoten und wie viele Kanten hat der Graph? Schreiben Sie eine Programm, das mit Breitensuche einen Weg in diesem Graphen findet, der einer Lösung des Problems entspricht.
 - (c) (0 Punkte) Ist die Lösung eindeutig? Wie kann man feststellen, ob es in einem Graphen nur einen einzigen Weg von s nach t gibt?

¹PROPOSITIO DE LUPO ET CAPRA ET FASCICULO CAULI. Homo quidam debebat ultra fluvium transferre lupum et capram et fasciculum cauli, et non potuit aliam navem invenire, nisi quae duos tantum ex ipsis ferre valebat. Praeceptum itaque ei fuerat, ut omnia haec ultra omnino illaesa transferret. Dicat, qui potest, quomodo eos illaesos ultra transferre potuit. SOLUTIO. Simili namque tenore ducerem prius capram et dimitterem foris lupum et caulum. Tum deinde venirem lupumque ultra transferrem, lupoque foras misso rursus capram navi receptam ultra reducerem, capraque foras missa caulum transveherem ultra, atque iterum remigassem, capramque assumptam ultra duxissem. Sicque faciente facta erit remigatio salubris absque voragine lacerationis.

Algorithmen und Programmierung 3, WS 2003/2004 — 10. Übungsblatt

Abgabe bis Donnerstag, 29. Januar 2004

- 57. (0 Punkte) Eine Multimenge (engl. multiset oder bag) ist etwas Ähnliches wie eine Menge, außer dass Elemente auch mehrfach vorkommen dürfen. Die Reihenfolge spielt keine Rolle. Zum Beispiel ist $\{a,b\} \neq \{a,a,b\} = \{a,b,a\} \neq \{a,a,a,b\}$, für $a \neq b$.
 - (a) Schreiben Sie eine Spezifikation für einen abstrakten Datentyp von Multimengen über der Grundmenge der ganzen Zahlen (int), die folgende Operationen unterstützt: Erzeugen einer leeren Multimenge; Einfügen und Streichen eines Elementes (dabei wird die Vielfachheit jeweils um 1 erhöht beziehungsweise erniedrigt); Feststellen der Vielfachkeit eines Elementes.
 - (b) Geben Sie eine konkrete Darstellung (etwa als Java-Klasse Multimenge) an. Beschreiben Sie die Abstraktionsfunktion, sowie die Invarianten, die die gültigen Darstellungen charakterisieren. Geben Sie auch die Vorbedingungen für alle Operationen an. (Sie dürfen dabei vernünftige Einschränkungen für die verfügbaren Operationen machen.)
 - (c) Implementieren Sie die Operationen. Sie können von der in der Vorlesung besprochenen Implementierung für Mengen mit bis zu 100 Elementen¹ ausgehen.
 - (d) Beweisen Sie die Korrektheit Ihrer Implementierung.
- 58. (11 Punkte) Betrachten wir die Knoten v eines Graphen in der Reihenfolge, wie der rekursive Aufruf T(v) bei der Tiefensuche beendet wird. Das heißt, wir fügen am Ende des Programms T(v) folgende Zeile ein:

```
num2++; T2Nummer[v] := num2;
```

- (a) (4 Punkte) Beweisen Sie: Wenn es eine Kante (u, v) mit T2Nummer[v] > T2Nummer[u] gibt, dann enthält der Graph einen Kreis.
- (b) (4 Punkte) Wie kann man diesen Kreis bestimmen? Schreiben Sie ein Programmstück für diese Aufgabe.
- (c) (3 Punkte) Verwenden Sie die Tatsache aus Aufgabe (a), um aus der T2Nummerierung eines kreisfreien Graphen eine topologische Sortierung zu berechnen, sofern bei der Tiefensuche alle Knoten besucht werden. Beschreiben Sie den Algorithmus in Worten.
- 59. (0 Punkte) Bei der Tiefensuche werden möglicherweise nicht alle Knoten des Graphen besucht. Was muss man tun, damit das Verfahren der vorigen Aufgabe immer funktioniert?
- 60. (0 Punkte) Zeigen Sie, wie man Tiefensuche ohne Rekursion sehr einfach mit einem Stapel für noch zu bearbeitende *Kanten* implementieren kann.
- 61. (9 Punkte) Betrachten Sie das folgende einfache Haskell-Programm:

```
camba [ ] _ = True
camba _ [ ] = False
camba (x:xs) (y:ys) = (x==y) && camba xs ys
klungo [ ] _ = True
klungo _ [ ] = False
klungo xs (y:ys) = camba xs (y:ys) || klungo xs ys
```

