

EuroCG 2020 Ph. D. School on Computational Geometry

Counting and Enumeration in Geometry

Günter Rote Freie Universität Berlin

Counting and enumeration in geometry

Triangulations of a point set

a point set

two triangulations

Triangulations of a point set

a point set

two triangulations

COUNT: How many triangulations does a given point set have? SAMPLE: Generate a random triangulation (uniformly) ENUMERATE (list, visit) all triangulations of a given point set. OPTIMIZE: Find the "best" triangulation of a given point set. EXTREMAL QUESTION: How many triangulations can a set of points have? at most? at least?

Freie Universität

Berlin

Other noncrossing geometric structures

a point set

two non-crossing perfect matchings

- triangulations
- non-crossing spanning trees
- non-crossing Hamiltonian cycles
- non-crossing matchings
- non-crossing perfect matchings
- . .
- [your favorite straight-line geometric graph structure]

Freie Universität

Berlin

Given a set of n points in the plane (in general position), how many

- triangulations
- non-crossing spanning trees
- non-crossing Hamiltonian cycles
- non-crossing matchings
- non-crossing perfect matchings
- . .
- [your favorite straight-line geometric graph structure]

can it have, at most? (at least?)

https://adamsheffer.wordpress.com/numbers-of-plane-graphs/

) C D	D A https://adam	nsheffer wordn	ress com/numbers	s_of_plane_graphs/	🛧	4 M
We first consider the more popular variants – those with new works studying them every several years.						orizons in Geomet Sharir
GRAPH TYPE	LOWER BOUND	REFERENCE	UPPER BOUND	REFERENCE		innig.
Plane Graphs	$\Omega(42.11^N)$	[HPS18]	$O(187.53^{N})$	[SS12]	Recen	t Comments
Triangulations	$\Omega(8.65^N)$	[DSST11]	30^{N}	[SS11]		Pascal on An
Spanning Cycles	$\Omega(4.64^N)$	[GNT00]	$O(54.55^{N})$	[SSW13]	2 ⁸⁶	with Mini
Perfect Matchings	$\Omega(3.09^N)$	[AR15]	$O(10.05^{N})$	[SW06]	А	Ajmain Yamir Teenagers do Mathematica
Spanning Trees	$\Omega(12.52^N)$	[HM13]	$O(141.07^{N})$	[HSSTW11; SS11]		Adam Sheffer Points in General Posit
Cycle-Free Graphs	$\Omega(13.61^N)$	[HM13]	$O(160.55^N)$	[HSSTW11; SS11]		r57shell on Po in General Po
Some less commo	on variants:					Incidences: O Pro on Incid Lower Bound

🗌 🕔 Num	bers of Plane Graphs 🗙	+						
	C 🙆 🕕) 🔒 https://adam	nsheffer.wordp	ress.com/numbers	-of-plane-graphs/	습	<u>v</u> 🗹	
	We first consider the more popular variants – those with new works studying them every several years.					New Horizons in Geo Micha Sharir		
	GRAPH TYPE	LOWER BOUND	REFERENCE	UPPER BOUND	REFERENCE		nning:	
	Plane Graphs	$\Omega(42.11^N)$	[HPS18]	$O(187.53^{N})$	[SS12]	Recen	t Comments	
	Triangulations	$\Omega(8.65^N)$	[DSST11]	30^{N}	[SS11]		Pascal on An	
Min #T	riangulations	: $\Omega(2.43^{N})$	7)	$O(3.455^{I}$	V)	2	with Mini	
	Perfect Matchings	$\Omega(3.09^N)$	[AR15]	$O(10.05^{N})$	[SW06]	А	Ajmain Yamii Teenagers de Mathematica	
	Spanning Trees	$\Omega(12.52^N)$	[HM13]	$O(141.07^{N})$	[HSSTW11; SS11]		Adam Sheffe Points in General Posi	
	Cycle-Free Graphs	$\Omega(13.61^N)$	[HM13]	$O(160.55^N)$	[HSSTW11; SS11]		r57shell on P in General Po	
	Some less common	ı variants:					Incidences: C Pro on Incid Lower Bound	
Günter Rote, Frei	e Universität Berlin	Counting and	enumeration in geomet	ry	PhD School on Computational	l Geometry, Würzburg, I	March 20, 2020	

