COLLAPSE

Günter Rote

Freie Universität Berlin, Institut für Informatik

joint work with

Uri Zwick
Tel Aviv University, Department of Computer Science

COLLAPSE

Günter Rote

Freie Universität Berlin, Institut für Informatik
joint work with
Uri Zwick
Tel Aviv University, Department of Computer Science

COLLAPSE

A Computational Geometer Tries to Learn Basic Mechanics

Günter Rote

Freie Universität Berlin, Institut für Informatik
joint work with
Uri Zwick
Tel Aviv University, Department of Computer Science

1. Introduction: OVERHANG

What is the largest overhang that can be achieved with n identical bricks?

The "standard" solution

the harmonic tower

overhang $=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2 n}=\frac{1}{2} \cdot H_{n}=\Theta(\log n)$

Maximum Overhang

The maximum overhang achievable with n bricks is

$$
\Theta(\sqrt[3]{n})
$$

Lower bound: Mike Paterson and Uri Zwick 2006 to appear in American Mathemathical Monthly

Upper bound:
Paterson, Y. Peres, M. Thorup, P. Winkler and Zwick 2007

[photograph by Uri Zwick]

[photograph by Uri Zwick]

1. Introduction: Overhang
2. Stability and instability
3. Global motion
4. Collisions
5. Implementation issues
6. Friction

2. Stability and instability

- Is it stable?

Compute a system of forces in equilibrium
\rightarrow a system of linear inequalities
(linear optimization)
[KNOWN]

2. Stability and instability

- Is it stable?

Compute a system of forces in equilibrium
\rightarrow a system of linear inequalities
(linear optimization)
[KNOWN]

- If it is unstable, how will it fall?

2. Stability and instability

- Is it stable?

Compute a system of forces in equilibrium
\rightarrow a system of linear inequalities
(linear optimization)
[KNOWN]

- If it is unstable, how will it fall?
\rightarrow a convex quadratic optimization problem
(quadratic objective function, linear constraints)
[THIS TALK]

Instability

More generally:
Given all locations and velocities at a given instant, determine the accelerations.

Assumption: NO FRICTION

Conditions I: Lengths

The length $\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|$ of the bar (i, j) remains constant.

Conditions I: Lengths

The length $\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|$ of the bar (i, j) remains constant.

A rigid block can be simulated by a framework of fixed-length bars.

Conditions II: Sidedness

Collisions must be prevented.

Conditions II: Sidedness

Collisions must be prevented.

Area $A\left(\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}\right) \geq 0$

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
x_{i} & x_{j} & x_{k} \\
y_{i} & y_{j} & y_{k}
\end{array}\right| \geq 0
$$

Conditions II: Sidedness

Collisions must be prevented.

$$
\begin{aligned}
& \text { Area } A\left(\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}\right) \geq 0 \\
& \left|\begin{array}{ccc}
1 & 1 & 1 \\
x_{i} & x_{j} & x_{k} \\
y_{i} & y_{j} & y_{k}
\end{array}\right| \geq 0
\end{aligned}
$$

This condition holds only locally, in the vicinity of the current configuration.

Equilibrium of forces (static)

At every mass point \mathbf{p}_{i} with mass m_{i},

unknown

given

Forces I: Lengths

The length $\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|$ remains constant.

Collisions must be prevented.
When \mathbf{p}_{k} touches the bar $\mathbf{p}_{i} \mathbf{p}_{j}$, forces perpendicular to the bar direction may be transmitted, but in one direction only.
\rightarrow linear inequalities
The force at $\mathbf{p}_{k}=\alpha \mathbf{p}_{i}+(1-\alpha) \mathbf{p}_{j}$ is distributed proportionally to \mathbf{p}_{i} and \mathbf{p}_{j} :

$$
\mathbf{F}_{i}=\alpha \mathbf{F}_{k} \text { and } \mathbf{F}_{j}=(1-\alpha) \mathbf{F}_{k}
$$

Collisions must be prevented.
When \mathbf{p}_{k} touches the bar $\mathbf{p}_{i} \mathbf{p}_{j}$, forces perpendicular to the bar direction may be transmitted, but in one direction only.
\rightarrow linear inequalities
The force at $\mathbf{p}_{k}=\alpha \mathbf{p}_{i}+(1-\alpha) \mathbf{p}_{j}$ is distributed proportionally to \mathbf{p}_{i} and \mathbf{p}_{j} :

$$
\mathbf{F}_{i}=\alpha \mathbf{F}_{k} \text { and } \mathbf{F}_{j}=(1-\alpha) \mathbf{F}_{k}
$$