- (a) (1 Punkt) Beschreiben Sie in Worten, was diese beiden Funktionen berechnen.
- (b) (4 Punkte) Spezifizieren Sie die beiden Funktionen mathematisch (modellierend).
- (c) (4 Punkte) Wie viele Vergleiche der Form x==y werden bei den folgenden Eingaben durchgeführt?

```
klungo "aaaab" "aaaaaaaaaa" klungo "abababc" "bababababa"
```

 $^{^1} h ttp://www.inf.fu-berlin.de/~rote/Lere/2003-04-WS/Algorithmen+Programmierung3/Menge.javaa.pdf$

Algorithmen und Programmierung 3, WS 2003/2004 — 11. Übungsblatt

Abgabe bis Donnerstag, 5. Februar 2004

- 62. (0 Punkte) Wie kann man auf einfache Art überprüfen, ob ein Graph, der mit Adjazenzlisten gespeichert ist, ein einfacher Graph ist (keine mehrfachen Kanten enthält)? Versuchen Sie, mit O(m+n) Zeit und mit möglichst wenig zusätzlichem Speicher auszukommen.
- 63. (0 Punkte) Wenden die den Algorithms von Dijkstra zur Bestimmung der kürzesten Wege im folgenden gerichteten Graphen an: $V = \{1, 2, ..., 6\}$, der Graph ist vollständig, das heißt, von jedem Knoten gibt es eine Kante zu jedem anderen Knoten, und die Kantenlängen sind $c_{ij} = 3^{j-i}$ für i < j und $c_{ij} = i j$ für i > j. Der Startknoten ist der Knoten 2.
- 64. (6 Punkte) Konstruieren Sie einen Graphen, der auch Kanten mit negativer Länge enthält, und bei dem der Algorithmus von Dijkstra die kürzesten Wege nicht richtig bestimmt. Der Graph soll keine Kreise negativer Länge enthalten.
- 65. (0 Punkte) Denken Sie sich einen gierigen Algorithmus aus, der versucht, in einem Graphen einen kurzen Weg von einem Startknoten s zu einem Zielknoten t zu finden. Welche Problem können dabei auftreten?
- 66. (9 Punkte) Betrachten Sie die Variante einer Halde, bei der jeder innere Knoten $d \geq 2$ Kinder hat. (Für d=2 ergeben sich die gewöhnlichen Halden aus der Vorlesung.) Wie verändert sich die Laufzeit für die Methoden zugroß beziehungsweise zuklein in Abhängigkeit von d? Wie wirkt sich das auf die Operationen einfügen, entferne Min und verkleinere Schlüssel aus? Wenn man eine solche "d-Halde" für den Algorithmus von Dijkstra verwendet, wie muss man dann d in Abhängigkeit von m und n wählen, dass man die optimale asymptotische Laufzeit erhält? Welche Laufzeit ergibt sich dann für das kürzeste-Wege-Problem? Was ergibt sich in den Extremfällen $m = \Theta(n)$ und $m = \Theta(n^2)$?
- 67. (0 Punkte) Zeigen Sie, dass der folgende Algorithmus von Prim einen kürzesten Spannbaum findet:

```
G := \{s\}; \ Abstand[s] := 0;
N := V - \{s\};
\mathbf{while} \ G \neq \emptyset \ \mathbf{do}
\text{entferne einen Knoten } v \text{ mit kleinstem } Abstand[v] \text{ aus } G;
\text{füge } v \text{ in } B \text{ ein};
\text{für alle Kanten } (v, w) \in E, \text{ die von } v \text{ ausgehen, } \mathbf{do}
\text{if } w \in N \text{ or } (w \in G \text{ and } Abstand[w] > c_{vw})
\text{then } G := G \cup \{w\}; \ N := N - \{w\};
Abstand[w] := c_{vw};
Vorgänger[w] := v;
```

Was ist der Unterschied dieses Algorithms zum Algorithmus von Dijkstra für kürzeste Wege?

- - (0 Punkte) Wie gehen die beiden Folgen weiter?
- 69. (freiwillige Zusatzaufgabe, 0 Punkte) Wie kann man n Brüche, deren Zähler und Nenner zwischen 1 und n liegen, in linearer Zeit sortieren?

