EuroCG 2020 Ph. D. School on Computational Geometry

Counting and Enumeration in Geometry

Günter Rote

Freie Universität Berlin

Triangulations of a point set

a point set

two triangulations

a point set

two triangulations

COUNT: How many triangulations does a given point set have? SAMPLE: Generate a random triangulation (uniformly) ENUMERATE (list, visit) all triangulations of a given point set. OPTIMIZE: Find the "best" triangulation of a given point set. EXTREMAL QUESTION: How many triangulations can a set of n points have? at most? at least?

Other noncrossing geometric structures

a point set

two non-crossing perfect matchings

- triangulations
- non-crossing spanning trees
- non-crossing Hamiltonian cycles
- non-crossing matchings
- non-crossing perfect matchings
- [your favorite straight-line geometric graph structure]

Given a set of n points in the plane (in general position), how many

- triangulations
- non-crossing spanning trees
- non-crossing Hamiltonian cycles
- non-crossing matchings
- non-crossing perfect matchings
- [your favorite straight-line geometric graph structure] can it have, at most? (at least?)
https://adamsheffer.wordpress.com/numbers-of-plane-graphs/

The extremal question

We first consider the more popular variants - those with new works studying them every several years.

GRAPH TYPE	LOWER BOUND	REFERENCE	UPPER BOUND	REFERENCE
Plane Graphs	$\Omega\left(42.11^{N}\right)$	[HPS18]	$O\left(187.53^{N}\right)$	[SS12]
Triangulations	$\Omega\left(8.65^{N}\right)$	[DSST11]	30^{N}	[SS11]
Spanning Cycles	$\Omega\left(4.64^{N}\right)$	[GNT00]	$O\left(54.55^{N}\right)$	[SSW13]
Perfect Matchings	$\Omega\left(3.09^{N}\right)$	[AR15]	$O\left(10.05^{N}\right)$	[SW06]
Spanning Trees	$\Omega\left(12.52^{N}\right)$	[HM13]	$O\left(141.07^{N}\right)$	[HSSTW11; SS11]
Cycle-Free Graphs	$\Omega\left(13.61^{N}\right)$	[HM13]	$O\left(160.55^{N}\right)$	[HSSTW11; [S11]

Some less common variants:

New Horizons in Geomet Micha Sharir

We're Hiring

Recent Comments

Incidences: O
Pro... on Incid Lower Bound (part...

The extremal question

We first consider the more popular variants - those with new works studying them every several years.

New Horizons in Geomet Micha Sharir

We're Hiring

GRAPH TYPE	LOWER BOUND	REFERENCE	UPPER BOUND	REFERENCE
Plane Graphs	$\Omega\left(42.11^{N}\right)$	[HPS18]	$O\left(187.53^{N}\right)$	[SS12]
Triangulations	$\Omega\left(8.65^{N}\right)$	[DSST11]	30^{N}	[SS11]

Min \#Triangulations: $\Omega\left(2.43^{N}\right)$
$O\left(3.455^{N}\right)$
Perfect
$\Omega\left(3.09^{N}\right) \quad[$ AR15]
$O\left(10.05^{N}\right)$
[SW06]
Matchings

Spanning Trees	$\Omega\left(12.52^{N}\right)$	$[H M 13]$	$O\left(141.07^{N}\right)$	[HSSTW11; SS11]

Cycle-Free $\quad \Omega\left(13.61^{N}\right) \quad[\mathrm{HM} 13] \quad O\left(160.55^{N}\right) \quad$ [HSSTW11;
Graphs

Some less common variants:
[SSII]

SS11]

The extremal question

We first consider the more popular variants - those with new works studying
New Horizons in Geomet Micha Sharir them every several years.

Cycle-Free
Graphs
$\Omega\left(13.61^{N}\right) \quad[\mathrm{HM} 13] \quad O\left(160.55^{N}\right) \quad$ [HSSTW11;
SS11]
in General Po

Some less common variants:

The extremal question

We first consider the more popular variants - those with new works studying them every several years.