Internal forces

internal forces $=$
\sum linear combinations of
$+\sum$ nonnegative linear combinations of

Testing stability

Static equilibrium of forces:
At every mass point \mathbf{p}_{i} with mass m_{i},

Find a system of internal forces (subject to linear equations and inequalities) that balance the given external forces.
\rightarrow linear programming

Equilibrium of forces (dynamic)

Newton's Laws: Forces must be in equilibrium

At every point \mathbf{p}_{i} with mass m_{i} and acceleration \mathbf{a}_{i},
\sum internal forces + external force + inertial force $=\mathbf{0}$

unknown
given
unknown

Determining the constraints (1) Freie uniesesited P Semin

Sidedness constraint:

$$
A\left(\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}\right) \geq 0
$$

If $A\left(\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}\right)=0$, then $\frac{\mathrm{d}}{\mathrm{d} t} A\left(\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}\right) \geq 0$

If $A\left(\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}\right)=0$ and $\frac{\mathrm{d}}{\mathrm{d} t} A\left(\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}\right)=0$, then

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} A\left(\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}\right) \geq 0
$$

Determining the constraints (2) Frie univesite 1) Satin

$$
\begin{array}{lll}
& \mathbf{p}_{j} & \begin{array}{l}
\text { Length constraint: } \\
\\
\\
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|=\text { const }
\end{array} \\
\mathbf{p}_{j} \|=0 & \text { and } & \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|=0
\end{array}
$$

location	$\mathbf{p}_{i}=\mathbf{p}_{i}(t)$, time parameter $t \geq 0$
velocity	$\mathbf{v}_{i}=\dot{\mathbf{p}}_{i}$
acceleration	$\mathbf{a}_{i}=\ddot{\mathbf{p}}_{i}$

Sidedness constraints:
(1) $\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} A\left(\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}\right) \geq 0$, for certain triples (i, j, k).
\rightarrow linear inequalities in \mathbf{a}, for given \mathbf{p} and \mathbf{v}.
Length constraints:
(2) $\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|^{2}=0$, for all bars (i, j).
\rightarrow linear equations in \mathbf{a}, for given \mathbf{p} and \mathbf{v}.

Equilibrium of forces (continued) Freie uniessitet 1 Serin

At every point \mathbf{p}_{i} with mass m_{i} and acceleration \mathbf{a}_{i},
\sum internal forces + external force + inertial force $=\mathbf{0}$

$$
\begin{gathered}
m_{i} \cdot \mathbf{g} \\
\text { (gravity) }
\end{gathered} \quad-m_{i} \cdot \mathbf{a}_{i}
$$

unknown, subject to linear equations and inequalities (1) and (2)

Let \mathbf{p}_{i} and \mathbf{v}_{i} be given for all points $i=1, \ldots, n$. The solution $\mathbf{a}=\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)$ of

$$
\sum \text { internal forces }=m_{i} \cdot\left(\mathbf{a}_{i}-\mathbf{g}\right), \quad \text { for all } i
$$

subject to constraints (1) and (2), is given by the quadratic optimization problem
(*)

subject to (1) and (2).

Let \mathbf{p}_{i} and \mathbf{v}_{i} be given for all points $i=1, \ldots, n$. The solution $\mathbf{a}=\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)$ of

$$
\sum \text { internal forces }=m_{i} \cdot\left(\mathbf{a}_{i}-\mathbf{g}\right), \quad \text { for all } i
$$

subject to constraints (1) and (2), is given by the quadratic optimization problem
(*)
$\operatorname{minimize} \sum_{i=1}^{n} m_{i} \cdot\left\|\mathbf{a}_{i}-\mathbf{g}\right\|^{2}$
subject to (1) and (2). assume $m_{i} \equiv 1$

Intuition

$$
\operatorname{minimize} \sum_{i=1}^{n}\left\|\mathbf{a}_{i}-\mathbf{g}\right\|^{2}
$$

Acceleration \mathbf{a}_{i} tries to follow the gravity force \mathbf{g} as closely as possible.

Any discrepancy $\mathbf{a}_{i}-\mathbf{g}$ must be resolved by internal forces:

$$
\mathbf{a}_{i}-\mathbf{g}=\sum \text { internal forces at point } i
$$

The internal forces are just the dual variables (Lagrange multipliers) corresponding to the constraints (1) and (2).

