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Triangulations of a point set

two triangulationsa point set

algorithmic vs. combinatorial questions
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Triangulations of a point set

two triangulationsa point set

COUNT: How many triangulations does a given point set have?

EXTREMAL QUESTION: How many triangulations can a set
of n points have? at most? at least?

ENUMERATE (list, visit) all triangulations of a given point set.

OPTIMIZE: Find the “best” triangulation of a given point set.

SAMPLE: Generate a random triangulation (uniformly)

algorithmic vs. combinatorial questions
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Other noncrossing geometric structures

two non-crossing perfect matchingsa point set

• triangulations
• non-crossing spanning trees
• non-crossing Hamiltonian cycles
• non-crossing matchings
• non-crossing perfect matchings
• . . .
• [your favorite straight-line geometric graph structure]



Günter Rote, Freie Universität Berlin Counting and enumeration in geometry PhD School on Computational Geometry, Würzburg, March 20, 2020

The extremal question

https://adamsheffer.wordpress.com/numbers-of-plane-graphs/

Given a set of n points in the plane (in general position),
how many

• triangulations
• non-crossing spanning trees
• non-crossing Hamiltonian cycles
• non-crossing matchings
• non-crossing perfect matchings
• . . .
• [your favorite straight-line geometric graph structure]

can it have, at most? (at least?)
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The extremal question
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The extremal question

Min #Triangulations: Ω(2.43N ) O(3.455N )
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The extremal question

Min #Triangulations: Ω(2.43N ) O(3.455N )

Think of some particular point set
and COUNT its triangulations.
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The extremal question

Min #Triangulations: Ω(2.43N ) O(3.455N )

Think of some particular point set
and COUNT its triangulations.
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Optimization

Given a set of points, find the triangulation that

• has the smallest total edge length

• minimizes the largest angle

• maximizes the smallest angle

• maximizes the total area of all triangles

• minimizes the total squared edge length

• is a good spanner

• . . .

Enumerating all triangulations and taking the best one always
works.
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Optimization

Given a set of points, find the triangulation that

• has the smallest total edge length

• minimizes the largest angle

• maximizes the smallest angle

• maximizes the total area of all triangles

• minimizes the total squared edge length

• is a good spanner

• . . .

Given a set of points, find the triangulation that

• has the smallest total edge length NP-hard, quasipolynomial

• minimizes the largest angle polynomial

• maximizes the smallest angle Delaunay

• maximizes the total area of all triangles easy

• minimizes the total squared edge length??

• is a good spanner??

• . . .

Enumerating all triangulations and taking the best one always
works.
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Overview

0. Introduction

1. Count triangulations [ Alvarez and Seidel, 2013 ]
• and perfect matchings [ Wettstein, 2014 ]
• Optimal triangulations

2. Coordinated primal-dual sweep
[ Biedl, Chambers, Kostitsyna, Rote, Felsner, 2020 ]

3. Count perfect matchings of structured point sets
[ Asinowski and Rote, 2018 ]

4. Production matrices [ Huemer, Pilz, Seara, Silveira, 2016 ]
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→



Günter Rote, Freie Universität Berlin Counting and enumeration in geometry PhD School on Computational Geometry, Würzburg, March 20, 2020

1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→

→ path in a DAG with 2n−2 nodes
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→

→ path in a DAG with 2n−2 nodes

Not one-to-one!

?

?
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→

→ path in a DAG with 2n−2 nodes

Always choose the LEFTmost triangle!
Not one-to-one!

?

?
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→

→ path in a DAG with 2n−2 nodes

Always choose the LEFTmost triangle!
Not one-to-one!
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→

→ path in a DAG with 2n−2 nodes

Always choose the LEFTmost triangle!
Not one-to-one!

MARK the position of change. (Ex. 1)
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→

→ path in a DAG with 2n−2 nodes

Always choose the LEFTmost triangle!
Not one-to-one!

MARK the position of change. (Ex. 1)
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→

→ path in a DAG with 2n−2 nodes

Always choose the LEFTmost triangle!
Not one-to-one!

MARK the position of change. (Ex. 1)

?

? ?
?
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→

→ path in a DAG with 2n−2 nodes

Always choose the LEFTmost triangle!
Not one-to-one!

MARK the position of change. (Ex. 1)

?