Algorithmen und Programmierung 3, WS 2003/2004 — 12. Übungsblatt

Freiwillige Abgabe bis Donnerstag, 12. Februar 2004

- 70. (7 Punkte) Ein Iterator für Mengen.
 - (a) (4 Punkte) Implementieren Sie den *Iterator*, den Sie in Aufgabe 52 spezifiziert haben. Sie können von der in der Vorlesung besprochenen Implementierung für Mengen mit bis zu 100 Elementen¹ ausgehen.
 - (b) (3 Punkte) Geben Sie die Abstraktionsfunktion an.
 - (c) (5 Zusatzpunkte) Beweisen Sie die Korrektheit Ihrer Implementierung.
- 71. (3 Punkte) Gegeben sei ein vollständiger² Graph G=(V,E), dessen Knoten V Punkte in der Ebene sind, und wo die Kantenlängen den (Euklidischen) Abständen zwischen den Punkten entsprechen. Beweisen Sie:
 - (a) (3 Punkte) In einem kürzesten spannenden Baum können sich nie zwei Kanten kreuzen.
 - (b) (5 Zusatzpunkte) In einem kürzesten-Wege-Baum (mit einem beliebigen Startknoten) können sich nie zwei Kanten kreuzen.

Bleiben diese Aussagen auch gültig, wenn der Graph nicht vollständig ist?

- 72. (0 Punkte) Für zwei Wörter x und y der Länge n ist x eine zyklische Verschiebung von y, wenn man x = ab und y = ba für zwei Wörter a und b schreiben kann. Wie kann man in linearer Zeit feststellen, ob x eine zyklische Verschiebung von y ist? (Man kann diese Frage auf das Teilwortproblem zurückführen.)
- 73. (5 Punkte) Wie kann man den Algorithmus von Knuth, Morris und Pratt so erweitern, dass er alle Vorkommen eines Musters x in einem Text w findet? (Man benötigt eventuell den Wert h_{m+1} der Verschiebefunktion, für m = |x|.)
- 74. (0 Punkte) Die verbesserte Verschiebefunktion zum Suchen von Zeichenketten ist folgendermaßen definiert:

$$h[i] = \max \{ k \mid 1 \le k < i, \ p_1 \dots p_{k-1} = p_{i-k+1} \dots p_{i-1} \text{ und } p_k \ne p_i \} \cup \{0\}$$

- (a) Berechnen Sie die verbesserte Verschiebefunktion der Muster aus Aufgabe 68.
- (b) Zeigen Sie, dass beim Suchen mit der verbesserten Verschiebefunktion auf keinen Fall mehr Vergleiche der Form $p_i = s_j$ durchgeführt werden als mit der ursprünglichen Verschiebefunktion (ohne die Bedingung " $p_k \neq p_i$ "). Gilt dies auch, wenn man den Aufwand an Vergleichen beim Berechnen der Verschiebefunktion mit berücksichtigt? Finden Sie ein Beispiel, bei dem tatsächlich weniger Vergleiche notwendig sind.
- (c) Schreiben Sie einen Algorithmus zum Berechnen der verbesserten Verschiebefunktion.
- 75. (0 Punkte) Wie kann man aus der Verschiebefunktion des Wortes xw\$ berechnen, ob x ein Teilwort von y ist? (Hier ist \$ irgendein Buchstabe.)
- 76. (0 Punkte) Welche Bedeutung hat die Flächenformel $\frac{1}{2} \cdot |\sum_{i} (x_i y_{i+1} y_i x_{i+1})|$, wenn die Folge der Punkte $(x_i; y_i)$ gar kein Polygon beschreibt, weil sich zum Beispiel Kanten kreuzen?
- 77. (a) (5 Punkte) Berechnen Sie die Fläche des Fünfecks³ mit den Ecken (-1,3; 10000,12), (-0,253; 10000,47), (0,69; 10000,33), (1,529; 10002,12), (-0,783; 10001,05) mit der Formel aus der vorigen Aufgabe. Berechnen Sie auch den Flächeninhalt des um den Vektor (0; -10000) verschobenen Fünfecks. Welches Ergebnis halten Sie für das genauere? Begründen Sie Ihre Antwort.
 - (b) (0 Punkte) Was passiert, wenn man das Fünfeck um den Vektor (10000; -10000) verschiebt? Wie erklären Sie diese Ergebnisse?

 $^{^{1}} http://www.inf.fu-berlin.de/~rote/Lere/2003-04-WS/Algorithmen+Programmierung3/Menge.java$

²Ein Graph ist *vollständig*, wenn zwischen allen Paaren von Knoten eine Kante verläuft.