New Horizons in Geomet Micha Sharir

We're Hiring

Given a set of points, find the triangulation that

- has the smallest total edge length
- minimizes the largest angle
- maximizes the smallest angle
- maximizes the total area of all triangles
- minimizes the total squared edge length
- is a good spanner

Enumerating all triangulations and taking the best one always works.

Given a set of points, find the triangulation that

- has the smallest total edge length NP-hard, quasipolynomial
- minimizes the largest angle polynomial
- maximizes the smallest angle Delaunay
- maximizes the total area of all triangles easy
- minimizes the total squared edge length??
- is a good spanner?

Enumerating all triangulations and taking the best one always works.

0 . Introduction

1. Count triangulations [Alvarez and Seidel, 2013]

- and perfect matchings [Wettstein, 2014]
- Optimal triangulations

2. Coordinated primal-dual sweep
[Biedl, Chambers, Kostitsyna, Rote, Felsner, 2020]
3. Count perfect matchings of structured point sets [Asinowski and Rote, 2018]
4. Production matrices [Huemer, Pilz, Seara, Silveira, 2016]

1. Count Triangulations

Count, sample, enumerate

triangulation

1. Count Triangulations

Count, sample, enumerate
triangulation \rightarrow sequence of x-monotone ropes
[V. Alvarez, R. Seidel, 2013]

1. Count Triangulations

Count, sample, enumerate
triangulation \rightarrow sequence of x-monotone ropes
[V. Alvarez, R. Seidel, 2013]

1. Count Triangulations

Count, sample, enumerate
triangulation \rightarrow sequence of x-monotone ropes

1. Count Triangulations

Count, sample, enumerate
triangulation \rightarrow sequence of x-monotone ropes

1. Count Triangulations

Count, sample, enumerate
triangulation \rightarrow sequence of x-monotone ropes

1. Count Triangulations

Count, sample, enumerate
triangulation \rightarrow sequence of x-monotone ropes

1. Count Triangulations

Count, sample, enumerate
[V. Alvarez, R. Seidel, 2013]
triangulation $\quad \rightarrow \quad$ sequence of x-monotone ropes

\rightarrow path in a DAG with 2^{n-2} nodes

1. Count Triangulations

Count, sample, enumerate
[V. Alvarez, R. Seidel, 2013]
triangulation $\quad \rightarrow \quad$ sequence of x-monotone ropes

Not one-to-one!
\rightarrow path in a DAG with 2^{n-2} nodes

1. Count Triangulations

Count, sample, enumerate
[V. Alvarez, R. Seidel, 2013]
triangulation

Not one-to-one!
\rightarrow path in a DAG with 2^{n-2} nodes

1. Count Triangulations

Count, sample, enumerate
[V. Alvarez, R. Seidel, 2013]
triangulation

Not one-to-one!
\rightarrow path in a DAG with 2^{n-2} nodes

1. Count Triangulations

Count, sample, enumerate
[V. Alvarez, R. Seidel, 2013]
triangulation

Not one-to-one!
$\rightarrow \quad$ sequence of x-monotone ropes

1. Count Triangulations

Count, sample, enumerate triangulation

Always choose the LEFTmost triangle! MARK the position of change. (Ex. 1) \rightarrow path in a DAG with 2^{n-2} nodes

Not one-to-one!

1. Count Triangulations

Count, sample, enumerate
[V. Alvarez, R. Seidel, 2013]
triangulation

Not one-to-one!
$\rightarrow \quad$ sequence of x-monotone ropes

1. Count Triangulations

Count, sample, enumerate
[V. Alvarez, R. Seidel, 2013]
triangulation

Not one-to-one!
$\rightarrow \quad$ sequence of x-monotone ropes

1. Count Triangulations

Count, sample, enumerate
[V. Alvarez, R. Seidel, 2013]
triangulation

Not one-to-one!
Always choose the LEFTmost triangle! MARK the position of change.

$$
O\left(n 2^{n}\right)
$$

\rightarrow path in a DAG with $2 x-2$ nodes

Counting source-sink paths in a DAG

$N(v):=$ \#paths from source to v
Compute $N(v)$ from source to sink.