?

forbidden

?
?
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1. Count Triangulations

Count, sample, enumerate [ V. Alvarez, R. Seidel, 2013 ]

triangulation sequence of x-monotone ropes→

→ path in a DAG with 2n−2 nodes

Always choose the LEFTmost triangle!

MARKED ropes

↔

Not one-to-one!

MARK the position of change. (Ex. 1)
O(n2n)
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Counting source-sink paths in a DAG

N(v) := #paths from source to v
Compute N(v) from source to sink.
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Counting source-sink paths in a DAG

1
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1

3 6
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8

2

N(v) := #paths from source to v
Compute N(v) from source to sink.
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Counting source-sink paths in a DAG

1
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1 1

2 4

1
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28

8

2

How to SAMPLE a random path:

Find a random number between 1 and 28.
. . .

N(v) := #paths from source to v
Compute N(v) from source to sink.
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Counting source-sink paths in a DAG

21/28
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How to SAMPLE a random path:

Find a random number between 1 and 28.
. . .

N(v) := #paths from source to v
Compute N(v) from source to sink.
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Counting source-sink paths in a DAG

7/14

21/28

1
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2

How to SAMPLE a random path:

Find a random number between 1 and 28.
. . .

because 21 = 3 + 11 + 7

N(v) := #paths from source to v
Compute N(v) from source to sink.
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Counting source-sink paths in a DAG

7/14

21/28

7/8
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How to SAMPLE a random path:

Find a random number between 1 and 28.
. . .

N(v) := #paths from source to v
Compute N(v) from source to sink.
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Counting source-sink paths in a DAG

7/14

21/28

7/8

1/2

1
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How to SAMPLE a random path:

Find a random number between 1 and 28.
. . .

because 7 = 2 + 4 + 1

N(v) := #paths from source to v
Compute N(v) from source to sink.
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Counting source-sink paths in a DAG
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How to SAMPLE a random path:

Find a random number between 1 and 28.
. . .

1/1

N(v) := #paths from source to v
Compute N(v) from source to sink.
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Counting source-sink paths in a DAG
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21/28
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How to SAMPLE a random path:

Find a random number between 1 and 28.
. . .

1/1

N(v) := #paths from source to v
Compute N(v) from source to sink.
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Counting source-sink paths in a DAG

7/14

21/28

7/8

1/2

1
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How to SAMPLE a random path:

Find a random number between 1 and 28.
. . .

1/1 Essentially, this is UNRANKING:
Compute a function {1, . . . , N} → path

N(v) := #paths from source to v
Compute N(v) from source to sink.
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Summary

The number of triangulations can be found in O(n22n) time
and O(n2n) space.
With this much preprocessing and space:
• The triangulations can be enumerated with O(n) delay.
• A random triangulation can be determined in O(n log n)

steps.

WARNING: Have to deal with large numbers.
Counting algorithm can use modular arithmetic (Chinese
remainder theorem).

Can be applied to other structures (e.g. matchings, Ex. 6)

Can be used for optimizing decomposable objective functions.
(Nonuniqueness is not an issue.)
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Other algorithms for counting

There are many other approaches (divide-and-conquer, sweep,
dynamic programming).

The theoretically fastest algorithm for counting triangulations
uses divide-and-conquer, based on balanced separators of size
O(
√
n) and has supexponential runtime:

nO(
√
n)

Also for counting other structures.

[“cactus layers”, Marx and Miltzow, 2016 ]
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Overview

0. Introduction

1. Count triangulations [ Alvarez and Seidel, 2013 ]
• and perfect matchings [ Wettstein 2014 ]
• Optimal triangulations

2. Coordinated primal-dual sweep
[ Biedl, Chambers, Kostitsyna, Rote, Felsner 2020 ]

3. Count perfect matchings of structured point sets
[ Asinowski and Rote, 2018 ]

4. Production matrices [ Huemer, Pilz, Silveira 2016 ]
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2. Bipolar orientations (s-t-planar graphs)

t

s

• plane directed acyclic graph

• a single source s and
a single sink t
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2. Bipolar orientations (s-t-planar graphs)

t

s

t′s′

• plane directed acyclic graph

• a single source s and
a single sink t

• split the outer face:
→ dual graph with a left outer

vertex s′ and a right vertex t′
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2. Bipolar orientations (s-t-planar graphs)

t

s

t′s′

• plane directed acyclic graph

• a single source s and
a single sink t

• split the outer face:
→ dual graph with a left outer

vertex s′ and a right vertex t′

• The dual graph is also
a bipolar orientation.
(may be a multigraph)