	extremal	questio	n		Freie l	Jniversität	Berlin	
$\langle \leftarrow \rangle$	C D	〕 🔒 https://adan	nsheffer. wordp	ress.com/numbers	s-of-plane-graphs/	☆	<u>¥</u> 🛛	
	We first consider t them every severa	ider the more popular variants – those with new works studyi everal years.				.g New Horizons in Micha Sharir		
	GRAPH TYPE	LOWER BOUND	REFERENCE	UPPER BOUND	REFERENCE	We're Hiri	ng!	
	Plane Graphs	$\Omega(42.11^N)$	[HPS18]	$O(187.53^{N})$	[SS12]	Recent C	Comments	
	Triangulations	$\Omega(8.65^N)$	[DSST11]	30^{N}	[SS11]		Pascal on An Algorithms C	
Min #⊺	Friangulations	5: $\Omega(2.43^N)$	<i>I</i>)	$O(3.455^{I}$	V)		with Mini	
	Perfect Matchings	$\Omega(3.09^N)$	[AR15]	$O(10.05^{N})$	[SW06]	A	Ajmain Yamir Teenagers do Mathomatica	
	Spanning Trees	$\Omega(12.52^N)$	[™] and	nk of som COUNT	ne particula its triangu	ar point s ulations.	Set Sheffer in al Posit	
	Cycle-Free Graphs	$\Omega(13.61^N)$	[HM13]	$O(160.55^{N})$	[HSSTW11; SS11]		r57shell on P in General Po	
	Some less commo	n variants:					Incidences: O Pro on Incid Lower Bound	
Günter Rote, Fre	eie Universität Berlin	Counting and	enumeration in geomet		PhD School on Computationa	l Geometry, Würzburg, Marc	(part ch 20, 2020	

🕔 Nun	nbers of Plane Graphs >	× +						7
$\langle \leftarrow \rangle$) C 🛈	🛈 🔒 https://adan	nsheffer. wordp	ress.com/numbers	s-of-plane-graphs/	t	ל	⊻ 🖾
	We first consider t them every severa	the more popular variants – those with nev al vears.			v works studying		New Horizons in Geome Micha Sharir	
	GRAPH TYPE	LOWER BOUND	REFERENCE	UPPER BOUND	REFERENCE		We're Hirin	g!
	Plane Graphs	$\Omega(42.11^N)$	[HPS18]	$O(187.53^{N})$	[SS12]	1	Recent Co	omments
	Triangulations	$\Omega(8.65^N)$	[DSST11]	30^N	[SS11]		VC	Pascal on An Algorithms C
Min #⊺	Friangulations	s: $\Omega(2.43^N)$	<i>I</i>)	$O(3.455^{I}$	V)			with Mini
	Perfect Matchings	$\Omega(3.09^N)$	[AR15]	$O(10.05^{N})$	[SW06]		А	Ajmain Yamii Teenagers de Mathomatica
	Spanning Trees	$\Omega(12.52^N)$	[™] and	nk of som COUNT	ne particula its triangu	ar po ulatio	int sons.	et Sheffe in al Posi
	Cycle-Free Graphs	$\Omega(13.61^N)$	[HM13]	$O(160.55^{N})$	[HSSTW11; SS11]			r57shell on P in General Po
	Some less commo	on variants:						Incidences: C Pro on Incid Lower Bound
Günter Rote, Fre	Günter Rote, Freie Universität Berlin Counting and enumeration in geometry				PhD School on Computational Geometry, Würzburg, March 20, 2020			

Optimization

Given a set of points, find the triangulation that

- has the smallest total edge length
- minimizes the largest angle
- maximizes the smallest angle
- maximizes the total area of all triangles
- minimizes the total *squared* edge length
- is a good spanner
- . .