Counting source-sink paths in a DAG

$N(v):=\#$ paths from source to v
Compute $N(v)$ from source to sink.

Counting source-sink paths in a DAG

$N(v):=$ \#paths from source to v
Compute $N(v)$ from source to sink.

How to SAMPLE a random path:
Find a random number between 1 and 28.

Counting source-sink paths in a DAG

$N(v):=$ \#paths from source to v
Compute $N(v)$ from source to sink.

How to SAMPLE a random path:
Find a random number between 1 and 28 .

Counting source-sink paths in a DAG

$N(v):=$ \#paths from source to v
Compute $N(v)$ from source to sink.

How to SAMPLE a random path:
Find a random number between 1 and 28.

Counting source-sink paths in a DAG

$N(v):=$ \#paths from source to v
Compute $N(v)$ from source to sink.

How to SAMPLE a random path:
Find a random number between 1 and 28 .

Counting source-sink paths in a DAG

$N(v):=$ \#paths from source to v
Compute $N(v)$ from source to sink.

How to SAMPLE a random path:
Find a random number between 1 and 28 .

Counting source-sink paths in a DAG

$N(v):=$ \#paths from source to v
Compute $N(v)$ from source to sink.

How to SAMPLE a random path:
Find a random number between 1 and 28 .

Counting source-sink paths in a DAG

$N(v):=$ \#paths from source to v
Compute $N(v)$ from source to sink.

How to SAMPLE a random path:
Find a random number between 1 and 28 .

Counting source-sink paths in a DAG

$N(v):=$ \#paths from source to v
Compute $N(v)$ from source to sink.

How to SAMPLE a random path:
Find a random number between 1 and 28 .

Essentially, this is UNRANKING:
Compute a function $\{1, \ldots, N\} \rightarrow$ path

Summary

The number of triangulations can be found in $O\left(n^{2} 2^{n}\right)$ time and $O\left(n 2^{n}\right)$ space.
With this much preprocessing and space:

- The triangulations can be enumerated with $O(n)$ delay.
- A random triangulation can be determined in $O(n \log n)$ steps.

WARNING: Have to deal with large numbers.
Counting algorithm can use modular arithmetic (Chinese remainder theorem).

Can be applied to other structures (e.g. matchings, Ex. 6)
Can be used for optimizing decomposable objective functions. (Nonuniqueness is not an issue.)

Other algorithms for counting

There are many other approaches (divide-and-conquer, sweep, dynamic programming).

The theoretically fastest algorithm for counting triangulations uses divide-and-conquer, based on balanced separators of size $O(\sqrt{n})$ and has supexponential runtime:

$$
n^{O(\sqrt{n})}
$$

Also for counting other structures.
["cactus layers", Marx and Miltzow, 2016]

0 . Introduction

1. Count triangulations [Alvarez and Seidel, 2013]

- and perfect matchings [Wettstein 2014]
- Optimal triangulations

2. Coordinated primal-dual sweep
[Biedl, Chambers, Kostitsyna, Rote, Felsner 2020]
3. Count perfect matchings of structured point sets [Asinowski and Rote, 2018]
4. Production matrices [Huemer, Pilz, Silveira 2016]

2. Bipolar orientations (s - t-planar graphs)fice uniesestite (1) Betin

- plane directed acyclic graph
- a single source s and a single sink t

2. Bipolar orientations (s - t-planar graphs)gie uniestitet ($\mathbf{1}$) Betin

- plane directed acyclic graph
- a single source s and a single sink t
- split the outer face:
\rightarrow dual graph with a left outer vertex s^{\prime} and a right vertex t^{\prime}
- t^{\prime}

2. Bipolar orientations (s - t-planar graphs)fie unies site (4) Berin

- plane directed acyclic graph
- a single source s and a single sink t
- split the outer face:
\rightarrow dual graph with a left outer vertex s^{\prime} and a right vertex t^{\prime}

2. Bipolar orientations (s-t-planar graphs) gre Univesitite 1) Berlin

- plane directed acyclic graph
- a single source s and a single sink t
- split the outer face:
\rightarrow dual graph with a left outer vertex s^{\prime} and a right vertex t^{\prime}
- The dual graph is also a bipolar orientation. (may be a multigraph)