 $^{^3}$ http://www.inf.fu-berlin.de/~rote/Lere/2003-04-WS/Algorithmen+Programmierung3/5eck

Algorithm	nen un	d Programmieren	3
WS 2003	/2004,	Zwischenklausur	

Matrikelnummer:	
NAME:	

Abgabe bis Dienstag, 16. Dezember 2003

Anleitung: Streichen Sie eine Aufgabe deutlich auf dem Angabeblatt. Diese Aufgabe wird nicht in die Bewertung einbezogen. Wenn Sie selbst keine Aufgabe streichen, wird die erste Aufgabe nicht in die Bewertung einbezogen. Bearbeiten Sie die übrigen drei Aufgaben.

Schreiben Sie jede Aufgabe auf ein getrenntes Blatt. Jede Aufgabe hat 10 Punkte.

1. Ein binärer Suchbaum soll Einträge speichern, die außer dem Schlüssel x_i noch ein "Gewicht" w_i enthalten. Die Algorithmen zum Suchen, Einfügen und Löschen in binären Suchbäumen sollen so erweitert werden, dass man jederzeit zu einem Wert a das Gesamtgewicht aller Einträge finden kann, deren Schlüssel x < a ist.

Die Laufzeit für alle Operationen soll höchstens proportional zur Höhe des Baumes sein. Beschreiben Sie die Felder, die in den Knoten enthalten sind (zusammen mit einer Erklärung der Bedeutung, sofern sie nicht offensichtlich ist), und ein Programmstück (eine oder mehrere Methoden in Java oder Funktionen in Haskell), das die Intervallabfrage durchführt. (Einfügen und Löschen müssen Sie *nicht* programmieren.)

- 2. Programmieren Sie eine *stabile* Variante von Sortieren durch Verschmelzen (*mergesort*) in Java oder Haskell. Erläutern Sie die Stellen im Programm, die für die Stabilität wichtig sind.
- 3. Sortieren durch Zählen:

Das folgende Programmstück soll n verschiedene double-Zahlen sortieren, die in einem Array a[0],..., a[n-1] gespeichert sind, mit Hilfe eines Arrays pos[i], das die Anzahl der Elemente zählt, die kleiner als a[i] sind.

```
int [ ] pos = new int[n];
for (int i=0; i<n; i++) { // Zähle Elemente kleiner als a[i]:
    pos[i] = 0;
    for (int j=0; j<n; j++)
        if (a[j]<a[i]) pos[i]++;
    // pos[i] ist die Position von a[i] in der sortierten Reihenfolge.
}
// In die richtige Reihenfolge umordnen:
for (int i=0; i<n; i++) a[pos[i]] = a[i];</pre>
```

- (a) Was ist der Speicherbedarf und die asymptotische Laufzeit dieses Programmes?
- (b) Warum funktioniert dieses Programm nicht richtig? Geben Sie ein Beispiel an, bei dem das Array a[0], ..., a[n-1] am Ende nicht aufsteigend sortiert ist.
- (c) Stellen Sie das Programm richtig, sodass am Ende die sortierten Zahlen in a[0], ..., a[n-1] stehen, ohne dass die die asymptotische Laufzeitschranke in Aufgabe (a) überschritten wird.
- (d) Was passiert, wenn die Eingabe gleiche Werte enthält? Erstellen Sie eine Variante des Programms, die auch solche Eingaben sortiert.
- 4. Beweisen Sie: Ein binärer Baum mit n Blättern hat mindestens n-1 innere Knoten. (Innere Knoten haben 1 oder 2 Kinder, und Blätter haben keine Kinder.) Sie dürfen nicht einfach die Aussage von Übung 31 über volle binäre Bäume verwenden, aber Sie dürfen die Lösung (den Beweis) dieser Aufgabe anpassen.

Algorithmen und Programmieren	3 Matrikelnumr	ner:
WS 2003/2004, Zwischenklausur	FAMILIENNAME:	
Dienstag, 20. Januar 2004.	Vorname:	

Anleitung: Streichen Sie eine Aufgabe deutlich auf dem Angabeblatt. Diese Aufgabe wird nicht in die Bewertung einbezogen. Wenn Sie selbst keine Aufgabe streichen, wird die erste Aufgabe nicht in die Bewertung einbezogen. Bearbeiten Sie die übrigen drei Aufgaben.