Forces as dual variables: Lengths free uniesesitat (P Betin

The length $\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|$ remains constant.

Collisions must be prevented.
When \mathbf{p}_{k} touches the bar $\mathbf{p}_{i} \mathbf{p}_{j}$, forces perpendicular to the bar direction may be transmitted, but in one direction only.
\rightarrow linear inequalities
The force at $\mathbf{p}_{k}=\alpha \mathbf{p}_{i}+(1-\alpha) \mathbf{p}_{j}$ is distributed proportionally to \mathbf{p}_{i} and \mathbf{p}_{j} :

$$
\mathbf{F}_{i}=\alpha \mathbf{F}_{k} \text { and } \mathbf{F}_{j}=(1-\alpha) \mathbf{F}_{k}
$$

Geometric intuition (polytopes)

For a polytope $P \subseteq \mathbb{R}^{2 n}$ given by linear inequalities and a target point \mathbf{g}. Find a point $\mathbf{a} \in P$ such that

Geometric intuition (polytopes)

For a polytope $P \subseteq \mathbb{R}^{2 n}$ given by linear inequalities and a target point \mathbf{g}. Find a point $\mathbf{a} \in P$ such that
 the difference vector $\mathbf{g}-\mathbf{a}$ lies in the cone spanned by the normal vectors of the tight inequalities at \mathbf{a} :

$$
\mathbf{g}-\mathbf{a}=\sum \text { internal forces }
$$

Geometric intuition (polytopes)

For a polytope $P \subseteq \mathbb{R}^{2 n}$ given by linear inequalities and a target point \mathbf{g}. Find a point $\mathbf{a} \in P$ such that
 the difference vector $\mathbf{g}-\mathbf{a}$ lies in the cone spanned by the normal vectors of the tight inequalities at \mathbf{a} :

$$
\mathbf{g}-\mathbf{a}=\sum \text { internal forces }
$$

The point $\mathbf{a} \in P$ is uniquely determined by \mathbf{g}, since the normal fan of the polytope P partitions space. \mathbf{a} is the point in P closest to \mathbf{g}.

Geometric intuition (polytopes)

For a polytope $P \subseteq \mathbb{R}^{2 n}$ given by linear inequalities and a target point \mathbf{g}. Find a point $\mathbf{a} \in P$ such that
 the difference vector $\mathbf{g}-\mathbf{a}$ lies in the cone spanned by the normal vectors of the tight inequalities at \mathbf{a} :

$$
\mathbf{g}-\mathbf{a}=\sum \text { internal forces }
$$

The internal forces (the linear combination of normal vectors that produce $\mathbf{g}-\mathbf{a}$) are in general not unique.

The Principle of Least Constraint freie uniesesite (1 betin

Über ein neues allgemeines Grundgesetz der Mechanik.
(Vom Herrn Hofrath und Prof. Dr. Gaufs zu Göttingen.)
(On a new general principle of mechanics.)
J. reine angew. Math. 4 (1829), 232-235

Prinzip des kleinsten Zwanges (principle of least restraint)
derivation from d'Alembert's method of virtual velocities (virtual displacements)

Virtual Velocities (Displacements) rieie univesitat 1 Serin

Every feasible direction v (virtual velocity, virtual displacement) must make a negative inner product with the external and inertial forces \mathbf{F} :

$$
\langle\mathbf{v}, \mathbf{F}\rangle=\sum_{i}\left\langle\mathbf{v}_{i}, \mathbf{F}_{i}\right\rangle \leq 0
$$

D'Alembert's Principle
The internal forces are eliminated.

The Principle of Least Constraint $\begin{gathered}\text { freie uniessitat }\end{gathered}$ I Berin

Es ist sehr merkwürdig, dafs die freien Bewegungen, wenn sie mit nothwendigen Bedingungen nicht bestehen können, von der Natur gerade auf dieselbe Art modificirt werden, wie der rechnende Mathematiker, nach der Methode der kleinsten Quadrate, Erfahrungen ausgleicht, die sich auf unter einander durch nothwendige Abhängigkeit verknüpfte Gröfsen beziehen. Diese Analogie liefse sich noch weiter verfolgen, was jedoch gegenwärtig nicht zu meiner Absicht gehört.

It is very remarkable that the free motions, if they are not consistent with constraints, are modified by nature in just the same way, as the calculating mathematician, according to the method of least squares, adjusts measurements of quantities that are related to each other by a dependency.
This analogy could be pursued further, which is, however, currently not my intention.