Enumerating all triangulations and taking the best one always works.

Optimization

Freie Universität

Given a set of points, find the triangulation that

- has the smallest total edge length NP-hard, quasipolynomial
- minimizes the largest angle polynomial
- maximizes the smallest angle ^{Delaunay}
- maximizes the total area of all triangles ^{easy}
- minimizes the total *squared* edge length??
- is a good spanner??
- . .

Enumerating all triangulations and taking the best one always works.

Overview

Freie Universität

- 0. Introduction
- 1. Count triangulations [Alvarez and Seidel, 2013]
 - and perfect matchings [Wettstein, 2014]
 - Optimal triangulations
- Coordinated primal-dual sweep
 [Biedl, Chambers, Kostitsyna, Rote, Felsner, 2020]
- Count perfect matchings of structured point sets
 [Asinowski and Rote, 2018]
- 4. Production matrices [Huemer, Pilz, Seara, Silveira, 2016]

1. Count Triangulations

Count, sample, enumerate

triangulation

Günter Rote, Freie Universität Berlin

N(v) := #paths from source to vCompute N(v) from source to sink.

N(v) :=#paths from source to vCompute N(v) from source to sink.

N(v) := #paths from source to vCompute N(v) from source to sink.

How to SAMPLE a random path:

N(v) := #paths from source to vCompute N(v) from source to sink.

How to SAMPLE a random path:

Compute N(v) from source to sink.

because 21 = 3 + 11 + 7

How to SAMPLE a random path:

N(v) := #paths from source to vCompute N(v) from source to sink.

How to SAMPLE a random path:

N(v) :=#paths from source to vCompute N(v) from source to sink.

How to SAMPLE a random path:

Find a random number between 1 and 28.

because 7 = 2 + 4 + 1

N(v) := #paths from source to vCompute N(v) from source to sink.

How to SAMPLE a random path:
Counting source-sink paths in a DAG

N(v) := #paths from source to vCompute N(v) from source to sink.

How to SAMPLE a random path:

Find a random number between 1 and 28.

Counting source-sink paths in a DAG

N(v) :=#paths from source to vCompute N(v) from source to sink.

How to SAMPLE a random path: Find a random number between 1 and 28.

Essentially, this is UNRANKING: Compute a function $\{1, \ldots, N\} \rightarrow \text{path}$

Freie Universität

Summary

The number of triangulations can be found in $O(n^2 2^n)$ time and $O(n2^n)$ space.

With this much preprocessing and space:

- The triangulations can be enumerated with O(n) delay.
- A random triangulation can be determined in O(n log n) steps.

WARNING: Have to deal with large numbers. Counting algorithm can use modular arithmetic (Chinese remainder theorem).

Can be applied to other structures (e.g. matchings, Ex. 6)

Can be used for optimizing *decomposable* objective functions. (Nonuniqueness is not an issue.)

Other algorithms for counting

There are many other approaches (divide-and-conquer, sweep, dynamic programming).

The theoretically fastest algorithm for counting triangulations uses divide-and-conquer, based on balanced separators of size $O(\sqrt{n})$ and has supexponential runtime:

 $n^{O(\sqrt{n})}$

Also for counting other structures.