Bearbeiten Sie jede Aufgabe auf einem getrennten Blatt. Jede Aufgabe hat 10 Punkte. Bearbeitungszeit: 90 Minuten

- 1. Man möchte einen binären Baum wie bei einer Halde als array speichern: Die Kinder des Knotens a[i] stehen an den Stellen a[2*i] und a[2*i+1]. Nehmen Sie an, dass die Bäume (im Gegensatz zu einer Halde) nicht ausgeglichen sein müssen. Bestimmen Sie die notwendige Größe des Arrays zum Speichern von n Elementen in Abhängigkeit von n,
 - (a) wenn der Baum die Höhe $2\lceil \log n \rceil$ hat,
 - (b) im schlimmsten Fall,
 - (c) wenn die Höhe des Baumes nur um 2 größer als die kleinstmögliche Höhe ist.

Geben Sie außerdem an, in welchem dieser Fälle man mit O(n) Speicher auskommt.

2. Eliminieren Sie die Endrekursion aus dem folgenden Programmstück, das die Anzahl der übereinstimmenden Elemente in zwei Vektoren a[0], ..., a[n-1] und b[0], ..., b[n-1] zählt. Gehen Sie dabei systematisch Schritt für Schritt vor. Schreiben Sie eine einzige Methode als Ersatz für anz.

```
int anz(int[] a, int[] b, int n) { return anz2(a,b,n,0); }
int anz2(int[] a, int[] b, int n, int s)
{ if(n==0) return s;
  if(a[n-1]==b[n-1]) return anz2(a,b,n-1,s+1);
  return anz2(a,b,n-1,s);
}
```

3. Sortieren: Das folgende Programmstück soll n verschiedene int-Zahlen zwischen 1 und m sortieren, die in einem Array a[0], ..., a[n-1] gespeichert sind.

- (a) Bestimmen Sie die asymptotische Laufzeit dieses Programms.
- (b) Warum muss man in der letzten Zeile in der Anweisung a[i]=j keinen Überlauf des Indexes i über die Feldgrenzen von a befürchten? Geben Sie eine ausführliche Begründung.
- (c) Funktioniert dieses Verfahren auch, wenn die Zahlen nicht verschieden sind? Was muss man gegebenenfalls ändern, damit es für diesen Fall funktioniert?
- 4. Schreiben Sie ein Programm in Java oder Haskell, das für einen gegebenen binären Suchbaum die *mittlere innere Weglänge* berechnet; sie ist um 1 kleiner als die erwartete Anzahl von Vergleichen, die zum Finden eines zufällig ausgewählten Knotens in dem Baum im Durchschnitt erforderlich sind. (Jeder Knoten wird mit gleicher Wahrscheinlichkeit gesucht.)

Anleitung: Streichen Sie eine Aufgabe deutlich auf dem Angabeblatt. Diese Aufgabe wird nicht in die Bewertung einbezogen. Alle Antworten sind zu begründen! Jede Aufgabe hat 10 Punkte. Bearbeitungszeit: 90 Minuten

1. Die folgende Java-Klasse implementiert (teilweise) die Mengenoperationen für Mengen, die Teilmengen von $\{1, 2, \dots, 100\}$ sind.

```
class Menge100
{ boolean [ ] a = new boolean[100];
  int größe = 0;
  public void enfügen(int x)
  {   if(a[x-1]==false) { a[x-1]=true; größe++; }
  }
  public boolean istleer() { return größe==0; }
  ...
}
```

Geben Sie die Abstraktionsfunktion und die Darstellungsinvariante an, und beweisen Sie, dass die Operationen einfügen und istleer (mit geeigneten Vorbedingungen, falls nötig) korrekt implementiert sind.

2. Eine Zeichenkette $p_1 p_2 \dots p_m$ heißt periodisch mit Periode k, $(1 \le k \le m)$ wenn $p_i = p_{i+k}$ für $1 \le i < i + k \le m$ ist, mit anderen Worten, wenn

$$p_1 \dots p_{m-k} = p_{k+1} \dots p_m$$

ist. (Für k = m ist die Folge unperiodisch.)