[^0]
Historical Notes

A. Prékopa: On the development of optimization theory Amer. Math. Monthly 87 (1980), 527-542
Method of Lagrange multipliers for finding extrema of functions subject to equality constraints
(Lagrange, Méchanique Analytique, 1788)
Purpose:
Find the stable equilibrium state of a mechanical system.
A. Prékopa: On the development of optimization theory Amer. Math. Monthly 87 (1980), 527-542
Method of Lagrange multipliers for finding extrema of functions subject to equality constraints
(Lagrange, Méchanique Analytique, 1788)
Purpose:
Find the stable equilibrium state of a mechanical system.
Extension to mechanical systems with inequalities:
J. Fourier (1798): formulated Fourier's Principle A.-A. Cournot (1827)
M. V. Ostrogradsky (1834)

Gy. Farkas (1894, 1898): linear inequalities

Historical Notes

A. Prékopa: On the development of optimization theory Amer. Math. Monthly 87 (1980), 527-542
Method of Lagrange multipliers for finding extrema of functions subject to equality constraints
(Lagrange, Méchanique Analytique, 1788)
Nonlinear optimization (nonlinear inequalities):
W. Karush (1939, Master's thesis, Univ. Chicago)
F. John (1948)
H. W. Kuhn, A. W. Tucker (1951)

Applications of Gauß' Principle

many papers on rigid-body simulations:
Proc. IEEE Conf. Robotics and Automation (ICRA) Proc. ACM SIGGRAPH

$$
\begin{aligned}
\mathbf{p}(t) & =\left(\mathbf{p}_{1}(t), \ldots, \mathbf{p}_{n}(t)\right), \\
\mathbf{v}(t) & =\left(\mathbf{v}_{1}(t), \ldots, \mathbf{v}_{n}(t)\right)=\dot{\mathbf{p}}(t), \\
\mathbf{a}(t) & =\left(\mathbf{a}_{1}(t), \ldots, \mathbf{a}_{n}(t)\right)=\ddot{\mathbf{p}}(t)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{a}(t) & =f(\mathbf{p}(t), \mathbf{v}(t)) \\
\ddot{\mathbf{p}}(t) & =f(\mathbf{p}(t), \dot{\mathbf{p}}(t))
\end{aligned}
$$

$f(\mathbf{p}, \mathbf{v})$ is given as the solution of the quadratic optimization problem.
\rightarrow second-order system of differential equations

Implementation

Rough prototype implementation in a student project, using Euler integration

Simplex-type quadratic optimization algorithm implemented in Cgal (Computational geometry algorithms library).
CgAL focuses on exact algorithms, problems with few variables (no refined linear algebra procedures).
\rightarrow very slow
Desired:

- visualization of forces

4. Collision

Velocities \mathbf{v}_{i} change discontinuously.
"the ill-posed nature of simultaneous multiple collisions"
A. Chatterjee, A. Ruina, J. Appl. Mech. (1998)

Elastic and inelastic collision

Elastic and inelastic collision

Elastic and inelastic collision

Total momentum is always preserved.

Perfectly inelastic collision

$$
\operatorname{minimize} \sum_{i=1}^{n} m_{i} \cdot\left\|\mathbf{v}_{i}^{\text {new }}-\mathbf{v}_{i}^{\text {old }}\right\|^{2}
$$

subject to length and sidedness constraints on $\mathbf{v}_{i}^{\text {new }}$.

Perfectly inelastic collision

$$
\operatorname{minimize} \sum_{i=1}^{n} m_{i} \cdot\left\|\mathbf{v}_{i}^{\text {new }}-\mathbf{v}_{i}^{\text {old }}\right\|^{2}
$$

subject to length and sidedness constraints on $\mathbf{v}_{i}^{\text {new }}$.

The case of two colliding disks is represented correctly.
"Proof" as above:
Exchange of momentum (impulse) can only happen if two bodies remain in contact afterwards (to first order).

Nondeterministic Billiards

Nondeterministic Billiards

Nondeterministic Billiards

Homogeneous mass distributions free univesitat 4) setin

A homogeneous rectangle

can be replaced by a rigid framework of 9 discrete points:

5. Implementation Problems

(A) Systematic growth of lengths (discretization error)

5. Implementation Problems

(B) Point may creep across an edge (discretization error)

(First-order) non-penetration condition looks only at the projection onto the normal vector.

5. Implementation Problems

(C) Non-penetration condition requires testing for zero.