2. Bipolar orientations (s-t-planar graphs) gie Univesitite 4) Berlin

- plane directed acyclic graph
- a single source s and a single sink t
- split the outer face:
\rightarrow dual graph with a left outer vertex s^{\prime} and a right vertex t^{\prime}
- The dual graph is also a bipolar orientation. (may be a multigraph)
- All faces in the overlay of the two graphs are quadrilaterals:

Coordinated primal-dual sweep

- sweep the dual graph with an $s^{\prime}-t^{\prime}$ rope from bottom to top
sweep over the leftmost possible face

Coordinated primal-dual sweep

- sweep the dual graph with an $s^{\prime}-t^{\prime}$ rope from bottom to top
sweep over the leftmost possible face

Coordinated primal-dual sweep

- sweep the dual graph with an $s^{\prime}-t^{\prime}$ rope from bottom to top
sweep over the leftmost possible face

Coordinated primal-dual sweep

- sweep the dual graph with an $s^{\prime}-t^{\prime}$ rope

Coordinated primal-dual sweep

- sweep the dual graph with an $s^{\prime}-t^{\prime}$ rope

Coordinated primal-dual sweep

- sweep the dual graph with an $s^{\prime}-t^{\prime}$ rope

sweep over the leftmost possible face
Sweep is always possible! (Ex. 3)

General form of a face (Ex. 2b)

Coordinated primal-dual sweep

- sweep the dual graph with an $s^{\prime}-t^{\prime}$ rope
 from bottom to top sweep over the leftmost possible face Sweep is always possible! (Ex. 3)

General form of a face (Ex. 2b)

Coordinated primal-dual sweep

- sweep the dual graph with an $s^{\prime}-t^{\prime}$ rope

General form of a face (Ex. 2b)

Coordinated primal-dual sweep

- sweep the primal graph with an $s-t$ rope from left to right

Coordinated primal-dual sweep

- sweep the primal graph with an $s-t$ rope from left to right

Coordinated primal-dual sweep

- sweep the primal graph with an $s-t$ rope from left to right

Coordinated primal-dual sweep

- sweep the primal graph with an $s-t$ rope from left to right
sweep over the lowest possible face

Coordinated primal-dual sweep

- sweep the primal graph with an $s-t$ rope from left to right
sweep over the lowest possible face

Animation

__ dual rope in the dual (multi-)graph
_ primal rope (The primal graph is not shown.)
page.mi.fu-berlin.de/rote/Papers/slides/Wuerzburg-2020-Simultaneous-sweep-Animation.pdf

Coordinated sweep

There is a (unique) coordinated primal-dual sweep with the following properties:

- The primal rope always crosses the dual rope exactly once.
- The primal and the dual rope stay "close" to each other.
- Exactly one rope can advance, depending on the situation at the crossing.
- Every primal-dual edge pair is visited exactly once.
- Each individual sweep is a leftmost/bottommost sweep.
[Biedl, Chambers, Kostitsyna, Rote, Felsner 2020] in connection with sweeping over a pseudoline arrangement, see Ex. 4.

Coordinated sweep

general situation:

0 . Introduction

1. Count triangulations [Alvarez and Seidel, 2013]

- and perfect matchings [Wettstein 2014]
- Optimal triangulations

2. Coordinated primal-dual sweep
[Biedl, Chambers, Kostitsyna, Rote, Felsner 2020]
3. Count perfect matchings of structured point sets [Asinowski and Rote, 2018]
4. Production matrices [Huemer, Pilz, Seara, Silveira 2016]
5. Perf. matchings in structured points Freie Univesitite 4 . Berlin

$\Theta^{*}\left(3^{n}\right)$
[García, Noy, Tejel 2000]
[Sharir, Welzl 2006]

* = up to a polynomial factor

3. Perf. matchings in structured points freie Univesitite 1 (Berlin

smallest possible number of perfect matchings: $\Theta^{*}\left(2^{n}\right)$
$\Theta^{*}\left(3^{n}\right)$
[García, Noy, Tejel 2000]