- (a) (3 Punkte) Bestimmen Sie die Periode und berechnen sie die Verschiebefunktion h für das Muster ababcababcabab. Verwenden Sie die Definition der Verschiebefunktion aus der Vorlesung. Berechnen Sie auch den Wert h(m+1).
- (b) (0 Punkte) Berechnen sie die Verschiebefunktion für abcabcabcab.
- (c) (7 Punkte) Wie kann man mit Hilfe der Verschiebefunktion die (kleinste) Periode k einer Zeichenkette bestimmen?
- 3. Konstruieren Sie mit dem Huffman-Algorithmus einen optimalen Kode für die Verteilung $(p_1, \ldots, p_6) = (\frac{8}{25}, \frac{2}{25}, \frac{1}{25}, \frac{5}{25}, \frac{5}{25}, \frac{4}{25})$. Zeigen Sie in einzelnen Schritten, wie der Algorithmus abläuft, und zeichnen Sie den optimalen Kode-Baum. Ist der optimale Kode eindeutig?
- 4. Leiten Sie aus der algebraischen Spezifikation für Mengen

```
istenthalten(x, leer) = falsch (1)
```

$$istenthalten(x, einfüge(x, M)) = wahr$$
 (2)

$$istenthalten(x, einfüge(y, M)) = istenthalten(x, M), \quad \text{für } x \neq y$$
 (3)

$$istenthalten(x, l\"{o}sche(x, M)) = falsch$$
 (4)

$$istenthalten(x, l\"{o}sche(y, M)) = istenthalten(x, M), \quad f\"{u}r \ x \neq y$$
 (5)

folgende Identität her:

 $istenthalten(u, einfüge(x, l\"{o}sche(u, M))) = istenthalten(u, einfüge(x, leer))$

Geben Sie dabei in jedem Beweisschritt die Nummer der verwendeten Gleichung an.

```
h_i = \max \{ k \mid 1 \le k < i, \ p_1 \dots p_{k-1} = p_{i-k+1} \dots p_{i-1} \} \cup \{0\}, \quad \text{für } i \ge 1.
```

Die verbesserte Verschiebefunktion vom 12. Übungsblatt ist so definiert:

$$h_i = \max \{ k \mid 1 \le k < i, \ p_1 \dots p_{k-1} = p_{i-k+1} \dots p_{i-1} \text{ und } p_k \ne p_i \} \cup \{0\}, \quad \text{für } i \ge 1$$

¹Die ursprüngliche Definition der Verschiebefunktion aus der Vorlesung lautet

Algorithmen und Programmieren 3 erste Nachklausur zur ersten Teilklausur Donnerstag, 26. Februar 2004.

Anleitung: Streichen Sie eine Aufgabe deutlich auf dem Angabeblatt. Diese Aufgabe wird nicht in die Bewertung einbezogen. Wenn Sie selbst keine Aufgabe streichen, wird die erste Aufgabe nicht in die Bewertung einbezogen. Bearbeiten Sie die übrigen drei Aufgaben.

Bearbeiten Sie jede Aufgabe auf einem getrennten Blatt. Jede Aufgabe hat 10 Punkte. Bearbeitungszeit: 90 Minuten

- 1. Wir wollen eine Variante von a-b-Bäumen konstruieren, bei der weniger Speicher verschwendet wird. Es sei a=50. Wie klein kann man b wählen, wenn man
 - beim Einfügen zwei Geschwisterknoten zu Hilfe nimmt, falls diese den Überlauf aufnehmen können, und
 - beim Entfernen bis zu drei Geschwisterknoten zum Ausborgen in Betracht zieht?

Begründen Sie Ihre Antwort!

- 2. Gegeben ist ein Graph mit den Knoten $V = \{1, 2, ..., n\}$ und m Kanten in Adjazenzlistenspeicherung. Die Kanten in (i, j) den Adjazenzlisten sollen nach den Endknoten umsortiert werden; das heißt, in der Adjazenzliste von i soll die Kante (i, j) vor (i, k) kommen, wenn j < k ist.
 - (a) Skizzieren Sie einen Algorithmus, der diese Sortieraufgabe in linearer Zeit, das heißt, in O(m+n) Zeit löst.
 - (b) Schreiben Sie ein Java-Programm für diese Aufgabe.
- 3. Eliminieren Sie die Endrekursion aus dem folgenden Programmstück, das eine verkettete Liste umkehrt. Gehen Sie dabei systematisch Schritt für Schritt vor, und geben Sie alle Zwischenschritte bei der Transformation explizit an. Schreiben Sie am Ende eine einzige Methode als Ersatz für umkehre.

```
class Liste { Object wert; Liste next; }
static Liste umkehre(Liste x)
{ if(x==null) return x;
  else return umkehre3(null, x, x.next);
}
static Liste umkehre3(Liste davor, Liste x, Liste danach)
{ x.next = davor;
  if (danach==null) return x;
  else return umkehre3(x, danach, danach.next);
}
```

4. Schreiben Sie ein Java-Programm, das die Knoten eines binären Baumes in *Niveau-Reihenfolge* ausgibt, das heißt, zuerst die Wurzel, dann die Knoten mit Tiefe 1, dann mit Tiefe 2, und so weiter.