If $A\left(\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}\right)=0$ and $\frac{\mathrm{d}}{\mathrm{d} t} A\left(\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}\right)=0$, then

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} A\left(\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}\right) \geq 0
$$

\rightarrow linear inequalities in $\mathbf{a}_{i}, \mathbf{a}_{j}, \mathbf{a}_{k}$, for given $\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}$ and $\mathbf{v}_{i}, \mathbf{v}_{j}, \mathbf{v}_{k}$.

5. Implementation

Eliminate velocities \mathbf{v}_{i} and accelerations \mathbf{a}_{i} !

1. Linear extrapolation:

$$
\overline{\mathbf{p}}_{i}:=\mathbf{p}_{i}^{(k-1)}+\left[\mathbf{p}_{i}^{(k-1)}-\mathbf{p}_{i}^{(k-2)}\right]
$$

2. Apply external forces: $\tilde{\mathbf{p}}_{i}:=\overline{\mathbf{p}}_{i}+\mathbf{g} \cdot(\Delta t)^{2}$
3. Apply constraints:
(**)

$$
\operatorname{minimize} \sum_{i=1}^{n} m_{i} \cdot\left\|\mathbf{p}_{i}-\tilde{\mathbf{p}}_{i}\right\|^{2}
$$

subject to linearized constraints (1) and (2) on (\mathbf{p}_{i}).
4. Use the solution \mathbf{p}_{i} as $\mathbf{p}_{i}^{(k)}$.

5. Implementation

Eliminating velocities \mathbf{v}_{i} and accelerations \mathbf{a}_{i} :
Objective function:

$$
\begin{aligned}
\mathbf{p}_{i}^{\text {new }} & \approx \mathbf{p}_{i}^{\text {old }}+\mathbf{v}_{i} \cdot \Delta t+\mathbf{a}_{i} \cdot(\Delta t)^{2} \\
\tilde{\mathbf{p}}_{i} & \approx \mathbf{p}_{i}^{\text {old }}+\mathbf{v}_{i} \cdot \Delta t+\mathbf{g} \cdot(\Delta t)^{2}
\end{aligned}
$$

$$
\mathbf{p}_{i}^{\text {new }}-\tilde{\mathbf{p}}_{i} \approx\left(\mathbf{a}_{i}-\mathbf{g}\right) \cdot(\Delta t)^{2}
$$

Therefore,

$$
\operatorname{minimize} \sum_{i}\left\|\mathbf{p}_{i}^{\text {new }}-\tilde{\mathbf{p}}_{i}\right\|^{2} \equiv \operatorname{minimize} \sum_{i}\left\|\mathbf{a}_{i}-\mathbf{g}\right\|^{2}
$$

5. Implementation

Linearized length constraint (1):

$$
\left\langle\mathbf{p}_{i}^{\text {new }}-\mathbf{p}_{j}^{\text {new }}, \tilde{\mathbf{p}}_{i}-\tilde{\mathbf{p}}_{j}\right\rangle=\left\|\tilde{\mathbf{p}}_{i}-\tilde{\mathbf{p}}_{j}\right\| \cdot \ell_{i j}
$$

$\ell_{i j}=$ the desired (correct) length of edge $i j$.
(No redundant bars!)

5. Implementation

Linearized non-penetration constraint (2):

$$
\left\langle\mathbf{p}_{k}^{\text {new }}, \mathbf{n}\right\rangle \geq \alpha\left\langle\mathbf{p}_{i}^{\text {new }}, \mathbf{n}\right\rangle+(1-\alpha)\left\langle\mathbf{p}_{j}^{\text {new }}, \mathbf{n}\right\rangle
$$

5. Implementation

- Length and penetration is corrected at every step
- The same model solves (non-elastic) collisions
- No distinction between (slight) penetration and (sudden) collision

5. Implementation

- Length and penetration is corrected at every step
- The same model solves (non-elastic) collisions
- No distinction between (slight) penetration and (sudden) collision
- Quadratic optimization problems solved by CPLEX (commercial solver, uses interior-point method)
- Surrounding framework written in Python
- Simulation written to a file; visualization by student project (JAVA)

6. Friction

Friction is proportional to the force (pressure).

PROBLEM: Forces are not unique.

Forces are not unique

Forces are not unique

Forces are not unique

Unique forces?

Calculating the distribution of forces requires looking into stiffness/elasticity, shock waves, etc.

[^0]: C. F. Gauß, Über ein neues allgemeines Grundgesetz der Mechanik, 1829