Upper bound: $O^{*}\left(10.06^{n}\right)$

* $=$ up to a polynomial factor
[Sharir, Welzl 2006]

3. Perf. matchings in structured points

Current lower bound record:
The generalized double-zigzag chain
$|P|=r n+1$

$r=8: \quad \Theta^{*}\left(3.0930^{n}\right)$
[Asinowski and Rote 2018]
3. Perf. matchings in structured points

Current lower bound record:
The generalized double-zigzag chain
$|P|=r n+1$

$r=8: \quad \Theta^{*}\left(3.0930^{n}\right)$
[Asinowski and Rote 2018]
Here: $r=3$ without corners: $\Theta^{*}\left(3.037^{n}\right)$
3. Perf. matchings in structured points free univestite (1 Betin

Current lower bound record:
The generalized double-zigzag chain

$r=8: \quad \Theta^{*}\left(3.0930^{n}\right)$
[Asinowski and Rote 2018]
Here: $r=3$ without corners: $\Theta^{*}\left(3.037^{n}\right)$

Perfect matchings in double- X

$|P|=|Q|=n$

Perfect matchings in double- X

$|P|=|Q|=n$

matching with k edges

Perfect matchings in double- X

Perfect matchings in double- X

$n-2 k$ unique edges $P-Q$

matching with k edges

$$
M(X)=\sum_{k=0}^{n / 2} M_{k}(X)
$$

$M(X), M_{k}(X)=\#$ matchings of X (with k edges)
$\Longrightarrow M(X)^{2} / \frac{n}{2} \leq \mathrm{PM}($ double- $X) \leq M(X)^{2}$

$$
\Longrightarrow \Theta^{*}\left(3^{2 n}\right)(\text { Ex. 5) }
$$

More general "flat" X

P

More general "flat" X

More general "flat" X

Must count only down-free matchings of P :
The unmatched points must be visible from below!

Dynamic Programming Recursion

$X_{A}^{n}=\#$ possibilities after n arcs with A dangling edges

Dynamic Programming Recursion

$$
X_{5}^{n+1}=X_{2}^{n}+3 X_{3}^{n}+7 X_{4}^{n}+6 X_{5}^{n}+7 X_{6}^{n}+3 X_{7}^{n}+X_{8}^{n}
$$

$$
\left(\begin{array}{c}
X_{0}^{n+1} \\
X_{1}^{n+1} \\
X_{2}^{n+1} \\
X_{3}^{n+1} \\
X_{5}^{n+1} \\
X_{6}^{n+1} \\
X_{7}^{n+1} \\
X_{8}^{n+1} \\
\vdots
\end{array}\right)=\left(\begin{array}{ccccccccc}
3 & 6 & 3 & 1 & 0 & 0 & 0 & 0 & \ldots \\
6 & 6 & 7 & 3 & 1 & 0 & 0 & 0 & \ldots \\
3 & 7 & 6 & 7 & 3 & 1 & 0 & 0 & \cdots \\
1 & 3 & 7 & 6 & 7 & 3 & 1 & 0 & \ldots \\
0 & 1 & 3 & 7 & 6 & 7 & 3 & 1 & \cdots \\
0 & 0 & 1 & 3 & 7 & 6 & 7 & 3 & \cdots \\
0 & 0 & 0 & 1 & 3 & 7 & 6 & 7 & \cdots \\
0 & 0 & 0 & 0 & 1 & 3 & 7 & 6 & \ldots \\
\vdots & \ddots
\end{array}\right)\left(\begin{array}{c}
X_{0}^{n} \\
X_{1}^{n} \\
X_{2}^{n} \\
X_{3}^{n} \\
X_{5}^{n} \\
X_{6}^{n} \\
X_{7}^{n} \\
X_{8}^{n} \\
\vdots
\end{array}\right) \text { total \#points }
$$

row sum $28 \Longrightarrow$ vectors grow like $28^{n} / n^{3 / 2} \Longrightarrow \Theta^{*}\left(3.037^{N}\right)$
[Banderier and Flajolet, 2002]