Ihr Programm soll lineare Laufzeit haben.

Algorithmen und Programmieren	3	Matrikelnummer	:
Nachklausur zur Endklausur	FAMI	LIENNAME:	
WS 2003/2004. Dienstag, 6. April	2004.	Vorname:	

Anleitung: Streichen Sie eine Aufgabe deutlich auf dem Angabeblatt. Diese Aufgabe wird nicht in die Bewertung einbezogen. Wenn Sie selbst keine Aufgabe streichen, wird die erste Aufgabe nicht in die Bewertung einbezogen. Bearbeiten Sie die übrigen drei Aufgaben.

Bearbeiten Sie jede Aufgabe auf einem getrennten Blatt. Jede Aufgabe hat 10 Punkte. Bearbeitungszeit: 90 Minuten

A	ufgabe	1	2	3	4	Summe
P	unkte	10	10	10	10	30
P	unkte					

1. Die sogenannte $Erd\~os-Zahl^1$ ist nach dem berühmten ungarischen Mathematiker Paul Erdős (1913–1996) benannt. Er selbst hat Erdős-Zahl 0. Alle seine Koautoren, mit denen er wissenschaftliche Arbeiten publiziert hat, haben Erdős-Zahl 1. Wer eine gemeinsame Arbeit mit jemandem mit Erdős-Zahl 1 geschrieben hat, aber nicht mit Erdős selbst, hat Erdős-Zahl 2, und so weiter. Personen, die nicht auf diese Weise mit Erdős verbunden sind, haben Erdős-Zahl ∞ .

Der Kollaborationsgraph enthält alle lebenden oder toten Personen als Knoten. Zwei Knoten sind durch eine Kante verbunden, wenn die beiden Personen gemeinsame Autoren einer wissenschaftlichen Publikation sind.

- (a) Geben Sie einen Algorithmus an, der für eine gegebene Person im Kollaborationsgraphen die Erdős-Zahl berechnet.
- (b) Geben Sie einen Algorithmus an, der die größte endliche Erdős-Zahl bestimmt.

Algorithmen aus der Vorlesung können Sie direkt verwenden; die müssen Sie nicht "ausprogrammieren".

- 2. (a) (5 Punkte) Zeichne sie den
 - i. digitalen Suchbaum
 - ii. den komprimierten digitalen Suchbaum

für die Bitketten 0011000101, 001111001, 01011, 00111111, 01010, 001101. Zeigen Sie, wie die Bäume nach dem Einfügen des Wertes 0011000 aussehen. Entfernen Sie 001111001 und zeichnen Sie die Bäume danach.

(b) (5 Punkte) Wie kann man aus der Verschiebefunktion des Wortes x#w\$ berechnen, ob x ein Teilwort von w ist? (Hier sind # und \$ neue Buchstaben, die nicht in x und w vorkommen.) Begründen Sie Ihre Antwort!

¹http://personalwebs.oakland.edu/~grossman/erdoshp.html

3. Eine stückweise lineare Funktionen $f:(u,v]\to\mathbb{R}$ ist durch eine zusammenhängende Folge von Intervallen mit entsprechenden linearen Funktionen f(x)=ax+b für jedes Intervall gegeben, z. B.

$$f(x) = \begin{cases} -x, & \text{für } -1 < x \le 0 \\ 2x, & \text{für } 0 < x \le 2 \\ -3x + 9, & \text{für } 2 < x \le 4 \end{cases}$$

Die Datenstruktur soll folgende Operationen erlauben:

- (a) Erzeugen einer Funktion f(x) = ax + b mit einem einzigen Intervall (u, v].
- (b) Berechnung des Wertes einer solche Funktion f(x) an einer gegebenen Stelle x.
- (c) Addition zweier stückweise linearer Funktionen.

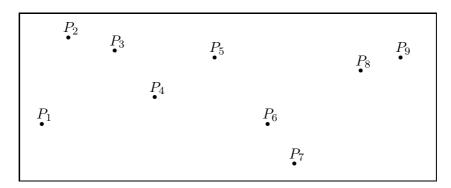
Nehmen Sie der Einfachheit halber an, dass alle Intervalle halboffen sind, und zwar links offen und rechts abgeschlossen, wie im obigen Beispiel.