["cactus layers", Marx and Miltzow, 2016]

Overview

Freie Universität

- 0. Introduction
- 1. Count triangulations [Alvarez and Seidel, 2013]
 - and perfect matchings [Wettstein 2014]
 - Optimal triangulations
- Coordinated primal-dual sweep
 [Biedl, Chambers, Kostitsyna, Rote, Felsner 2020]
- Count perfect matchings of structured point sets
 [Asinowski and Rote, 2018]
- 4. Production matrices [Huemer, Pilz, Silveira 2016]

- plane directed acyclic graph
- a single source s and a single sink t

- plane directed acyclic graph
- a single source s and a single sink t
- split the outer face:
- \rightarrow dual graph with a *left* outer vertex s' and a *right* vertex t'
 - The dual graph is also a bipolar orientation. (may be a multigraph)

t'

- plane directed acyclic graph
- a single source s and a single sink t
- split the outer face:
- \rightarrow dual graph with a *left* outer vertex s' and a *right* vertex t'
 - The dual graph is also a bipolar orientation. (may be a multigraph)
 - All faces in the overlay of the two graphs are quadrilaterals:

sweep over the *leftmost* possible face

s'

Freie Universität

sweep over the *leftmost* possible face

s'

Freie Universität

sweep over the *leftmost* possible face

s'

Freie Universität

Freie Universität

Freie Universität

Freie Universität

Freie Universität

Freie Universität

 sweep the primal graph with an s-t rope from left to right

 sweep the primal graph with an s-t rope from left to right

 sweep the primal graph with an s-t rope from left to right

 sweep the primal graph with an s-t rope from left to right

sweep over the *lowest* possible face

 sweep the primal graph with an s-t rope from left to right

sweep over the *lowest* possible face

Animation

page.mi.fu-berlin.de/rote/Papers/slides/Wuerzburg-2020-Simultaneous-sweep-Animation.pdf

There is a (unique) coordinated primal-dual sweep with the following properties:

- The primal rope always crosses the dual rope exactly once.
- The primal and the dual rope stay "close" to each other.
- Exactly one rope can advance, depending on the situation at the crossing.
- Every primal-dual edge pair is visited exactly once.
- Each individual sweep is a leftmost/bottommost sweep.

[Biedl, Chambers, Kostitsyna, Rote, Felsner 2020] in connection with sweeping over a pseudoline arrangement, see Ex. 4.

Overview

Freie Universität

- 0. Introduction
- 1. Count triangulations [Alvarez and Seidel, 2013]
 - and perfect matchings [Wettstein 2014]
 - Optimal triangulations
- Coordinated primal-dual sweep
 [Biedl, Chambers, Kostitsyna, Rote, Felsner 2020]
- Count perfect matchings of structured point sets
 [Asinowski and Rote, 2018]
- 4. Production matrices [Huemer, Pilz, Seara, Silveira 2016]

* = up to a polynomial factor

smallest possible number of perfect matchings: $\Theta^*(2^n)$

[García, Noy, Tejel 2000]

Freie Universität

Berlin

[Sharir, Welzl 2006]

Upper bound: $O^*(10.06^n)$

```
* = up to a polynomial factor
```

Current lower bound record:

The generalized double-zigzag chain

 $r = 8: \Theta^*(3.0930^n)$

[Asinowski and Rote 2018]

Freie Universität

Current lower bound record:

The generalized double-zigzag chain

 $r = 8: \Theta^*(3.0930^n)$ [Asinowski and Rote 2018]

```
Here: r = 3 without corners: \Theta^*(3.037^n)
```

Freie Universität

Current lower bound record:

The generalized double-zigzag chain

 $r = 8: \Theta^*(3.0930^n)$ [Asinowski and Rote 2018]

```
Here: r = 3 without corners: \Theta^*(3.037^n)
```

Freie Universität

Perfect matchings in double-X

Perfect matchings in double-X Freie Universität Berlin matching with k edges Pn-2k unique edges k-() matching with k edges |P| = |Q| = n

Perfect matchings in double-X

More general "flat" X

P

Günter Rote, Freie Universität Berlin

Must count only *down-free* matchings of P:

The unmatched points must be visible from below!