Günter Rote, Freie Universität Berlin Counting and enumeration in geometry PhD School on Computational Geometry, Würzburg, March 20, 2020

2. Bipolar orientations (s-t-planar graphs)

t

s

t′s′

• plane directed acyclic graph

• a single source s and
a single sink t

• split the outer face:
→ dual graph with a left outer

vertex s′ and a right vertex t′

• The dual graph is also
a bipolar orientation.
(may be a multigraph)

• All faces in the overlay of the
two graphs are quadrilaterals:
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Coordinated primal-dual sweep

t′s′

• sweep the dual graph
with an s′–t′ rope
from bottom to top

sweep over the leftmost possible face
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Coordinated primal-dual sweep

t′s′

• sweep the dual graph
with an s′–t′ rope
from bottom to top

sweep over the leftmost possible face
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Coordinated primal-dual sweep

t′s′

• sweep the dual graph
with an s′–t′ rope
from bottom to top

sweep over the leftmost possible face

Sweep is always possible! (Ex. 3)
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Coordinated primal-dual sweep

t′s′

• sweep the dual graph
with an s′–t′ rope
from bottom to top

sweep over the leftmost possible face

Sweep is always possible! (Ex. 3)

General form of a face (Ex. 2b)
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Coordinated primal-dual sweep

t′s′

• sweep the dual graph
with an s′–t′ rope
from bottom to top

sweep over the leftmost possible face

Sweep is always possible! (Ex. 3)

General form of a face (Ex. 2b)
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Coordinated primal-dual sweep

t

s

• sweep the primal graph
with an s–t rope
from left to right
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Coordinated primal-dual sweep

t

s

• sweep the primal graph
with an s–t rope
from left to right
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Coordinated primal-dual sweep

t

s

• sweep the primal graph
with an s–t rope
from left to right
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Coordinated primal-dual sweep

t

s

• sweep the primal graph
with an s–t rope
from left to right

sweep over the lowest possible face
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Coordinated primal-dual sweep

t

s

• sweep the primal graph
with an s–t rope
from left to right

sweep over the lowest possible face
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Animation

dual rope in the dual (multi-)graph

primal rope (The primal graph is not shown.)

s′ t′

s

t

dual rope in the dual (multi-)graph

primal rope (The primal graph is not shown.)

page.mi.fu-berlin.de/rote/Papers/slides/Wuerzburg-2020-Simultaneous-sweep-Animation.pdf
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Coordinated sweep

There is a (unique) coordinated primal-dual sweep with the
following properties:

• The primal rope always crosses the dual rope exactly once.

• The primal and the dual rope stay “close” to each other.

• Exactly one rope can advance, depending on the situation
at the crossing.

• Every primal-dual edge pair is visited exactly once.

• Each individual sweep is a leftmost/bottommost sweep.

[ Biedl, Chambers, Kostitsyna, Rote, Felsner 2020 ]
in connection with sweeping over a pseudoline arrangement,
see Ex. 4.
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Coordinated sweep

general situation:
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Coordinated sweep

general situation:
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Coordinated sweep

?
?

general situation:
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Coordinated sweep

general situation:
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Coordinated sweep

The other case is symmetric.

general situation:
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Coordinated sweep

The other case is symmetric.

general situation:
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Overview

0. Introduction

1. Count triangulations [ Alvarez and Seidel, 2013 ]
• and perfect matchings [ Wettstein 2014 ]
• Optimal triangulations

2. Coordinated primal-dual sweep
[ Biedl, Chambers, Kostitsyna, Rote, Felsner 2020 ]

3. Count perfect matchings of structured point sets
[ Asinowski and Rote, 2018 ]

4. Production matrices [ Huemer, Pilz, Seara, Silveira 2016 ]
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3. Perf. matchings in structured points

convex position

smallest possible number of
perfect matchings: Θ∗(2n)

P

Q

double-chain

Θ∗(3n)

[Garćıa, Noy, Tejel 2000]

Upper bound: O∗(10.06n) [Sharir, Welzl 2006]

∗ = up to a polynomial factor

“flat”!
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3. Perf. matchings in structured points

convex position

smallest possible number of
perfect matchings: Θ∗(2n)