Der Datentyp ist durch die folgenden Axiome (mit geeigneten Signaturen) algebraisch spezifiziert:

$$berechne(stLinFun(u, v, a, b), x) = \begin{cases} ax + b, & \text{für } u \le x < v \\ 0, & \text{sonst} \end{cases}$$
$$berechne(add(f, g), x) = berechne(f, x) + berechne(g, x)$$

Implementieren Sie diesen Datentyp in Java oder Haskell und beweisen Sie die Korrektheit.

4. Bestimmen Sie die untere konvexe Hülle der folgenden sortierten Punktmenge P_1, \ldots, P_9 mit dem inkrementellen Algorithmus aus der Vorlesung. Geben Sie die Folge der Orientierungstests an, die der Algorithmus ausführt.



Algorithmen und Programmieren 3, WS 2003/2004. zweite Nachklausur zur ersten Teilklausur Dienstag, 6. April 2004.

Anleitung: Streichen Sie eine Aufgabe deutlich auf dem Angabeblatt. Diese Aufgabe wird nicht in die Bewertung einbezogen. Wenn Sie selbst keine Aufgabe streichen, wird die erste Aufgabe nicht in die Bewertung einbezogen. Bearbeiten Sie die übrigen drei Aufgaben.

Bearbeiten Sie jede Aufgabe auf einem getrennten Blatt. Jede Aufgabe hat 10 Punkte. Bearbeitungszeit: 90 Minuten

- 1. Rot-Schwarz-Bäume sind binäre Bäume mit folgenden Eigenschaften:¹
 - (a) Jeder innere Knoten hat zwei Kinder.
 - (b) Jeder Knoten ist entweder als rot oder als schwarz gekennzeichnet.
 - (c) Die Wurzel und alle Blätter sind schwarz.
 - (d) Die Kinder eines roten Knotens sind schwarz.
 - (e) Ein schwarzer Knoten kann höchstens ein rotes Kind haben.
 - (f) Alle Wege von der Wurzel zu den Blättern enthalten die gleiche Anzahl von schwarzen Knoten.

Die schwarze Höhe ist die um eins verminderte Anzahl der schwarzen Knoten auf jedem Weg von der Wurzel zu einem Blatt.

- (a) Welche Höhe kann ein Baum mit schwarzer Höhe h' mindestens und höchstens haben?
- (b) Wie viele rote Knoten kann ein Baum mit schwarzer Höhe h' mindestens und höchstens haben?
- (c) Wie viele schwarze Knoten kann ein Baum mit schwarzer Höhe h' mindestens und höchstens haben?

Begründen Sie Ihre Antworten.

- 2. Fügen Sie nacheinander die Werte 5, 3, 9, 2, 7, 10, 11, 4, 1 in einen anfangs leeren 2-3-Baum ein. Entfernen Sie dann die Element 5 und 7. Zeichnen Sie den 2-3-Baum nach jeder Operation auf.
- 3. Für eine gegebene Folge von n verschiedenen Zahlen x_1, x_2, \ldots, x_n soll die Anzahl der Inversionen (Fehlstände) bestimmt werden, das sind die Paare (x_i, x_j) mit $1 \le i < j \le n$ und $x_i > x_j$. Zum Beispiel hat die Folge (3, 5, 10, 1, 6) vier Inversionen, nämlich die Paare (3, 1), (5, 1), (10, 1) und (10, 6).
 - Zeigen Sie, wie man den Algorithmus Sortieren durch Verschmelzen so erweitern kann, dass er in $O(n \log n)$ Zeit die Anzahl der Inversionen berechnet. Geben Sie insbesondere genau an, was man beim Verschmelzen machen muss.
 - Wahlweise dürfen Sie auch einen anderen Algorithmus angeben, der das Problem in $O(n \log n)$ Zeit löst.
- 4. Schreiben Sie ein Programm in Java oder Haskell, das eine sortierte Liste von n ganzen Zahlen in einen binären Suchbaum der kleinstmöglichen Höhe $h = \lceil \log_2(n+1) \rceil 1$ umwandelt.

(Ihr Programm muss *nicht* vollständig in dem Sinn sein, dass Sie zum Beispiel das Suchen und alle notwendigen und nützlichen Methoden für eine Klasse Baum programmieren müssen. Beschränken Sie sich auf die gestellte Aufgabe.)

¹Diese Definition stimmt mit der Definition auf dem 6. Übungsblatt überein.