- 1. (0 Punkte) Sei Σ ein Alphabet mit k Elementen und $n \in \mathbb{N}$.
 - (a) Wieviele Worte in Σ^* haben die Länge n?
 - (b) Wieviele Palindrome in Σ^* haben die Länge n? (Ein Palindrom ist ein Wort, das von vorne und von hinten gelesen gleich ist.)
 - (c) Wieviele Worte $w \in \{0,1\}^*$, die Binärdarstellung einer durch 5 teilbaren Zahl sind (führende Nullen sind erlaubt), haben die Länge n?
 - (d) Wie ist es, wenn führende Nullen verboten sind?

Jede Behauptung ist zu beweisen!

2. (0 Punkte) Beschreiben Sie die Sprache L, die durch den regulären Ausdruck

$$0^*(0+10^*1)^*(\varepsilon+0+00)$$

gegeben ist. (Alle Worte in L haben eine sehr charakteristische Eigenschaft. Welche?) Beweisen Sie Ihre Behauptung! Gibt es einen einfacheren regulären Ausdruck für diese Sprache?

- 3. (6 Punkte)
 - (a) (0 Punkte) Geben Sie einen regulären Ausdruck an, der genau die Worte w über Σ mit der folgenden Eigenschaft beschreibt: "w enthält keine zwei unmittelbar aufeinanderfolgenden gleichen Symbole," und zwar für $\Sigma_2 = \{a, b\}, \Sigma_3 = \{a, b, c\},$ und für $\Sigma_4 = \{a, b, c, d\}$. Beweisen Sie, dass Ihr Ausdruck wirklich diese Sprache beschreibt!
 - (b) (6 Punkte) Lösen Sie dieselbe Aufgabe für die folgende Eigenschaft: "Jedes Symbol in w steht neben einem gleichen Symbol." (Zum Beispiel hat das Wort aaabbcccaa diese Eigenschaft.)
 - (c) (Zusatzaufgabe, 2 Punkte) Wieviele Wörter der Länge n enthält die Sprache aus Aufgabe (b), für Σ_2 und Σ_3 ?
- 4. (6 Punkte)
 - (a) Codieren Sie das Alphabet $\{a,b,\ldots,z\}$ durch Binärworte, so dass jedes codierte Wort wieder eindeutig decodierbar ist! (Eine ungeeignete Codierung wäre z.B. $a\mapsto 0, b\mapsto 01, c\mapsto 100$, etc. In diesem Fall könnte nämlich 0100 von ac oder von baa herstammen.) Zeigen Sie, dass Ihre Codierung die gewünschte Eigenschaft hat.
 - (b) Das Alphabet $\Sigma = \{a, b\}$ sei durch $a \mapsto 0$ und $b \mapsto 010$ codiert. Zeigen Sie, dass diese Codierung eindeutig decodierbar ist!
- 5. (4 Punkte) Welche der folgenden Gleichungen gelten für alle regulären Ausdrücke?
 - (a) (AB)C = A(BC)
 - (b) $(A^*)^* = A^*$
 - (c) $(A+B)^* = A^* + B^*$
 - (d) $(A^*B^*)^* = (A+B)^*$

Beweisen Sie Ihre Antworten.

Zusatzfrage (2 Punkte): Wenn eine Beziehung nicht als Gleichung gilt, in welchen Fällen gilt dann eine Inklusionsbeziehung (\subseteq oder \supseteq)?

6. (Zusatzfrage, 2 Punkte) Geben sie einen regulären Ausdruck an, der alle Wörter über $\Sigma = \{0, 1\}$ beschreibt, die 0110 nicht als Teilwort enthalten.