P

Q

double-chain

Θ∗(3n)

[Garćıa, Noy, Tejel 2000]

Upper bound: O∗(10.06n) [Sharir, Welzl 2006]

∗ = up to a polynomial factor

noncrossing!
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3. Perf. matchings in structured points

r = 5

|P | = rn + 1

1

2
3

n

r = 8: Θ∗(3.0930n) [ Asinowski and Rote 2018 ]

Current lower bound record:

The generalized double-zigzag chain
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3. Perf. matchings in structured points

r = 5

|P | = rn + 1

1

2
3

n

r = 8: Θ∗(3.0930n) [ Asinowski and Rote 2018 ]

Current lower bound record:

The generalized double-zigzag chain

Here: r = 3 without corners: Θ∗(3.037n)
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3. Perf. matchings in structured points

|P | = rn + 1

1

2
3

n

r = 8: Θ∗(3.0930n) [ Asinowski and Rote 2018 ]

Current lower bound record:

The generalized double-zigzag chain

Here: r = 3 without corners: Θ∗(3.037n)

|P | = 3n
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Perfect matchings in double-X
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Perfect matchings in double-X

P

Q

|P | = |Q| = n

P

Q

matching with k edges

matching with k edges

n− 2k unique edges P—Q
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Perfect matchings in double-X

P

Q

|P | = |Q| = n

P

Q

matching with k edges

matching with k edges

n− 2k unique edges P—Q

PM(double-X) =

n/2∑
k=0

Mk(X)2 M(X) =

n/2∑
k=0

Mk(X)

M(X),Mk(X) = # matchings of X (with k edges)

=⇒ M(X)2/n
2 ≤ PM(double-X) ≤M(X)2

=⇒ Θ∗(32n) (Ex. 5)
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More general “flat” X

P
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More general “flat” X

P

Must count only down-free matchings of P :

The unmatched points must be visible from below!
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Dynamic Programming Recursion

B dangling edgesA dangling edges

Xn
A Xn+1

B

Xn
A = # possibilities after n arcs with A dangling edges

`n `n+1



Günter Rote, Freie Universität Berlin Counting and enumeration in geometry PhD School on Computational Geometry, Würzburg, March 20, 2020

Dynamic Programming Recursion

Xn+1
5 = Xn

2 + 3Xn
3 + 7Xn

4 + 6Xn
5 + 7Xn

6 + 3Xn
7 + Xn

8



Xn+1
0

Xn+1
1

Xn+1
2

Xn+1
3

Xn+1
5

Xn+1
6

Xn+1
7

Xn+1
8
...


=



3 6 3 1 0 0 0 0 · · ·
6 6 7 3 1 0 0 0 · · ·
3 7 6 7 3 1 0 0 · · ·
1 3 7 6 7 3 1 0 · · ·
0 1 3 7 6 7 3 1 · · ·
0 0 1 3 7 6 7 3 · · ·
0 0 0 1 3 7 6 7 · · ·
0 0 0 0 1 3 7 6 · · ·
...

...
...

...
...

...
...

...
. . .





Xn
0

Xn
1

Xn
2

Xn
3

Xn
5

Xn
6

Xn
7

Xn
8

...


row sum 28 =⇒ vectors grow like 28n/n3/2 =⇒ Θ∗(3.037N )

[ Banderier and Flajolet, 2002 ]

total #points
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Weighted lattice paths

1
3

7
6
7

3
1

n

Xn
A

A
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Overview

0. Introduction

1. Count triangulations [ Alvarez and Seidel, 2013 ]
• and perfect matchings [ Wettstein 2014 ]
• Optimal triangulations

2. Coordinated primal-dual sweep
[ Biedl, Chambers, Kostitsyna, Rote, Felsner 2020 ]

3. Count perfect matchings of structured point sets
[ Asinowski and Rote, 2018 ]

4. Production matrices [ Huemer, Pilz, Seara, Silveira 2016 ]
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4. Triangulations of a convex n-gon

dn+1 = 4
dn = 5

1

2
34

n
n + 1

1

2
34

n
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4. Triangulations of a convex n-gon

dn+1 = 4
dn = 5

1

2
34

n
n + 1

d′n = dn + dn+1 − 3

1

2
34

n
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4. Triangulations of a convex n-gon

dn+1 = 4
dn = 5

1

2
34

n
n + 1

d′n = dn + dn+1 − 3

1

2
34

n

dn+1 = 2, 3, . . . , d + 1

1

2
34

n dn = d

1

2
34

n
n + 1
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4. Triangulations of a convex n-gon

dn+1 = 2, 3, . . . , d + 1

1

2
34

n dn = d

1

2
34

n
n + 1

Triangulation of n-gon with last vertex of degree dn = d

→
Triangulation of (n + 1)-gon with last vertex of degree

dn+1 = 2 or 3 or 4 or . . . or d, or d + 1

[ Hurtado & Noy 1999 ]