Weighted lattice paths

0 . Introduction

1. Count triangulations [Alvarez and Seidel, 2013]

- and perfect matchings [Wettstein 2014]
- Optimal triangulations

2. Coordinated primal-dual sweep
[Biedl, Chambers, Kostitsyna, Rote, Felsner 2020]
3. Count perfect matchings of structured point sets [Asinowski and Rote, 2018]
4. Production matrices [Huemer, Pilz, Seara, Silveira 2016]

4. Triangulations of a convex n-gon

4. Triangulations of a convex n-gon

4. Triangulations of a convex n-gon

4. Triangulations of a convex n-gon

4. Triangulations of a convex n-gon

Triangulation of n-gon with last vertex of degree $d_{n}=d$
\qquad
Triangulation of $(n+1)$-gon with last vertex of degree

$$
\begin{array}{r}
d_{n+1}=2 \text { or } 3 \text { or } 4 \text { or } \ldots \text { or } d \text {, or } d+1 \\
\\
\text { [Hurtado \& Noy 1999] } \\
\text { "tree of triangulations" }
\end{array}
$$

4. Triangulations of a convex n-gon

Triangulation of n-gon with last vertex of degree $d_{n}=d$
\qquad
Triangulation of $(n+1)$-gon with last vertex of degree

$$
d_{n+1}=2 \text { or } 3 \text { or } 4 \text { or } \ldots \text { or } d \text {, or } d+1
$$

Fig. 4. Levels three to six of the tree of triangulations.
4. Triangulations of a convex n-gon

Triangulation of n-gon with last vertex of degree $d_{n}=d$

Triangulation of $(n+1)$-gon with last vertex of degree

$$
d_{n+1}=2 \text { or } 3 \text { or } 4 \text { or } \ldots \text { or } d \text {, or } d+1
$$

triangulation
 \downarrow
 lattice path

Production matrices

count paths in
a layered graph

The answer is

$$
\begin{array}{llll}
\text { is } \\
\left(\begin{array}{llll}
1 & 0 & 0 & \ldots
\end{array}\right) & \underbrace{\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & \ldots \\
1 & 1 & 1 & 1 & \ldots \\
0 & 1 & 1 & 1 & \ldots \\
0 & 0 & 1 & 1 & \ldots \\
0 & 0 & 0 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)}
\end{array} \text { the "production matrix" } P
$$

Production matrices for enumeration

were introduced by Emeric Deutsch, Luca Ferrari, and Simone Rinaldi (2005).
were used for counting noncrossing graphs for points in convex position:

Huemer, Seara, Silveira, and Pilz (2016)
Huemer, Pilz, Seara, and Silveira (2017)

| $\left(\begin{array}{ccccc}0 & 1 & 1 & 1 & \ldots \\ 1 & 0 & 1 & 1 & \ldots \\ 0 & 1 & 0 & 1 & \ldots \\ 0 & 0 & 1 & 0 & \ldots \\ 0 & 0 & 0 & 1 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| matchings$\left(\begin{array}{cccccc}2 & 3 & 4 & 5 & \ldots \\ 1 & 2 & 3 & 4 & \ldots \\ 0 & 1 & 2 & 3 & \ldots \\ 0 & 0 & 1 & 2 & \ldots \\ 0 & 0 & 0 & 1 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$ |\(\left(\begin{array}{ccccc}1 \& 1 \& 1 \& 1 \& ···

1 \& 3 \& 4 \& 5 \& ···

0 \& 1 \& 3 \& 4 \& ···

0 \& 0 \& 1 \& 3 \& ···

0 \& 0 \& 0 \& 1 \& ···

\vdots \& \vdots \& \vdots \& \vdots \& \ddots\end{array}\right)\)

use
 vertical edges for partial summation

Number of paths is preserved.

Shearing
\rightarrow Dyck paths
\rightarrow Catalan numbers

Number of paths is preserved.

Other examples: graphs, paths

Huemer, Seara, Silveira, and Pilz (2016) Huemer, Pilz, Seara, and Silveira (2017)

Other examples: graphs, paths

Huemer, Seara, Silveira, and Pilz (2016) Huemer, Pilz, Seara, and Silveira (2017)