Dynamic Programming Recursion

Freie Universität

 $X_A^n = \#$ possibilities after n arcs with A dangling edges

Dynamic Programming Recursion

 $X_5^{n+1} = X_2^n + 3X_3^n + 7X_4^n + 6X_5^n + 7X_6^n + 3X_7^n + X_8^n$ $\begin{pmatrix} 3 & 6 & 3 & 1 & 0 & 0 & 0 & 0 \\ 6 & 6 & 7 & 3 & 1 & 0 & 0 & 0 \\ 3 & 7 & 6 & 7 & 3 & 1 & 0 & 0 \\ 1 & 3 & 7 & 6 & 7 & 3 & 1 & 0 \\ 0 & 1 & 3 & 7 & 6 & 7 & 3 & 1 \\ 0 & 0 & 1 & 3 & 7 & 6 & 7 & 3 \\ 0 & 0 & 0 & 1 & 3 & 7 & 6 & 7 \\ 0 & 0 & 0 & 0 & 1 & 3 & 7 & 6 \\ \end{pmatrix}$ $X_{1}^{n} X_{1}^{n+1} \\ X_{2}^{n+1} \\ X_{3}^{n+1} \\ X_{5}^{n+1} \\ X_{6}^{n+1} \\ X_{7}^{n+1} \\ X_{8}^{n+1}$ total #points row sum $28 \Longrightarrow$ vectors grow like $28^n/n^{3/2} \Longrightarrow \Theta^*(3.037^N$ [Banderier and Flajolet, 2002]

Counting and enumeration in geometry

Freie Universität

Berlin

Weighted lattice paths

Günter Rote, Freie Universität Berlin

Counting and enumeration in geometry

Overview

Freie Universität

- 0. Introduction
- 1. Count triangulations [Alvarez and Seidel, 2013]
 - and perfect matchings [Wettstein 2014]
 - Optimal triangulations
- Coordinated primal-dual sweep
 [Biedl, Chambers, Kostitsyna, Rote, Felsner 2020]
- Count perfect matchings of structured point sets
 [Asinowski and Rote, 2018]
- 4. Production matrices [Huemer, Pilz, Seara, Silveira 2016]

T

2

Freie Universität

Berlin

Freie Universität

Berlin

Günter Rote, Freie Universität Berlin

Counting and enumeration in geometry

PhD School on Computational Geometry, Würzburg, March 20, 2020

3

Triangulation of (n + 1)-gon with last vertex of degree

Triangulation of *n*-gon with last vertex of degree $d_n = d$ \rightarrow

4. Triangulations of a convex *n*-gon

Günter Rote, Freie Universität Berlin

Counting and enumeration in geometry

Fig. 4. Levels three to six of the tree of triangulations.

4. Triangulations of a convex *n*-gon

Triangulation of *n*-gon with last vertex of degree $d_n = d \rightarrow$

Triangulation of (n + 1)-gon with last vertex of degree

Günter Rote, Freie Universität Berlin

 \rightarrow

$$d_{n+1} = 2 \text{ or } 3 \text{ or } 4 \text{ or } \dots \text{ or } d, \text{ or } d+1$$
[Hurtado & Noy 1999]
"tree of triangulations"
$$triangulation$$

$$1$$
lattice path

Triangulation of (n + 1)-gon with last vertex of degree

Triangulation of *n*-gon with last vertex of degree $d_n = d$

4. Triangulations of a convex n-gon

Production matrices

Production matrices for enumeration

were introduced by Emeric Deutsch, Luca Ferrari, and Simone Rinaldi (2005).

were used for counting noncrossing graphs for points in convex position: Huemer, Seara, Silveira, and Pilz (2016) Huemer, Pilz, Seara, and Silveira (2017)

Making the degree finite

Making the degree finite

Other examples: graphs, paths

geometric graphs

paths

Huemer, Seara, Silveira, and Pilz (2016) Huemer, Pilz, Seara, and Silveira (2017)

0

Freie Universität

Other examples: graphs, paths

Huemer, Seara, Silveira, and Pilz (2016) Huemer, Pilz, Seara, and Silveira (2017)