“tree of triangulations”
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4. Triangulations of a convex n-gon

Triangulation of n-gon with last vertex of degree dn = d

→
Triangulation of (n + 1)-gon with last vertex of degree

dn+1 = 2 or 3 or 4 or . . . or d, or d + 1

[ Hurtado & Noy 1999 ]

“tree of triangulations”
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4. Triangulations of a convex n-gon

Triangulation of n-gon with last vertex of degree dn = d

→
Triangulation of (n + 1)-gon with last vertex of degree

dn+1 = 2 or 3 or 4 or . . . or d, or d + 1

n

d

2

3

4

triangulation
l

lattice path

[ Hurtado & Noy 1999 ]

“tree of triangulations”
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Production matrices

n

(
1 0 0 . . .

)


1 1 1 1 . . .
1 1 1 1 . . .
0 1 1 1 . . .
0 0 1 1 . . .
0 0 0 1 . . .
...

...
...

...
. . .



n
1
0
0
...


The answer is

︸ ︷︷ ︸
the “production matrix” P

count paths in
a layered graph
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Production matrices for enumeration

were introduced by Emeric Deutsch, Luca Ferrari, and Simone
Rinaldi (2005).

were used for counting noncrossing graphs for points in convex
position: Huemer, Seara, Silveira, and Pilz (2016)

Huemer, Pilz, Seara, and Silveira (2017)

2 3 4 5 . . .
1 2 3 4 . . .
0 1 2 3 . . .
0 0 1 2 . . .
0 0 0 1 . . .
...

...
...

...
. . .


matchings spanning trees forests



0 1 1 1 . . .
1 0 1 1 . . .
0 1 0 1 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .





1 1 1 1 . . .
1 3 4 5 . . .
0 1 3 4 . . .
0 0 1 3 . . .
0 0 0 1 . . .
...

...
...

...
. . .


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Making the degree finite

n

n

Number of paths
is preserved.

use
vertical edges for
partial summation



Günter Rote, Freie Universität Berlin Counting and enumeration in geometry PhD School on Computational Geometry, Würzburg, March 20, 2020

Making the degree finite

n

Number of paths
is preserved.

n

Shearing
→ Dyck paths
→ Catalan numbers
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Other examples: graphs, paths

1 1 1 0 0 0 . . .
1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
1 1 1 1 1 1 . . .
0 1 1 0 1 1 . . .
0 0 1 0 0 1 . . .
...

...
...

...
...

. . .





1 1 1 1 1 1 . . .
1 3 3 3 3 3 . . .
0 2 4 4 4 4 . . .
0 0 2 4 4 4 . . .
0 0 0 2 4 4 . . .
0 0 0 0 2 4 . . .
...

...
...

...
...

. . .


geometric graphs paths

Huemer, Seara, Silveira, and Pilz (2016)
Huemer, Pilz, Seara, and Silveira (2017)



Günter Rote, Freie Universität Berlin Counting and enumeration in geometry PhD School on Computational Geometry, Würzburg, March 20, 2020

Other examples: graphs, paths

1 1 1 0 0 0 . . .
1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
1 1 1 1 1 1 . . .
0 1 1 0 1 1 . . .
0 0 1 0 0 1 . . .
...

...
...

...
...

. . .





1 1 1 1 1 1 . . .
1 3 3 3 3 3 . . .
0 2 4 4 4 4 . . .
0 0 2 4 4 4 . . .
0 0 0 2 4 4 . . .
0 0 0 0 2 4 . . .
...

...
...

...
...

. . .


geometric graphs paths

two “states”

Huemer, Seara, Silveira, and Pilz (2016)
Huemer, Pilz, Seara, and Silveira (2017)
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